Files
LNXRNT/Sources/async_engine.h
2026-02-20 23:40:15 -08:00

200 lines
5.4 KiB
C++

#pragma once
#include <atomic>
#include <memory>
#include <vector>
#include <queue>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <functional>
#include <future>
namespace EngineManager {
// thread communication
template<typename T>
class LockFreeQueue {
private:
struct Node {
std::atomic<T*> data{nullptr};
std::atomic<Node*> next{nullptr};
};
std::atomic<Node*> head_{nullptr};
std::atomic<Node*> tail_{nullptr};
public:
LockFreeQueue() {
Node* dummy = new Node;
head_.store(dummy);
tail_.store(dummy);
}
~LockFreeQueue() {
while (Node* const old_head = head_.load()) {
head_.store(old_head->next);
delete old_head->data.load();
delete old_head;
}
}
void push(T item) {
Node* new_node = new Node;
T* data = new T(std::move(item));
new_node->data.store(data);
Node* prev_tail = tail_.exchange(new_node);
prev_tail->next.store(new_node);
}
bool try_pop(T& result) {
Node* head = head_.load();
Node* next = head->next.load();
if (next == nullptr) return false;
T* data = next->data.load();
if (data == nullptr) return false;
result = *data;
delete data;
head_.store(next);
delete head;
return true;
}
bool empty() const {
Node* head = head_.load();
return (head->next.load() == nullptr);
}
};
// thread pool stealing
class ThreadPool {
private:
std::vector<std::thread> workers_;
std::queue<std::function<void()>> tasks_;
std::mutex queue_mutex_;
std::condition_variable condition_;
std::atomic<bool> stop_{false};
public:
explicit ThreadPool(size_t num_threads = std::thread::hardware_concurrency()) {
for (size_t i = 0; i < num_threads; ++i) {
workers_.emplace_back([this] {
for (;;) {
std::function<void()> task;
{
std::unique_lock<std::mutex> lock(queue_mutex_);
condition_.wait(lock, [this] { return stop_ || !tasks_.empty(); });
if (stop_ && tasks_.empty()) return;
task = std::move(tasks_.front());
tasks_.pop();
}
task();
}
});
}
}
template<class F, class... Args>
auto enqueue(F&& f, Args&&... args) -> std::future<typename std::invoke_result<F, Args...>::type> {
using return_type = typename std::invoke_result<F, Args...>::type;
auto task = std::make_shared<std::packaged_task<return_type()>>(
std::bind(std::forward<F>(f), std::forward<Args>(args)...)
);
std::future<return_type> res = task->get_future();
{
std::unique_lock<std::mutex> lock(queue_mutex_);
if (stop_) {
throw std::runtime_error("ThreadPool: enqueue stopped");
}
tasks_.emplace([task](){ (*task)(); });
}
condition_.notify_one();
return res;
}
size_t pending_tasks() const {
std::lock_guard<std::mutex> lock(const_cast<std::mutex&>(queue_mutex_));
return tasks_.size();
}
~ThreadPool() {
stop_ = true;
condition_.notify_all();
for (std::thread& worker : workers_) {
worker.join();
}
}
};
class AsyncEngine {
private:
static std::unique_ptr<AsyncEngine> instance_;
static std::once_flag initialized_;
std::unique_ptr<ThreadPool> main_pool_;
std::unique_ptr<ThreadPool> io_pool_;
LockFreeQueue<std::function<void()>> event_queue_;
AsyncEngine() {
unsigned int hw_threads = std::thread::hardware_concurrency();
size_t main_threads = hw_threads > 4 ? hw_threads / 2 : 2;
size_t io_threads = hw_threads > 8 ? 4 : 2;
main_pool_ = std::make_unique<ThreadPool>(main_threads);
io_pool_ = std::make_unique<ThreadPool>(io_threads);
}
public:
static AsyncEngine& instance() {
std::call_once(initialized_, []() {
instance_ = std::unique_ptr<AsyncEngine>(new AsyncEngine());
});
return *instance_;
}
// main
template<class F, class... Args>
auto execute(F&& f, Args&&... args) -> std::future<typename std::invoke_result<F, Args...>::type> {
return main_pool_->enqueue(std::forward<F>(f), std::forward<Args>(args)...);
}
template<class F, class... Args>
auto execute_io(F&& f, Args&&... args) -> std::future<typename std::invoke_result<F, Args...>::type> {
return io_pool_->enqueue(std::forward<F>(f), std::forward<Args>(args)...);
}
void push_event(std::function<void()> event) {
event_queue_.push(std::move(event));
}
void process_events() {
std::function<void()> event;
while (event_queue_.try_pop(event)) {
event();
}
}
size_t pending_main_tasks() const { return main_pool_->pending_tasks(); }
size_t pending_io_tasks() const { return io_pool_->pending_tasks(); }
static void shutdown() {
instance_.reset();
}
};
}