import bpy import lnx.utils import lnx.material.mat_state as mat_state if lnx.is_reload(__name__): lnx.utils = lnx.reload_module(lnx.utils) mat_state = lnx.reload_module(mat_state) else: lnx.enable_reload(__name__) def write(vert, particle_info=None, shadowmap=False): ramp_el_len = 0 ramp_positions = [] ramp_colors_b = [] size_over_time_factor = 0 use_rotations = False rotation_mode = 'NONE' rotation_factor_random = 0 phase_factor = 0 phase_factor_random = 0 for obj in bpy.data.objects: for psys in obj.particle_systems: psettings = psys.settings if psettings.instance_object: if psettings.instance_object.active_material: # FIXME: Different particle systems may share the same particle object. This ideally should check the correct `ParticleSystem` using an id or name in the particle's object material. if psettings.instance_object.active_material.name.replace(".", "_") == vert.context.matname: # Rotation data use_rotations = psettings.use_rotations rotation_mode = psettings.rotation_mode rotation_factor_random = psettings.rotation_factor_random phase_factor = psettings.phase_factor phase_factor_random = psettings.phase_factor_random # Texture slots data if psettings.texture_slots and len(psettings.texture_slots.items()) != 0: for tex_slot in psettings.texture_slots: if not tex_slot: break if not tex_slot.use_map_size: break # TODO: check also for other influences if tex_slot.texture and tex_slot.texture.use_color_ramp: if tex_slot.texture.color_ramp and tex_slot.texture.color_ramp.elements: ramp_el_len = len(tex_slot.texture.color_ramp.elements.items()) for element in tex_slot.texture.color_ramp.elements: ramp_positions.append(element.position) ramp_colors_b.append(element.color[2]) size_over_time_factor = tex_slot.size_factor break # Outs out_index = True if particle_info != None and particle_info['index'] else False out_age = True if particle_info != None and particle_info['age'] else False out_lifetime = True if particle_info != None and particle_info['lifetime'] else False out_location = True if particle_info != None and particle_info['location'] else False out_size = True if particle_info != None and particle_info['size'] else False out_velocity = True if particle_info != None and particle_info['velocity'] else False out_angular_velocity = True if particle_info != None and particle_info['angular_velocity'] else False # Force Leenkx to create a new shader per material ID vert.write(f'#ifdef PARTICLE_ID_{vert.context.material.lnx_material_id}') vert.write('#endif') vert.add_uniform('mat4 pd', '_particleData') vert.add_uniform('float pd_size_random', '_particleSizeRandom') vert.add_uniform('float pd_random', '_particleRandom') vert.add_uniform('float pd_size', '_particleSize') if ramp_el_len != 0: vert.add_const('float', 'P_SIZE_OVER_TIME_FACTOR', str(size_over_time_factor)) for i in range(ramp_el_len): vert.add_const('float', f'P_RAMP_POSITION_{i}', str(ramp_positions[i])) vert.add_const('float', f'P_RAMP_COLOR_B_{i}', str(ramp_colors_b[i])) str_tex_hash = "float fhash(float n) { return fract(sin(n) * 43758.5453); }\n" vert.add_function(str_tex_hash) if (ramp_el_len != 0): str_ramp_scale = "float get_ramp_scale(float age) {\n" for i in range(ramp_el_len): if i == 0: str_ramp_scale += f"if (age <= P_RAMP_POSITION_{i + 1})" elif i == ramp_el_len - 1: str_ramp_scale += f"return P_RAMP_COLOR_B_{ramp_el_len - 1};" break else: str_ramp_scale += f"else if (age <= P_RAMP_POSITION_{i + 1})" str_ramp_scale += f""" {{ float t = (age - P_RAMP_POSITION_{i}) / (P_RAMP_POSITION_{i + 1} - P_RAMP_POSITION_{i}); return mix(P_RAMP_COLOR_B_{i}, P_RAMP_COLOR_B_{i + 1}, t); }} """ str_ramp_scale += "}\n" vert.add_function(str_ramp_scale) prep = 'float ' if out_age: prep = '' vert.add_out('float p_age') # var p_age = lapTime - p.i * spawnRate vert.write(prep + 'p_age = pd[3][3] - gl_InstanceID * pd[0][1];') # Loop # pd[0][0] - animtime, loop stored in sign # vert.write('while (p_age < 0) p_age += pd[0][0];') vert.write('if (pd[0][0] > 0 && p_age < 0) p_age += (int(-p_age / pd[0][0]) + 1) * pd[0][0];') # lifetime prep = 'float ' if out_lifetime: prep = '' vert.add_out('float p_lifetime') vert.write(prep + 'p_lifetime = pd[0][2] * (1 - (fhash(gl_InstanceID + 4 * pd[0][3] + pd_random) * pd[2][3]));') # clip with nan vert.write('if (p_age < 0 || p_age > p_lifetime) {') vert.write(' gl_Position /= 0.0;') vert.write(' return;') vert.write('}') if (ramp_el_len != 0): vert.write('float n_age = clamp(p_age / p_lifetime, 0.0, 1.0);') vert.write(f'spos.xyz *= 1 + (get_ramp_scale(n_age) - 1) * {size_over_time_factor};') vert.write('spos.xyz *= 1 - (fhash(gl_InstanceID + 3 * pd[0][3] + pd_random) * pd_size_random);') # vert.write('p_age /= 2;') # Match # object_align_factor / 2 + gxyz prep = 'vec3 ' if out_velocity: prep = '' vert.add_out('vec3 p_velocity') vert.write(prep + 'p_velocity = vec3(pd[1][0] * (1 / pd_size), pd[1][1] * (1 / pd_size), pd[1][2] * (1 / pd_size));') vert.write('p_velocity.x += (fhash(gl_InstanceID + pd_random) * 2.0 / pd_size - 1.0 / pd_size) * pd[1][3];') vert.write('p_velocity.y += (fhash(gl_InstanceID + pd_random + pd[0][3]) * 2.0 / pd_size - 1.0 / pd_size) * pd[1][3];') vert.write('p_velocity.z += (fhash(gl_InstanceID + pd_random + 2 * pd[0][3]) * 2.0 / pd_size - 1.0 / pd_size) * pd[1][3];') # factor_random = pd[1][3] # p.i = gl_InstanceID # particles.length = pd[0][3] # gxyz vert.write('p_velocity.x += (pd[2][0] / (2 * pd_size)) * p_age;') vert.write('p_velocity.y += (pd[2][1] / (2 * pd_size)) * p_age;') vert.write('p_velocity.z += (pd[2][2] / (2 * pd_size)) * p_age;') prep = 'vec3 ' if out_location: prep = '' vert.add_out('vec3 p_location') vert.write(prep + 'p_location = p_velocity * p_age;') vert.write('spos.xyz += p_location;') # Rotation if use_rotations: if rotation_mode != 'NONE': vert.write(f'float p_angle = ({phase_factor} + (fhash(gl_InstanceID + pd_random + 5 * pd[0][3])) * {phase_factor_random});') vert.write('p_angle *= 3.141592;') vert.write('float c = cos(p_angle);') vert.write('float s = sin(p_angle);') vert.write('vec3 center = spos.xyz - p_location;') match rotation_mode: case 'OB_X': vert.write('vec3 rz = vec3(center.y, -center.x, center.z);') vert.write('vec2 rotation = vec2(rz.y * c - rz.z * s, rz.y * s + rz.z * c);') vert.write('spos.xyz = vec3(rz.x, rotation.x, rotation.y) + p_location;') if (not shadowmap): vert.write('wnormal = vec3(wnormal.y, -wnormal.x, wnormal.z);') vert.write('vec2 n_rot = vec2(wnormal.y * c - wnormal.z * s, wnormal.y * s + wnormal.z * c);') vert.write('wnormal = normalize(vec3(wnormal.x, n_rot.x, n_rot.y));') case 'OB_Y': vert.write('vec2 rotation = vec2(center.x * c + center.z * s, -center.x * s + center.z * c);') vert.write('spos.xyz = vec3(rotation.x, center.y, rotation.y) + p_location;') if (not shadowmap): vert.write('wnormal = normalize(vec3(wnormal.x * c + wnormal.z * s, wnormal.y, -wnormal.x * s + wnormal.z * c));') case 'OB_Z': vert.write('vec3 rz = vec3(center.y, -center.x, center.z);') vert.write('vec3 ry = vec3(-rz.z, rz.y, rz.x);') vert.write('vec2 rotation = vec2(ry.x * c - ry.y * s, ry.x * s + ry.y * c);') vert.write('spos.xyz = vec3(rotation.x, rotation.y, ry.z) + p_location;') if (not shadowmap): vert.write('wnormal = vec3(wnormal.y, -wnormal.x, wnormal.z);') vert.write('wnormal = vec3(-wnormal.z, wnormal.y, wnormal.x);') vert.write('vec2 n_rot = vec2(wnormal.x * c - wnormal.y * s, wnormal.x * s + wnormal.y * c);') vert.write('wnormal = normalize(vec3(n_rot.x, n_rot.y, wnormal.z));') case 'VEL': vert.write('vec3 forward = -normalize(p_velocity);') vert.write('if (length(forward) > 1e-5) {') vert.write('vec3 world_up = vec3(0.0, 0.0, 1.0);') vert.write('if (abs(dot(forward, world_up)) > 0.999) {') vert.write('world_up = vec3(-1.0, 0.0, 0.0);') vert.write('}') vert.write('vec3 right = cross(world_up, forward);') vert.write('if (length(right) < 1e-5) {') vert.write('forward = -forward;') vert.write('right = cross(world_up, forward);') vert.write('}') vert.write('right = normalize(right);') vert.write('vec3 up = normalize(cross(forward, right));') vert.write('mat3 rot = mat3(right, -forward, up);') vert.write('mat3 phase = mat3(vec3(c, 0.0, -s), vec3(0.0, 1.0, 0.0), vec3(s, 0.0, c));') vert.write('mat3 final_rot = rot * phase;') vert.write('spos.xyz = final_rot * center + p_location;') if (not shadowmap): vert.write('wnormal = normalize(final_rot * wnormal);') vert.write('}') if rotation_factor_random != 0: str_rotate_around = '''vec3 rotate_around(vec3 v, vec3 angle) { // Rotate around X float cx = cos(angle.x); float sx = sin(angle.x); v = vec3(v.x, v.y * cx - v.z * sx, v.y * sx + v.z * cx); // Rotate around Y float cy = cos(angle.y); float sy = sin(angle.y); v = vec3(v.x * cy + v.z * sy, v.y, -v.x * sy + v.z * cy); // Rotate around Z float cz = cos(angle.z); float sz = sin(angle.z); v = vec3(v.x * cz - v.y * sz, v.x * sz + v.y * cz, v.z); return v; }''' vert.add_function(str_rotate_around) vert.write(f'''vec3 r_angle = vec3((fhash(gl_InstanceID + pd_random + 6 * pd[0][3]) * 4 - 2) * {rotation_factor_random}, (fhash(gl_InstanceID + pd_random + 7 * pd[0][3]) * 4 - 2) * {rotation_factor_random}, (fhash(gl_InstanceID + pd_random + 8 * pd[0][3]) * 4 - 2) * {rotation_factor_random});''') vert.write('vec3 r_center = spos.xyz - p_location;') vert.write('r_center = rotate_around(r_center, r_angle);') vert.write('spos.xyz = r_center + p_location;') if not shadowmap: vert.write('wnormal = normalize(rotate_around(wnormal, r_angle));') # Particle fade if mat_state.material.lnx_particle_flag and lnx.utils.get_rp().lnx_particles == 'On' and mat_state.material.lnx_particle_fade: vert.add_out('float p_fade') vert.write('p_fade = sin(min((p_age / 2) * 3.141592, 3.141592));') if out_index: vert.add_out('float p_index') vert.write('p_index = gl_InstanceID;') def write_tilesheet(vert): # tilesx, tilesy, framerate - pd[3][0], pd[3][1], pd[3][2] vert.write('int frame = int((p_age) / pd[3][2]);') vert.write('int tx = frame % int(pd[3][0]);') vert.write('int ty = int(frame / pd[3][0]);') vert.write('vec2 tilesheetOffset = vec2(tx * (1 / pd[3][0]), ty * (1 / pd[3][1]));') vert.write('texCoord = tex * texUnpack + tilesheetOffset;') # vert.write('texCoord = tex;')