import bpy, math, os, gpu, bgl, importlib import numpy as np from . import utility from fractions import Fraction from gpu_extras.batch import batch_for_shader def splitLogLuvAlphaAtlas(imageIn, outDir, quality): pass def splitLogLuvAlpha(imageIn, outDir, quality): bpy.app.driver_namespace["logman"].append("Starting LogLuv split for: " + str(imageIn)) cv2 = importlib.util.find_spec("cv2") if cv2 is None: print("CV2 not found - Ignoring filtering") return 0 else: cv2 = importlib.__import__("cv2") print(imageIn) image = cv2.imread(imageIn, cv2.IMREAD_UNCHANGED) #cv2.imshow('image', image) split = cv2.split(image) merged = cv2.merge([split[0], split[1], split[2]]) alpha = split[3] #b,g,r = cv2.split(image) #merged = cv2.merge([b, g, r]) #alpha = cv2.merge([a,a,a]) image_name = os.path.basename(imageIn)[:-4] #os.path.join(outDir, image_name+"_XYZ.png") cv2.imwrite(os.path.join(outDir, image_name+"_XYZ.png"), merged) cv2.imwrite(os.path.join(outDir, image_name+"_W.png"), alpha) def encodeLogLuvGPU(image, outDir, quality): bpy.app.driver_namespace["logman"].append("Starting LogLuv encode for: " + str(image.name)) input_image = bpy.data.images[image.name] image_name = input_image.name offscreen = gpu.types.GPUOffScreen(input_image.size[0], input_image.size[1]) image = input_image vertex_shader = ''' uniform mat4 ModelViewProjectionMatrix; in vec2 texCoord; in vec2 pos; out vec2 texCoord_interp; void main() { //gl_Position = ModelViewProjectionMatrix * vec4(pos.xy, 0.0f, 1.0f); //gl_Position.z = 1.0; gl_Position = vec4(pos.xy, 100, 100); texCoord_interp = texCoord; } ''' fragment_shader = ''' in vec2 texCoord_interp; out vec4 fragColor; uniform sampler2D image; const mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 ); vec4 LinearToLogLuv( in vec4 value ) { vec3 Xp_Y_XYZp = cLogLuvM * value.rgb; Xp_Y_XYZp = max( Xp_Y_XYZp, vec3( 1e-6, 1e-6, 1e-6 ) ); vec4 vResult; vResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z; float Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0; vResult.w = fract( Le ); vResult.z = ( Le - ( floor( vResult.w * 255.0 ) ) / 255.0 ) / 255.0; return vResult; //return vec4(Xp_Y_XYZp,1); } const mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 ); vec4 LogLuvToLinear( in vec4 value ) { float Le = value.z * 255.0 + value.w; vec3 Xp_Y_XYZp; Xp_Y_XYZp.y = exp2( ( Le - 127.0 ) / 2.0 ); Xp_Y_XYZp.z = Xp_Y_XYZp.y / value.y; Xp_Y_XYZp.x = value.x * Xp_Y_XYZp.z; vec3 vRGB = cLogLuvInverseM * Xp_Y_XYZp.rgb; //return vec4( max( vRGB, 0.0 ), 1.0 ); return vec4( max( Xp_Y_XYZp, 0.0 ), 1.0 ); } void main() { //fragColor = LinearToLogLuv(pow(texture(image, texCoord_interp), vec4(0.454))); fragColor = LinearToLogLuv(texture(image, texCoord_interp)); //fragColor = LogLuvToLinear(LinearToLogLuv(texture(image, texCoord_interp))); } ''' x_screen = 0 off_x = -100 off_y = -100 y_screen_flip = 0 sx = 200 sy = 200 vertices = ( (x_screen + off_x, y_screen_flip - off_y), (x_screen + off_x, y_screen_flip - sy - off_y), (x_screen + off_x + sx, y_screen_flip - sy - off_y), (x_screen + off_x + sx, y_screen_flip - off_x)) if input_image.colorspace_settings.name != 'Linear': input_image.colorspace_settings.name = 'Linear' # Removing .exr or .hdr prefix if image_name[-4:] == '.exr' or image_name[-4:] == '.hdr': image_name = image_name[:-4] target_image = bpy.data.images.get(image_name + '_encoded') if bpy.context.scene.TLM_SceneProperties.tlm_verbose: print(image_name + '_encoded') if not target_image: target_image = bpy.data.images.new( name = image_name + '_encoded', width = input_image.size[0], height = input_image.size[1], alpha = True, float_buffer = False ) shader = gpu.types.GPUShader(vertex_shader, fragment_shader) batch = batch_for_shader( shader, 'TRI_FAN', { "pos": vertices, "texCoord": ((0, 1), (0, 0), (1, 0), (1, 1)), }, ) if image.gl_load(): raise Exception() with offscreen.bind(): bgl.glActiveTexture(bgl.GL_TEXTURE0) bgl.glBindTexture(bgl.GL_TEXTURE_2D, image.bindcode) shader.bind() shader.uniform_int("image", 0) batch.draw(shader) buffer = bgl.Buffer(bgl.GL_BYTE, input_image.size[0] * input_image.size[1] * 4) bgl.glReadBuffer(bgl.GL_BACK) bgl.glReadPixels(0, 0, input_image.size[0], input_image.size[1], bgl.GL_RGBA, bgl.GL_UNSIGNED_BYTE, buffer) offscreen.free() target_image.pixels = [v / 255 for v in buffer] input_image = target_image #Save LogLuv if bpy.context.scene.TLM_SceneProperties.tlm_verbose: print(input_image.name) input_image.filepath_raw = outDir + "/" + input_image.name + ".png" #input_image.filepath_raw = outDir + "_encoded.png" input_image.file_format = "PNG" bpy.context.scene.render.image_settings.quality = quality #input_image.save_render(filepath = input_image.filepath_raw, scene = bpy.context.scene) input_image.save() def encodeImageRGBDGPU(image, maxRange, outDir, quality): input_image = bpy.data.images[image.name] image_name = input_image.name offscreen = gpu.types.GPUOffScreen(input_image.size[0], input_image.size[1]) image = input_image vertex_shader = ''' uniform mat4 ModelViewProjectionMatrix; in vec2 texCoord; in vec2 pos; out vec2 texCoord_interp; void main() { //gl_Position = ModelViewProjectionMatrix * vec4(pos.xy, 0.0f, 1.0f); //gl_Position.z = 1.0; gl_Position = vec4(pos.xy, 100, 100); texCoord_interp = texCoord; } ''' fragment_shader = ''' in vec2 texCoord_interp; out vec4 fragColor; uniform sampler2D image; //Code from here: https://github.com/BabylonJS/Babylon.js/blob/master/src/Shaders/ShadersInclude/helperFunctions.fx const float PI = 3.1415926535897932384626433832795; const float HALF_MIN = 5.96046448e-08; // Smallest positive half. const float LinearEncodePowerApprox = 2.2; const float GammaEncodePowerApprox = 1.0 / LinearEncodePowerApprox; const vec3 LuminanceEncodeApprox = vec3(0.2126, 0.7152, 0.0722); const float Epsilon = 0.0000001; #define saturate(x) clamp(x, 0.0, 1.0) float maxEps(float x) { return max(x, Epsilon); } float toLinearSpace(float color) { return pow(color, LinearEncodePowerApprox); } vec3 toLinearSpace(vec3 color) { return pow(color, vec3(LinearEncodePowerApprox)); } vec4 toLinearSpace(vec4 color) { return vec4(pow(color.rgb, vec3(LinearEncodePowerApprox)), color.a); } vec3 toGammaSpace(vec3 color) { return pow(color, vec3(GammaEncodePowerApprox)); } vec4 toGammaSpace(vec4 color) { return vec4(pow(color.rgb, vec3(GammaEncodePowerApprox)), color.a); } float toGammaSpace(float color) { return pow(color, GammaEncodePowerApprox); } float square(float value) { return value * value; } // Check if configurable value is needed. const float rgbdMaxRange = 255.0; vec4 toRGBD(vec3 color) { float maxRGB = maxEps(max(color.r, max(color.g, color.b))); float D = max(rgbdMaxRange / maxRGB, 1.); D = clamp(floor(D) / 255.0, 0., 1.); vec3 rgb = color.rgb * D; // Helps with png quantization. rgb = toGammaSpace(rgb); return vec4(rgb, D); } vec3 fromRGBD(vec4 rgbd) { // Helps with png quantization. rgbd.rgb = toLinearSpace(rgbd.rgb); // return rgbd.rgb * ((rgbdMaxRange / 255.0) / rgbd.a); return rgbd.rgb / rgbd.a; } void main() { fragColor = toRGBD(texture(image, texCoord_interp).rgb); } ''' x_screen = 0 off_x = -100 off_y = -100 y_screen_flip = 0 sx = 200 sy = 200 vertices = ( (x_screen + off_x, y_screen_flip - off_y), (x_screen + off_x, y_screen_flip - sy - off_y), (x_screen + off_x + sx, y_screen_flip - sy - off_y), (x_screen + off_x + sx, y_screen_flip - off_x)) if input_image.colorspace_settings.name != 'Linear': input_image.colorspace_settings.name = 'Linear' # Removing .exr or .hdr prefix if image_name[-4:] == '.exr' or image_name[-4:] == '.hdr': image_name = image_name[:-4] target_image = bpy.data.images.get(image_name + '_encoded') if bpy.context.scene.TLM_SceneProperties.tlm_verbose: print(image_name + '_encoded') if not target_image: target_image = bpy.data.images.new( name = image_name + '_encoded', width = input_image.size[0], height = input_image.size[1], alpha = True, float_buffer = False ) shader = gpu.types.GPUShader(vertex_shader, fragment_shader) batch = batch_for_shader( shader, 'TRI_FAN', { "pos": vertices, "texCoord": ((0, 1), (0, 0), (1, 0), (1, 1)), }, ) if image.gl_load(): raise Exception() with offscreen.bind(): bgl.glActiveTexture(bgl.GL_TEXTURE0) bgl.glBindTexture(bgl.GL_TEXTURE_2D, image.bindcode) shader.bind() shader.uniform_int("image", 0) batch.draw(shader) buffer = bgl.Buffer(bgl.GL_BYTE, input_image.size[0] * input_image.size[1] * 4) bgl.glReadBuffer(bgl.GL_BACK) bgl.glReadPixels(0, 0, input_image.size[0], input_image.size[1], bgl.GL_RGBA, bgl.GL_UNSIGNED_BYTE, buffer) offscreen.free() target_image.pixels = [v / 255 for v in buffer] input_image = target_image #Save LogLuv if bpy.context.scene.TLM_SceneProperties.tlm_verbose: print(input_image.name) input_image.filepath_raw = outDir + "/" + input_image.name + ".png" #input_image.filepath_raw = outDir + "_encoded.png" input_image.file_format = "PNG" bpy.context.scene.render.image_settings.quality = quality #input_image.save_render(filepath = input_image.filepath_raw, scene = bpy.context.scene) input_image.save() #Todo - Find a way to save #bpy.ops.image.save_all_modified() #TODO - FINISH THIS def encodeImageRGBMGPU(image, maxRange, outDir, quality): input_image = bpy.data.images[image.name] image_name = input_image.name offscreen = gpu.types.GPUOffScreen(input_image.size[0], input_image.size[1]) image = input_image vertex_shader = ''' uniform mat4 ModelViewProjectionMatrix; in vec2 texCoord; in vec2 pos; out vec2 texCoord_interp; void main() { //gl_Position = ModelViewProjectionMatrix * vec4(pos.xy, 0.0f, 1.0f); //gl_Position.z = 1.0; gl_Position = vec4(pos.xy, 100, 100); texCoord_interp = texCoord; } ''' fragment_shader = ''' in vec2 texCoord_interp; out vec4 fragColor; uniform sampler2D image; //Code from here: https://github.com/BabylonJS/Babylon.js/blob/master/src/Shaders/ShadersInclude/helperFunctions.fx const float PI = 3.1415926535897932384626433832795; const float HALF_MIN = 5.96046448e-08; // Smallest positive half. const float LinearEncodePowerApprox = 2.2; const float GammaEncodePowerApprox = 1.0 / LinearEncodePowerApprox; const vec3 LuminanceEncodeApprox = vec3(0.2126, 0.7152, 0.0722); const float Epsilon = 0.0000001; #define saturate(x) clamp(x, 0.0, 1.0) float maxEps(float x) { return max(x, Epsilon); } float toLinearSpace(float color) { return pow(color, LinearEncodePowerApprox); } vec3 toLinearSpace(vec3 color) { return pow(color, vec3(LinearEncodePowerApprox)); } vec4 toLinearSpace(vec4 color) { return vec4(pow(color.rgb, vec3(LinearEncodePowerApprox)), color.a); } vec3 toGammaSpace(vec3 color) { return pow(color, vec3(GammaEncodePowerApprox)); } vec4 toGammaSpace(vec4 color) { return vec4(pow(color.rgb, vec3(GammaEncodePowerApprox)), color.a); } float toGammaSpace(float color) { return pow(color, GammaEncodePowerApprox); } float square(float value) { return value * value; } // Check if configurable value is needed. const float rgbdMaxRange = 255.0; vec4 toRGBM(vec3 color) { vec4 rgbm; color *= 1.0/6.0; rgbm.a = saturate( max( max( color.r, color.g ), max( color.b, 1e-6 ) ) ); rgbm.a = clamp(floor(D) / 255.0, 0., 1.); rgbm.rgb = color / rgbm.a; return float maxRGB = maxEps(max(color.r, max(color.g, color.b))); float D = max(rgbdMaxRange / maxRGB, 1.); D = clamp(floor(D) / 255.0, 0., 1.); vec3 rgb = color.rgb * D; // Helps with png quantization. rgb = toGammaSpace(rgb); return vec4(rgb, D); } vec3 fromRGBD(vec4 rgbd) { // Helps with png quantization. rgbd.rgb = toLinearSpace(rgbd.rgb); // return rgbd.rgb * ((rgbdMaxRange / 255.0) / rgbd.a); return rgbd.rgb / rgbd.a; } void main() { fragColor = toRGBM(texture(image, texCoord_interp).rgb); } ''' x_screen = 0 off_x = -100 off_y = -100 y_screen_flip = 0 sx = 200 sy = 200 vertices = ( (x_screen + off_x, y_screen_flip - off_y), (x_screen + off_x, y_screen_flip - sy - off_y), (x_screen + off_x + sx, y_screen_flip - sy - off_y), (x_screen + off_x + sx, y_screen_flip - off_x)) if input_image.colorspace_settings.name != 'Linear': input_image.colorspace_settings.name = 'Linear' # Removing .exr or .hdr prefix if image_name[-4:] == '.exr' or image_name[-4:] == '.hdr': image_name = image_name[:-4] target_image = bpy.data.images.get(image_name + '_encoded') if bpy.context.scene.TLM_SceneProperties.tlm_verbose: print(image_name + '_encoded') if not target_image: target_image = bpy.data.images.new( name = image_name + '_encoded', width = input_image.size[0], height = input_image.size[1], alpha = True, float_buffer = False ) shader = gpu.types.GPUShader(vertex_shader, fragment_shader) batch = batch_for_shader( shader, 'TRI_FAN', { "pos": vertices, "texCoord": ((0, 1), (0, 0), (1, 0), (1, 1)), }, ) if image.gl_load(): raise Exception() with offscreen.bind(): bgl.glActiveTexture(bgl.GL_TEXTURE0) bgl.glBindTexture(bgl.GL_TEXTURE_2D, image.bindcode) shader.bind() shader.uniform_int("image", 0) batch.draw(shader) buffer = bgl.Buffer(bgl.GL_BYTE, input_image.size[0] * input_image.size[1] * 4) bgl.glReadBuffer(bgl.GL_BACK) bgl.glReadPixels(0, 0, input_image.size[0], input_image.size[1], bgl.GL_RGBA, bgl.GL_UNSIGNED_BYTE, buffer) offscreen.free() target_image.pixels = [v / 255 for v in buffer] input_image = target_image #Save LogLuv if bpy.context.scene.TLM_SceneProperties.tlm_verbose: print(input_image.name) input_image.filepath_raw = outDir + "/" + input_image.name + ".png" #input_image.filepath_raw = outDir + "_encoded.png" input_image.file_format = "PNG" bpy.context.scene.render.image_settings.quality = quality #input_image.save_render(filepath = input_image.filepath_raw, scene = bpy.context.scene) input_image.save() #Todo - Find a way to save #bpy.ops.image.save_all_modified() def encodeImageRGBMCPU(image, maxRange, outDir, quality): input_image = bpy.data.images[image.name] image_name = input_image.name if input_image.colorspace_settings.name != 'Linear': input_image.colorspace_settings.name = 'Linear' # Removing .exr or .hdr prefix if image_name[-4:] == '.exr' or image_name[-4:] == '.hdr': image_name = image_name[:-4] target_image = bpy.data.images.get(image_name + '_encoded') if bpy.context.scene.TLM_SceneProperties.tlm_verbose: print(image_name + '_encoded') if not target_image: target_image = bpy.data.images.new( name = image_name + '_encoded', width = input_image.size[0], height = input_image.size[1], alpha = True, float_buffer = False ) num_pixels = len(input_image.pixels) result_pixel = list(input_image.pixels) for i in range(0,num_pixels,4): for j in range(3): result_pixel[i+j] *= 1.0 / maxRange; result_pixel[i+3] = saturate(max(result_pixel[i], result_pixel[i+1], result_pixel[i+2], 1e-6)) result_pixel[i+3] = math.ceil(result_pixel[i+3] * 255.0) / 255.0 for j in range(3): result_pixel[i+j] /= result_pixel[i+3] target_image.pixels = result_pixel input_image = target_image #Save RGBM if bpy.context.scene.TLM_SceneProperties.tlm_verbose: print(input_image.name) input_image.filepath_raw = outDir + "/" + input_image.name + ".png" input_image.file_format = "PNG" bpy.context.scene.render.image_settings.quality = quality input_image.save() #input_image.save_render(filepath = input_image.filepath_raw, scene = bpy.context.scene) # input_image.filepath_raw = outDir + "_encoded.png" # input_image.file_format = "PNG" # bpy.context.scene.render.image_settings.quality = quality # input_image.save_render(filepath = input_image.filepath_raw, scene = bpy.context.scene) #input_image. #input_image.save() def saturate(num, floats=True): if num <= 0: num = 0 elif num > (1 if floats else 255): num = (1 if floats else 255) return num def maxEps(x): return max(x, 1e-6) def encodeImageRGBDCPU(image, maxRange, outDir, quality): input_image = bpy.data.images[image.name] image_name = input_image.name if input_image.colorspace_settings.name != 'Linear': input_image.colorspace_settings.name = 'Linear' # Removing .exr or .hdr prefix if image_name[-4:] == '.exr' or image_name[-4:] == '.hdr': image_name = image_name[:-4] target_image = bpy.data.images.get(image_name + '_encoded') if not target_image: target_image = bpy.data.images.new( name = image_name + '_encoded', width = input_image.size[0], height = input_image.size[1], alpha = True, float_buffer = False ) num_pixels = len(input_image.pixels) result_pixel = list(input_image.pixels) rgbdMaxRange = 255.0 for i in range(0,num_pixels,4): maxRGB = maxEps(max(result_pixel[i], result_pixel[i+1], result_pixel[i+2])) D = max(rgbdMaxRange/maxRGB, 1.0) D = np.clip((math.floor(D) / 255.0), 0.0, 1.0) result_pixel[i] = math.pow(result_pixel[i] * D, 1/2.2) result_pixel[i+1] = math.pow(result_pixel[i+1] * D, 1/2.2) result_pixel[i+2] = math.pow(result_pixel[i+2] * D, 1/2.2) result_pixel[i+3] = D target_image.pixels = result_pixel input_image = target_image #Save RGBD if bpy.context.scene.TLM_SceneProperties.tlm_verbose: print(input_image.name) input_image.filepath_raw = outDir + "/" + input_image.name + ".png" input_image.file_format = "PNG" bpy.context.scene.render.image_settings.quality = quality input_image.save()