#version 450 #include "compiled.inc" #include "std/math.glsl" #include "std/gbuffer.glsl" uniform samplerCube probeTex; uniform sampler2D tex; uniform sampler2D gbufferD; uniform sampler2D gbuffer0; // Normal, roughness uniform sampler2D gbuffer1; // basecol, spec uniform mat4 P; uniform mat3 V3; uniform vec2 cameraProj; #ifdef _CPostprocess uniform vec3 PPComp9; uniform vec3 PPComp10; #endif in vec3 viewRay; in vec2 texCoord; out vec4 fragColor; vec3 hitCoord; float depth; const int numBinarySearchSteps = 7; const int maxSteps = int(ceil(1.0 / ssrRayStep) * ssrSearchDist); // Project a view-space hit coordinate into screen UVs vec2 getProjectedCoord(const vec3 hit) { vec4 projectedCoord = P * vec4(hit, 1.0); projectedCoord.xy /= projectedCoord.w; projectedCoord.xy = projectedCoord.xy * 0.5 + 0.5; #ifdef _InvY projectedCoord.y = 1.0 - projectedCoord.y; #endif return projectedCoord.xy; } // Compute depth difference between current ray hit and gbuffer depth float getDeltaDepth(const vec3 hit) { depth = textureLod(gbufferD, getProjectedCoord(hit), 0.0).r * 2.0 - 1.0; vec3 viewPos = getPosView(viewRay, depth, cameraProj); return viewPos.z - hit.z; } // Refine hit using binary search vec4 binarySearch(vec3 dir) { float ddepth; for (int i = 0; i < numBinarySearchSteps; i++) { dir *= 0.5; hitCoord -= dir; ddepth = getDeltaDepth(hitCoord); if (ddepth < 0.0) hitCoord += dir; } #ifdef _CPostprocess if (abs(ddepth) > PPComp9.z / 500) return vec4(0.0); #else if (abs(ddepth) > ssrSearchDist / 500) return vec4(0.0); #endif return vec4(getProjectedCoord(hitCoord), 0.0, 1.0); } // Perform raymarching using view-space direction vec4 rayCast(vec3 dir) { #ifdef _CPostprocess dir *= PPComp9.x; #else dir *= ssrRayStep; #endif for (int i = 0; i < maxSteps; i++) { hitCoord += dir; if (getDeltaDepth(hitCoord) > 0.0) return binarySearch(dir); } return vec4(0.0); } void main() { vec4 g0 = textureLod(gbuffer0, texCoord, 0.0); float roughness = unpackFloat(g0.b).y; if (roughness >= 1.0) { fragColor.rgb = vec3(0.0); return; } float spec = fract(textureLod(gbuffer1, texCoord, 0.0).a); if (spec == 0.0) { fragColor.rgb = vec3(0.0); return; } float d = textureLod(gbufferD, texCoord, 0.0).r * 2.0 - 1.0; if (d == 1.0) { fragColor.rgb = vec3(0.0); return; } // Decode octahedral normal vec2 enc = g0.rg; vec3 n; n.z = 1.0 - abs(enc.x) - abs(enc.y); n.xy = n.z >= 0.0 ? enc.xy : octahedronWrap(enc.xy); n = normalize(n); vec3 viewNormal = normalize(V3 * n); // View-space position and reflection vec3 viewPos = getPosView(viewRay, d, cameraProj); vec3 viewDir = normalize(viewPos); vec3 reflected = normalize(reflect(viewDir, viewNormal)); hitCoord = viewPos; // Importance sampling jitter based on roughness float jitterStrength = roughness * roughness; vec3 randVec = normalize(vec3(rand(texCoord), rand(texCoord * 1.3), rand(texCoord * 2.7)) * 2.0 - 1.0); vec3 dir = normalize(mix(reflected, randVec, jitterStrength)); vec4 coords = rayCast(dir); vec2 deltaCoords = abs(vec2(0.5, 0.5) - coords.xy); float screenEdgeFactor = clamp(1.0 - (deltaCoords.x + deltaCoords.y), 0.0, 1.0); float reflectivity = 1.0 - roughness; #ifdef _CPostprocess float distAtten = clamp((PPComp9.z - length(viewPos - hitCoord)) / PPComp9.z, 0.0, 1.0); float intensity = pow(reflectivity, PPComp10.x) * screenEdgeFactor * clamp(-reflected.z, 0.0, 1.0) * distAtten * coords.w; #else float distAtten = clamp((ssrSearchDist - length(viewPos - hitCoord)) / ssrSearchDist, 0.0, 1.0); float intensity = pow(reflectivity, ssrFalloffExp) * screenEdgeFactor * clamp(-reflected.z, 0.0, 1.0) * distAtten * coords.w; #endif intensity = clamp(intensity, 0.0, 1.0); vec3 ssrColor = textureLod(tex, coords.xy, roughness * 4.0).rgb; ssrColor = clamp(ssrColor, 0.0, 1.0); // Cubemap fallback with roughness-aware LOD sampling vec3 cubemapColor = textureLod(probeTex, reflected, roughness * 6.0).rgb; // Additively blend SSR with cubemap fallback fragColor.rgb = mix(cubemapColor, ssrColor, intensity) * spec; }