696 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			696 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|  | /*
 | ||
|  |  * libwebsockets - small server side websockets and web server implementation | ||
|  |  * | ||
|  |  * Copyright (C) 2010 - 2019 Andy Green <andy@warmcat.com> | ||
|  |  * | ||
|  |  * Permission is hereby granted, free of charge, to any person obtaining a copy | ||
|  |  * of this software and associated documentation files (the "Software"), to | ||
|  |  * deal in the Software without restriction, including without limitation the | ||
|  |  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or | ||
|  |  * sell copies of the Software, and to permit persons to whom the Software is | ||
|  |  * furnished to do so, subject to the following conditions: | ||
|  |  * | ||
|  |  * The above copyright notice and this permission notice shall be included in | ||
|  |  * all copies or substantial portions of the Software. | ||
|  |  * | ||
|  |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
|  |  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
|  |  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
|  |  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
|  |  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | ||
|  |  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS | ||
|  |  * IN THE SOFTWARE. | ||
|  |  */ | ||
|  | 
 | ||
|  | #include "private-lib-core.h"
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * These came from RFC7518 (JSON Web Algorithms) Section 3 | ||
|  |  * | ||
|  |  * Cryptographic Algorithms for Digital Signatures and MACs | ||
|  |  */ | ||
|  | 
 | ||
|  | static const struct lws_jose_jwe_alg lws_gencrypto_jws_alg_map[] = { | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * JWSs MAY also be created that do not provide integrity protection. | ||
|  | 	 * Such a JWS is called an Unsecured JWS.  An Unsecured JWS uses the | ||
|  | 	 * "alg" value "none" and is formatted identically to other JWSs, but | ||
|  | 	 * MUST use the empty octet sequence as its JWS Signature value. | ||
|  | 	 * Recipients MUST verify that the JWS Signature value is the empty | ||
|  | 	 * octet sequence. | ||
|  | 	 * | ||
|  | 	 * Implementations that support Unsecured JWSs MUST NOT accept such | ||
|  | 	 * objects as valid unless the application specifies that it is | ||
|  | 	 * acceptable for a specific object to not be integrity protected. | ||
|  | 	 * Implementations MUST NOT accept Unsecured JWSs by default.  In order | ||
|  | 	 * to mitigate downgrade attacks, applications MUST NOT signal | ||
|  | 	 * acceptance of Unsecured JWSs at a global level, and SHOULD signal | ||
|  | 	 * acceptance on a per-object basis.  See Section 8.5 for security | ||
|  | 	 * considerations associated with using this algorithm. | ||
|  | 	 */ | ||
|  | 	{	/* optional */ | ||
|  | 		LWS_GENHASH_TYPE_UNKNOWN, | ||
|  | 		LWS_GENHMAC_TYPE_UNKNOWN, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		"none", NULL, 0, 0, 0 | ||
|  | 	}, | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * HMAC with SHA-2 Functions | ||
|  | 	 * | ||
|  | 	 * The HMAC SHA-256 MAC for a JWS is validated by computing an HMAC | ||
|  | 	 * value per RFC 2104, using SHA-256 as the hash algorithm "H", using | ||
|  | 	 * the received JWS Signing Input as the "text" value, and using the | ||
|  | 	 * shared key.  This computed HMAC value is then compared to the result | ||
|  | 	 * of base64url decoding the received encoded JWS Signature value.  The | ||
|  | 	 * comparison of the computed HMAC value to the JWS Signature value MUST | ||
|  | 	 * be done in a constant-time manner to thwart timing attacks. | ||
|  | 	 * | ||
|  | 	 * Alternatively, the computed HMAC value can be base64url encoded and | ||
|  | 	 * compared to the received encoded JWS Signature value (also in a | ||
|  | 	 * constant-time manner), as this comparison produces the same result as | ||
|  | 	 * comparing the unencoded values.  In either case, if the values match, | ||
|  | 	 * the HMAC has been validated. | ||
|  | 	 */ | ||
|  | 
 | ||
|  | 	{	/* required: HMAC using SHA-256 */ | ||
|  | 		LWS_GENHASH_TYPE_UNKNOWN, | ||
|  | 		LWS_GENHMAC_TYPE_SHA256, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		"HS256", NULL, 0, 0, 0 | ||
|  | 	}, | ||
|  | 	{	/* optional: HMAC using SHA-384 */ | ||
|  | 		LWS_GENHASH_TYPE_UNKNOWN, | ||
|  | 		LWS_GENHMAC_TYPE_SHA384, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		"HS384", NULL, 0, 0, 0 | ||
|  | 	}, | ||
|  | 	{	/* optional: HMAC using SHA-512 */ | ||
|  | 		LWS_GENHASH_TYPE_UNKNOWN, | ||
|  | 		LWS_GENHMAC_TYPE_SHA512, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		"HS512", NULL, 0, 0, 0 | ||
|  | 	}, | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Digital Signature with RSASSA-PKCS1-v1_5 | ||
|  | 	 * | ||
|  | 	 * This section defines the use of the RSASSA-PKCS1-v1_5 digital | ||
|  | 	 * signature algorithm as defined in Section 8.2 of RFC 3447 [RFC3447] | ||
|  | 	 * (commonly known as PKCS #1), using SHA-2 [SHS] hash functions. | ||
|  | 	 * | ||
|  | 	 * A key of size 2048 bits or larger MUST be used with these algorithms. | ||
|  | 	 * | ||
|  | 	 * The RSASSA-PKCS1-v1_5 SHA-256 digital signature is generated as | ||
|  | 	 * follows: generate a digital signature of the JWS Signing Input using | ||
|  | 	 * RSASSA-PKCS1-v1_5-SIGN and the SHA-256 hash function with the desired | ||
|  | 	 * private key.  This is the JWS Signature value. | ||
|  | 	 * | ||
|  | 	 * The RSASSA-PKCS1-v1_5 SHA-256 digital signature for a JWS is | ||
|  | 	 * validated as follows: submit the JWS Signing Input, the JWS | ||
|  | 	 * Signature, and the public key corresponding to the private key used | ||
|  | 	 * by the signer to the RSASSA-PKCS1-v1_5-VERIFY algorithm using SHA-256 | ||
|  | 	 * as the hash function. | ||
|  | 	 */ | ||
|  | 
 | ||
|  | 	{	/* recommended: RSASSA-PKCS1-v1_5 using SHA-256 */ | ||
|  | 		LWS_GENHASH_TYPE_SHA256, | ||
|  | 		LWS_GENHMAC_TYPE_UNKNOWN, | ||
|  | 		LWS_JOSE_ENCTYPE_RSASSA_PKCS1_1_5, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		"RS256", NULL, 2048, 4096, 0 | ||
|  | 	}, | ||
|  | 	{	/* optional: RSASSA-PKCS1-v1_5 using SHA-384 */ | ||
|  | 		LWS_GENHASH_TYPE_SHA384, | ||
|  | 		LWS_GENHMAC_TYPE_UNKNOWN, | ||
|  | 		LWS_JOSE_ENCTYPE_RSASSA_PKCS1_1_5, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		"RS384", NULL, 2048, 4096, 0 | ||
|  | 	}, | ||
|  | 	{	/* optional: RSASSA-PKCS1-v1_5 using SHA-512 */ | ||
|  | 		LWS_GENHASH_TYPE_SHA512, | ||
|  | 		LWS_GENHMAC_TYPE_UNKNOWN, | ||
|  | 		LWS_JOSE_ENCTYPE_RSASSA_PKCS1_1_5, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		"RS512", NULL, 2048, 4096, 0 | ||
|  | 	}, | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Digital Signature with ECDSA | ||
|  | 	 * | ||
|  | 	 * The ECDSA P-256 SHA-256 digital signature is generated as follows: | ||
|  | 	 * | ||
|  | 	 * 1.  Generate a digital signature of the JWS Signing Input using ECDSA | ||
|  | 	 *     P-256 SHA-256 with the desired private key.  The output will be | ||
|  | 	 *     the pair (R, S), where R and S are 256-bit unsigned integers. | ||
|  | 	 * 2.  Turn R and S into octet sequences in big-endian order, with each | ||
|  | 	 *     array being be 32 octets long.  The octet sequence | ||
|  | 	 *     representations MUST NOT be shortened to omit any leading zero | ||
|  | 	 *     octets contained in the values. | ||
|  | 	 * | ||
|  | 	 * 3.  Concatenate the two octet sequences in the order R and then S. | ||
|  | 	 *     (Note that many ECDSA implementations will directly produce this | ||
|  | 	 *     concatenation as their output.) | ||
|  | 	 * | ||
|  | 	 * 4.  The resulting 64-octet sequence is the JWS Signature value. | ||
|  | 	 * | ||
|  | 	 * The ECDSA P-256 SHA-256 digital signature for a JWS is validated as | ||
|  | 	 * follows: | ||
|  | 	 * | ||
|  | 	 * 1.  The JWS Signature value MUST be a 64-octet sequence.  If it is | ||
|  | 	 *     not a 64-octet sequence, the validation has failed. | ||
|  | 	 * | ||
|  | 	 * 2.  Split the 64-octet sequence into two 32-octet sequences.  The | ||
|  | 	 *     first octet sequence represents R and the second S.  The values R | ||
|  | 	 *     and S are represented as octet sequences using the Integer-to- | ||
|  | 	 *     OctetString Conversion defined in Section 2.3.7 of SEC1 [SEC1] | ||
|  | 	 *     (in big-endian octet order). | ||
|  | 	 * 3.  Submit the JWS Signing Input, R, S, and the public key (x, y) to | ||
|  | 	 *     the ECDSA P-256 SHA-256 validator. | ||
|  | 	 */ | ||
|  | 
 | ||
|  | 	{	/* Recommended+: ECDSA using P-256 and SHA-256 */ | ||
|  | 		LWS_GENHASH_TYPE_SHA256, | ||
|  | 		LWS_GENHMAC_TYPE_UNKNOWN, | ||
|  | 		LWS_JOSE_ENCTYPE_ECDSA, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		"ES256", "P-256", 256, 256, 0 | ||
|  | 	}, | ||
|  | 	{	/* optional: ECDSA using P-384 and SHA-384 */ | ||
|  | 		LWS_GENHASH_TYPE_SHA384, | ||
|  | 		LWS_GENHMAC_TYPE_UNKNOWN, | ||
|  | 		LWS_JOSE_ENCTYPE_ECDSA, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		"ES384", "P-384", 384, 384, 0 | ||
|  | 	}, | ||
|  | 	{	/* optional: ECDSA using P-521 and SHA-512 */ | ||
|  | 		LWS_GENHASH_TYPE_SHA512, | ||
|  | 		LWS_GENHMAC_TYPE_UNKNOWN, | ||
|  | 		LWS_JOSE_ENCTYPE_ECDSA, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		"ES512", "P-521", 521, 521, 0 | ||
|  | 	}, | ||
|  | #if 0
 | ||
|  | 	Not yet supported | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Digital Signature with RSASSA-PSS | ||
|  | 	 * | ||
|  | 	 * A key of size 2048 bits or larger MUST be used with this algorithm. | ||
|  | 	 * | ||
|  | 	 * The RSASSA-PSS SHA-256 digital signature is generated as follows: | ||
|  | 	 * generate a digital signature of the JWS Signing Input using RSASSA- | ||
|  | 	 * PSS-SIGN, the SHA-256 hash function, and the MGF1 mask generation | ||
|  | 	 * function with SHA-256 with the desired private key.  This is the JWS | ||
|  | 	 * Signature value. | ||
|  | 	 * | ||
|  | 	 * The RSASSA-PSS SHA-256 digital signature for a JWS is validated as | ||
|  | 	 * follows: submit the JWS Signing Input, the JWS Signature, and the | ||
|  | 	 * public key corresponding to the private key used by the signer to the | ||
|  | 	 * RSASSA-PSS-VERIFY algorithm using SHA-256 as the hash function and | ||
|  | 	 * using MGF1 as the mask generation function with SHA-256. | ||
|  | 	 * | ||
|  | 	 */ | ||
|  | 	{	/* optional: RSASSA-PSS using SHA-256 and MGF1 with SHA-256 */ | ||
|  | 		LWS_GENHASH_TYPE_SHA256, | ||
|  | 		LWS_GENHMAC_TYPE_UNKNOWN, | ||
|  | 		LWS_JOSE_ENCTYPE_RSASSA_PKCS1_PSS, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		"PS256", NULL, 2048, 4096, 0 | ||
|  | 	}, | ||
|  | 	{	/* optional: RSASSA-PSS using SHA-384 and MGF1 with SHA-384 */ | ||
|  | 		LWS_GENHASH_TYPE_SHA384, | ||
|  | 		LWS_GENHMAC_TYPE_UNKNOWN, | ||
|  | 		LWS_JOSE_ENCTYPE_RSASSA_PKCS1_PSS, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		"PS384", NULL, 2048, 4096, 0 | ||
|  | 	}, | ||
|  | 	{	/* optional: RSASSA-PSS using SHA-512 and MGF1 with SHA-512*/ | ||
|  | 		LWS_GENHASH_TYPE_SHA512, | ||
|  | 		LWS_GENHMAC_TYPE_UNKNOWN, | ||
|  | 		LWS_JOSE_ENCTYPE_RSASSA_PKCS1_PSS, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		"PS512", NULL, 2048, 4096, 0 | ||
|  | 	}, | ||
|  | #endif
 | ||
|  | 	/* list terminator */ | ||
|  | 	{ 0, 0, 0, 0, NULL, NULL, 0, 0, 0} | ||
|  | }; | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * These came from RFC7518 (JSON Web Algorithms) Section 4 | ||
|  |  * | ||
|  |  * Cryptographic Algorithms for Key Management | ||
|  |  * | ||
|  |  * JWE uses cryptographic algorithms to encrypt or determine the Content | ||
|  |  * Encryption Key (CEK). | ||
|  |  */ | ||
|  | 
 | ||
|  | static const struct lws_jose_jwe_alg lws_gencrypto_jwe_alg_map[] = { | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * This section defines the specifics of encrypting a JWE CEK with | ||
|  | 	 * RSAES-PKCS1-v1_5 [RFC3447].  The "alg" (algorithm) Header Parameter | ||
|  | 	 * value "RSA1_5" is used for this algorithm. | ||
|  | 	 * | ||
|  | 	 * A key of size 2048 bits or larger MUST be used with this algorithm. | ||
|  | 	 */ | ||
|  | 
 | ||
|  | 	{	/* recommended-: RSAES-PKCS1-v1_5 */ | ||
|  | 		LWS_GENHASH_TYPE_SHA256, | ||
|  | 		LWS_GENHMAC_TYPE_UNKNOWN, | ||
|  | 		LWS_JOSE_ENCTYPE_RSASSA_PKCS1_1_5, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		"RSA1_5", NULL, 2048, 4096, 0 | ||
|  | 	}, | ||
|  | 	{	/* recommended+: RSAES OAEP using default parameters */ | ||
|  | 		LWS_GENHASH_TYPE_SHA1, | ||
|  | 		LWS_GENHMAC_TYPE_UNKNOWN, | ||
|  | 		LWS_JOSE_ENCTYPE_RSASSA_PKCS1_OAEP, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		"RSA-OAEP", NULL, 2048, 4096, 0 | ||
|  | 	}, | ||
|  | 	{	/* recommended+: RSAES OAEP using SHA-256 and MGF1 SHA-256 */ | ||
|  | 		LWS_GENHASH_TYPE_SHA256, | ||
|  | 		LWS_GENHMAC_TYPE_UNKNOWN, | ||
|  | 		LWS_JOSE_ENCTYPE_RSASSA_PKCS1_OAEP, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		"RSA-OAEP-256", NULL, 2048, 4096, 0 | ||
|  | 	}, | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Key Wrapping with AES Key Wrap | ||
|  | 	 * | ||
|  | 	 * This section defines the specifics of encrypting a JWE CEK with the | ||
|  | 	 * Advanced Encryption Standard (AES) Key Wrap Algorithm [RFC3394] using | ||
|  | 	 * the default initial value specified in Section 2.2.3.1 of that | ||
|  | 	 * document. | ||
|  | 	 * | ||
|  | 	 * | ||
|  | 	 */ | ||
|  | 	{	/* recommended: AES Key Wrap with AES Key Wrap with defaults
 | ||
|  | 				using 128-bit key  */ | ||
|  | 		LWS_GENHASH_TYPE_UNKNOWN, | ||
|  | 		LWS_GENHMAC_TYPE_UNKNOWN, | ||
|  | 		LWS_JOSE_ENCTYPE_AES_ECB, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		"A128KW", NULL, 128, 128, 64 | ||
|  | 	}, | ||
|  | 
 | ||
|  | 	{	/* optional: AES Key Wrap with AES Key Wrap with defaults
 | ||
|  | 				using 192-bit key */ | ||
|  | 		LWS_GENHASH_TYPE_UNKNOWN, | ||
|  | 		LWS_GENHMAC_TYPE_UNKNOWN, | ||
|  | 		LWS_JOSE_ENCTYPE_AES_ECB, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		"A192KW", NULL, 192, 192, 64 | ||
|  | 	}, | ||
|  | 
 | ||
|  | 	{	/* recommended: AES Key Wrap with AES Key Wrap with defaults
 | ||
|  | 				using 256-bit key */ | ||
|  | 		LWS_GENHASH_TYPE_UNKNOWN, | ||
|  | 		LWS_GENHMAC_TYPE_UNKNOWN, | ||
|  | 		LWS_JOSE_ENCTYPE_AES_ECB, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		"A256KW", NULL, 256, 256, 64 | ||
|  | 	}, | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * This section defines the specifics of directly performing symmetric | ||
|  | 	 * key encryption without performing a key wrapping step.  In this case, | ||
|  | 	 * the shared symmetric key is used directly as the Content Encryption | ||
|  | 	 * Key (CEK) value for the "enc" algorithm.  An empty octet sequence is | ||
|  | 	 * used as the JWE Encrypted Key value.  The "alg" (algorithm) Header | ||
|  | 	 * Parameter value "dir" is used in this case. | ||
|  | 	 */ | ||
|  | 	{	/* recommended */ | ||
|  | 		LWS_GENHASH_TYPE_UNKNOWN, | ||
|  | 		LWS_GENHMAC_TYPE_UNKNOWN, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		"dir", NULL, 0, 0, 0 | ||
|  | 	}, | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Key Agreement with Elliptic Curve Diffie-Hellman Ephemeral Static | ||
|  | 	 * (ECDH-ES) | ||
|  | 	 * | ||
|  | 	 * This section defines the specifics of key agreement with Elliptic | ||
|  | 	 * Curve Diffie-Hellman Ephemeral Static [RFC6090], in combination with | ||
|  | 	 * the Concat KDF, as defined in Section 5.8.1 of [NIST.800-56A].  The | ||
|  | 	 * key agreement result can be used in one of two ways: | ||
|  | 	 * | ||
|  | 	 * 1.  directly as the Content Encryption Key (CEK) for the "enc" | ||
|  | 	 *     algorithm, in the Direct Key Agreement mode, or | ||
|  | 	 * | ||
|  | 	 * 2.  as a symmetric key used to wrap the CEK with the "A128KW", | ||
|  | 	 *     "A192KW", or "A256KW" algorithms, in the Key Agreement with Key | ||
|  | 	 *     Wrapping mode. | ||
|  | 	 * | ||
|  | 	 * A new ephemeral public key value MUST be generated for each key | ||
|  | 	 * agreement operation. | ||
|  | 	 * | ||
|  | 	 * In Direct Key Agreement mode, the output of the Concat KDF MUST be a | ||
|  | 	 * key of the same length as that used by the "enc" algorithm.  In this | ||
|  | 	 * case, the empty octet sequence is used as the JWE Encrypted Key | ||
|  | 	 * value.  The "alg" (algorithm) Header Parameter value "ECDH-ES" is | ||
|  | 	 * used in the Direct Key Agreement mode. | ||
|  | 	 * | ||
|  | 	 * In Key Agreement with Key Wrapping mode, the output of the Concat KDF | ||
|  | 	 * MUST be a key of the length needed for the specified key wrapping | ||
|  | 	 * algorithm.  In this case, the JWE Encrypted Key is the CEK wrapped | ||
|  | 	 * with the agreed-upon key. | ||
|  | 	 */ | ||
|  | 
 | ||
|  | 	{	/* recommended+: ECDH Ephemeral Static Key agreement Concat KDF */ | ||
|  | 		LWS_GENHASH_TYPE_SHA256, | ||
|  | 		LWS_GENHMAC_TYPE_UNKNOWN, | ||
|  | 		LWS_JOSE_ENCTYPE_ECDHES, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		"ECDH-ES", NULL, 128, 128, 0 | ||
|  | 	}, | ||
|  | 	{	/* recommended: ECDH-ES + Concat KDF + wrapped by AES128KW */ | ||
|  | 		LWS_GENHASH_TYPE_SHA256, | ||
|  | 		LWS_GENHMAC_TYPE_UNKNOWN, | ||
|  | 		LWS_JOSE_ENCTYPE_ECDHES, | ||
|  | 		LWS_JOSE_ENCTYPE_AES_ECB, | ||
|  | 		"ECDH-ES+A128KW", NULL, 128, 128, 0 | ||
|  | 	}, | ||
|  | 	{	/* optional: ECDH-ES + Concat KDF + wrapped by AES192KW */ | ||
|  | 		LWS_GENHASH_TYPE_SHA256, | ||
|  | 		LWS_GENHMAC_TYPE_UNKNOWN, | ||
|  | 		LWS_JOSE_ENCTYPE_ECDHES, | ||
|  | 		LWS_JOSE_ENCTYPE_AES_ECB, | ||
|  | 		"ECDH-ES+A192KW", NULL, 192, 192, 0 | ||
|  | 	}, | ||
|  | 	{	/* recommended: ECDH-ES + Concat KDF + wrapped by AES256KW */ | ||
|  | 		LWS_GENHASH_TYPE_SHA256, | ||
|  | 		LWS_GENHMAC_TYPE_UNKNOWN, | ||
|  | 		LWS_JOSE_ENCTYPE_ECDHES, | ||
|  | 		LWS_JOSE_ENCTYPE_AES_ECB, | ||
|  | 		"ECDH-ES+A256KW", NULL, 256, 256, 0 | ||
|  | 	}, | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Key Encryption with AES GCM | ||
|  | 	 * | ||
|  | 	 *  This section defines the specifics of encrypting a JWE Content | ||
|  | 	 *  Encryption Key (CEK) with Advanced Encryption Standard (AES) in | ||
|  | 	 *  Galois/Counter Mode (GCM) ([AES] and [NIST.800-38D]). | ||
|  | 	 * | ||
|  | 	 * Use of an Initialization Vector (IV) of size 96 bits is REQUIRED with | ||
|  | 	 * this algorithm.  The IV is represented in base64url-encoded form as | ||
|  | 	 * the "iv" (initialization vector) Header Parameter value. | ||
|  | 	 * | ||
|  | 	 * The Additional Authenticated Data value used is the empty octet | ||
|  | 	 * string. | ||
|  | 	 * | ||
|  | 	 * The requested size of the Authentication Tag output MUST be 128 bits, | ||
|  | 	 * regardless of the key size. | ||
|  | 	 * | ||
|  | 	 * The JWE Encrypted Key value is the ciphertext output. | ||
|  | 	 * | ||
|  | 	 * The Authentication Tag output is represented in base64url-encoded | ||
|  | 	 * form as the "tag" (authentication tag) Header Parameter value. | ||
|  | 	 * | ||
|  | 	 * | ||
|  | 	 * "iv" (Initialization Vector) Header Parameter | ||
|  | 	 * | ||
|  | 	 * The "iv" (initialization vector) Header Parameter value is the | ||
|  | 	 * base64url-encoded representation of the 96-bit IV value used for the | ||
|  | 	 * key encryption operation.  This Header Parameter MUST be present and | ||
|  | 	 * MUST be understood and processed by implementations when these | ||
|  | 	 * algorithms are used. | ||
|  | 	 * | ||
|  | 	 * "tag" (Authentication Tag) Header Parameter | ||
|  | 	 * | ||
|  | 	 * The "tag" (authentication tag) Header Parameter value is the | ||
|  | 	 * base64url-encoded representation of the 128-bit Authentication Tag | ||
|  | 	 * value resulting from the key encryption operation.  This Header | ||
|  | 	 * Parameter MUST be present and MUST be understood and processed by | ||
|  | 	 * implementations when these algorithms are used. | ||
|  | 	 */ | ||
|  | 	{	/* optional: Key wrapping with AES GCM using 128-bit key  */ | ||
|  | 		LWS_GENHASH_TYPE_UNKNOWN, | ||
|  | 		LWS_GENHMAC_TYPE_UNKNOWN, | ||
|  | 		LWS_JOSE_ENCTYPE_AES_ECB, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		"A128GCMKW", NULL, 128, 128, 96 | ||
|  | 	}, | ||
|  | 
 | ||
|  | 	{	/* optional: Key wrapping with AES GCM using 192-bit key */ | ||
|  | 		LWS_GENHASH_TYPE_UNKNOWN, | ||
|  | 		LWS_GENHMAC_TYPE_UNKNOWN, | ||
|  | 		LWS_JOSE_ENCTYPE_AES_ECB, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		"A192GCMKW", NULL, 192, 192, 96 | ||
|  | 	}, | ||
|  | 
 | ||
|  | 	{	/* optional: Key wrapping with AES GCM using 256-bit key */ | ||
|  | 		LWS_GENHASH_TYPE_UNKNOWN, | ||
|  | 		LWS_GENHMAC_TYPE_UNKNOWN, | ||
|  | 		LWS_JOSE_ENCTYPE_AES_ECB, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		"A256GCMKW", NULL, 256, 256, 96 | ||
|  | 	}, | ||
|  | 
 | ||
|  | 	/* list terminator */ | ||
|  | 	{ 0, 0, 0, 0, NULL, NULL, 0, 0, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * The "enc" (encryption algorithm) Header Parameter identifies the | ||
|  |  * content encryption algorithm used to perform authenticated encryption | ||
|  |  * on the plaintext to produce the ciphertext and the Authentication | ||
|  |  * Tag.  This algorithm MUST be an AEAD algorithm with a specified key | ||
|  |  * length.  The encrypted content is not usable if the "enc" value does | ||
|  |  * not represent a supported algorithm.  "enc" values should either be | ||
|  |  * registered in the IANA "JSON Web Signature and Encryption Algorithms" | ||
|  |  * registry established by [JWA] or be a value that contains a | ||
|  |  * Collision-Resistant Name.  The "enc" value is a case-sensitive ASCII | ||
|  |  * string containing a StringOrURI value.  This Header Parameter MUST be | ||
|  |  * present and MUST be understood and processed by implementations. | ||
|  |  */ | ||
|  | 
 | ||
|  | static const struct lws_jose_jwe_alg lws_gencrypto_jwe_enc_map[] = { | ||
|  | 	/*
 | ||
|  | 	 * AES_128_CBC_HMAC_SHA_256 / 512 | ||
|  | 	 * | ||
|  | 	 * It uses the HMAC message authentication code [RFC2104] with the | ||
|  | 	 * SHA-256 hash function [SHS] to provide message authentication, with | ||
|  | 	 * the HMAC output truncated to 128 bits, corresponding to the | ||
|  | 	 * HMAC-SHA-256-128 algorithm defined in [RFC4868].  For encryption, it | ||
|  | 	 * uses AES in the CBC mode of operation as defined in Section 6.2 of | ||
|  | 	 * [NIST.800-38A], with PKCS #7 padding and a 128-bit IV value. | ||
|  | 	 * | ||
|  | 	 * The AES_CBC_HMAC_SHA2 parameters specific to AES_128_CBC_HMAC_SHA_256 | ||
|  | 	 * are: | ||
|  | 	 * | ||
|  | 	 * The input key K is 32 octets long. | ||
|  | 	 *       ENC_KEY_LEN is 16 octets. | ||
|  | 	 *       MAC_KEY_LEN is 16 octets. | ||
|  | 	 *       The SHA-256 hash algorithm is used for the HMAC. | ||
|  | 	 *       The HMAC-SHA-256 output is truncated to T_LEN=16 octets, by | ||
|  | 	 *       stripping off the final 16 octets. | ||
|  | 	 */ | ||
|  | 	{	/* required */ | ||
|  | 		LWS_GENHASH_TYPE_UNKNOWN, | ||
|  | 		LWS_GENHMAC_TYPE_SHA256, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		LWS_JOSE_ENCTYPE_AES_CBC, | ||
|  | 		"A128CBC-HS256", NULL, 256, 256, 128 | ||
|  | 	}, | ||
|  | 	/*
 | ||
|  | 	 * AES_192_CBC_HMAC_SHA_384 is based on AES_128_CBC_HMAC_SHA_256, but | ||
|  | 	 * with the following differences: | ||
|  | 	 * | ||
|  | 	 * The input key K is 48 octets long instead of 32. | ||
|  | 	 * ENC_KEY_LEN is 24 octets instead of 16. | ||
|  | 	 * MAC_KEY_LEN is 24 octets instead of 16. | ||
|  | 	 * SHA-384 is used for the HMAC instead of SHA-256. | ||
|  | 	 * The HMAC SHA-384 value is truncated to T_LEN=24 octets instead of 16. | ||
|  | 	 */ | ||
|  | 	{	/* required */ | ||
|  | 		LWS_GENHASH_TYPE_UNKNOWN, | ||
|  | 		LWS_GENHMAC_TYPE_SHA384, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		LWS_JOSE_ENCTYPE_AES_CBC, | ||
|  | 		"A192CBC-HS384", NULL, 384, 384, 192 | ||
|  | 	}, | ||
|  | 	/*
 | ||
|  | 	 * AES_256_CBC_HMAC_SHA_512 is based on AES_128_CBC_HMAC_SHA_256, but | ||
|  | 	 * with the following differences: | ||
|  | 	 * | ||
|  | 	 * The input key K is 64 octets long instead of 32. | ||
|  | 	 * ENC_KEY_LEN is 32 octets instead of 16. | ||
|  | 	 * MAC_KEY_LEN is 32 octets instead of 16. | ||
|  | 	 * SHA-512 is used for the HMAC instead of SHA-256. | ||
|  | 	 * The HMAC SHA-512 value is truncated to T_LEN=32 octets instead of 16. | ||
|  | 	 */ | ||
|  | 	{	/* required */ | ||
|  | 		LWS_GENHASH_TYPE_UNKNOWN, | ||
|  | 		LWS_GENHMAC_TYPE_SHA512, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		LWS_JOSE_ENCTYPE_AES_CBC, | ||
|  | 		"A256CBC-HS512", NULL, 512, 512, 256 | ||
|  | 	}, | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * The CEK is used as the encryption key. | ||
|  | 	 * | ||
|  | 	 * Use of an IV of size 96 bits is REQUIRED with this algorithm. | ||
|  | 	 * | ||
|  | 	 * The requested size of the Authentication Tag output MUST be 128 bits, | ||
|  | 	 * regardless of the key size. | ||
|  | 	 */ | ||
|  | 	{	/* recommended: AES GCM using 128-bit key  */ | ||
|  | 		LWS_GENHASH_TYPE_UNKNOWN, | ||
|  | 		LWS_GENHMAC_TYPE_UNKNOWN, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		LWS_JOSE_ENCTYPE_AES_GCM, | ||
|  | 		"A128GCM", NULL, 128, 128, 96 | ||
|  | 	}, | ||
|  | 	{	/* optional: AES GCM using 192-bit key  */ | ||
|  | 		LWS_GENHASH_TYPE_UNKNOWN, | ||
|  | 		LWS_GENHMAC_TYPE_UNKNOWN, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		LWS_JOSE_ENCTYPE_AES_GCM, | ||
|  | 		"A192GCM", NULL, 192, 192, 96 | ||
|  | 	}, | ||
|  | 	{	/* recommended: AES GCM using 256-bit key */ | ||
|  | 		LWS_GENHASH_TYPE_UNKNOWN, | ||
|  | 		LWS_GENHMAC_TYPE_UNKNOWN, | ||
|  | 		LWS_JOSE_ENCTYPE_NONE, | ||
|  | 		LWS_JOSE_ENCTYPE_AES_GCM, | ||
|  | 		"A256GCM", NULL, 256, 256, 96 | ||
|  | 	}, | ||
|  | 	{ 0, 0, 0, 0, NULL, NULL, 0, 0, 0 } /* sentinel */ | ||
|  | }; | ||
|  | 
 | ||
|  | int | ||
|  | lws_gencrypto_jws_alg_to_definition(const char *alg, | ||
|  | 				    const struct lws_jose_jwe_alg **jose) | ||
|  | { | ||
|  | 	const struct lws_jose_jwe_alg *a = lws_gencrypto_jws_alg_map; | ||
|  | 
 | ||
|  | 	while (a->alg) { | ||
|  | 		if (!strcmp(alg, a->alg)) { | ||
|  | 			*jose = a; | ||
|  | 
 | ||
|  | 			return 0; | ||
|  | 		} | ||
|  | 		a++; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return 1; | ||
|  | } | ||
|  | 
 | ||
|  | int | ||
|  | lws_gencrypto_jwe_alg_to_definition(const char *alg, | ||
|  | 				    const struct lws_jose_jwe_alg **jose) | ||
|  | { | ||
|  | 	const struct lws_jose_jwe_alg *a = lws_gencrypto_jwe_alg_map; | ||
|  | 
 | ||
|  | 	while (a->alg) { | ||
|  | 		if (!strcmp(alg, a->alg)) { | ||
|  | 			*jose = a; | ||
|  | 
 | ||
|  | 			return 0; | ||
|  | 		} | ||
|  | 		a++; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return 1; | ||
|  | } | ||
|  | 
 | ||
|  | int | ||
|  | lws_gencrypto_jwe_enc_to_definition(const char *enc, | ||
|  | 				    const struct lws_jose_jwe_alg **jose) | ||
|  | { | ||
|  | 	const struct lws_jose_jwe_alg *e = lws_gencrypto_jwe_enc_map; | ||
|  | 
 | ||
|  | 	while (e->alg) { | ||
|  | 		if (!strcmp(enc, e->alg)) { | ||
|  | 			*jose = e; | ||
|  | 
 | ||
|  | 			return 0; | ||
|  | 		} | ||
|  | 		e++; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return 1; | ||
|  | } | ||
|  | 
 | ||
|  | size_t | ||
|  | lws_genhash_size(enum lws_genhash_types type) | ||
|  | { | ||
|  | 	switch(type) { | ||
|  | 	case LWS_GENHASH_TYPE_UNKNOWN: | ||
|  | 		return 0; | ||
|  | 	case LWS_GENHASH_TYPE_MD5: | ||
|  | 		return 16; | ||
|  | 	case LWS_GENHASH_TYPE_SHA1: | ||
|  | 		return 20; | ||
|  | 	case LWS_GENHASH_TYPE_SHA256: | ||
|  | 		return 32; | ||
|  | 	case LWS_GENHASH_TYPE_SHA384: | ||
|  | 		return 48; | ||
|  | 	case LWS_GENHASH_TYPE_SHA512: | ||
|  | 		return 64; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return 0; | ||
|  | } | ||
|  | 
 | ||
|  | size_t | ||
|  | lws_genhmac_size(enum lws_genhmac_types type) | ||
|  | { | ||
|  | 	switch(type) { | ||
|  | 	case LWS_GENHMAC_TYPE_UNKNOWN: | ||
|  | 		return 0; | ||
|  | 	case LWS_GENHMAC_TYPE_SHA256: | ||
|  | 		return 32; | ||
|  | 	case LWS_GENHMAC_TYPE_SHA384: | ||
|  | 		return 48; | ||
|  | 	case LWS_GENHMAC_TYPE_SHA512: | ||
|  | 		return 64; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return 0; | ||
|  | } | ||
|  | 
 | ||
|  | int | ||
|  | lws_gencrypto_bits_to_bytes(int bits) | ||
|  | { | ||
|  | 	if (bits & 7) | ||
|  | 		return (bits / 8) + 1; | ||
|  | 
 | ||
|  | 	return bits / 8; | ||
|  | } | ||
|  | 
 | ||
|  | int | ||
|  | lws_base64_size(int bytes) | ||
|  | { | ||
|  | 	return ((bytes * 4) / 3) + 6; | ||
|  | } | ||
|  | 
 | ||
|  | void | ||
|  | lws_gencrypto_destroy_elements(struct lws_gencrypto_keyelem *el, int m) | ||
|  | { | ||
|  | 	int n; | ||
|  | 
 | ||
|  | 	for (n = 0; n < m; n++) | ||
|  | 		if (el[n].buf) | ||
|  | 			lws_free_set_NULL(el[n].buf); | ||
|  | } | ||
|  | 
 | ||
|  | size_t lws_gencrypto_padded_length(size_t pad_block_size, size_t len) | ||
|  | { | ||
|  | 	return (len / pad_block_size + 1) * pad_block_size; | ||
|  | } |