from typing import Union import bpy import lnx import lnx.log as log import lnx.material.cycles as c import lnx.material.cycles_functions as c_functions from lnx.material.parser_state import ParserPass, ParserState from lnx.material.shader import floatstr, vec3str if lnx.is_reload(__name__): log = lnx.reload_module(log) c = lnx.reload_module(c) c_functions = lnx.reload_module(c_functions) lnx.material.parser_state = lnx.reload_module(lnx.material.parser_state) from lnx.material.parser_state import ParserState lnx.material.shader = lnx.reload_module(lnx.material.shader) from lnx.material.shader import floatstr, vec3str else: lnx.enable_reload(__name__) def parse_maprange(node: bpy.types.ShaderNodeMapRange, out_socket: bpy.types.NodeSocket, state: ParserState) -> floatstr: interp = node.interpolation_type value: str = c.parse_value_input(node.inputs[0]) if node.inputs[0].is_linked else c.to_vec1(node.inputs[0].default_value) fromMin = c.parse_value_input(node.inputs[1]) fromMax = c.parse_value_input(node.inputs[2]) toMin = c.parse_value_input(node.inputs[3]) toMax = c.parse_value_input(node.inputs[4]) if interp == "LINEAR": state.curshader.add_function(c_functions.str_map_range_linear) out = f'map_range_linear({value}, {fromMin}, {fromMax}, {toMin}, {toMax})' elif interp == "STEPPED": steps = float(c.parse_value_input(node.inputs[5])) state.curshader.add_function(c_functions.str_map_range_stepped) out = f'map_range_stepped({value}, {fromMin}, {fromMax}, {toMin}, {toMax}, {steps})' elif interp == "SMOOTHSTEP": state.curshader.add_function(c_functions.str_map_range_smoothstep) out = f'map_range_smoothstep({value}, {fromMin}, {fromMax}, {toMin}, {toMax})' elif interp == "SMOOTHERSTEP": state.curshader.add_function(c_functions.str_map_range_smootherstep) out = f'map_range_smootherstep({value}, {fromMin}, {fromMax}, {toMin}, {toMax})' else: log.warn(f'Interpolation mode {interp} not supported for Map Range node') return '0.0' if node.clamp: out = f'clamp({out}, {toMin}, {toMax})' return out def parse_blackbody(node: bpy.types.ShaderNodeBlackbody, out_socket: bpy.types.NodeSocket, state: ParserState) -> vec3str: t = c.parse_value_input(node.inputs[0]) state.curshader.add_function(c_functions.str_blackbody) return f'blackbody({t})' def parse_clamp(node: bpy.types.ShaderNodeClamp, out_socket: bpy.types.NodeSocket, state: ParserState) -> floatstr: value = c.parse_value_input(node.inputs['Value']) minVal = c.parse_value_input(node.inputs['Min']) maxVal = c.parse_value_input(node.inputs['Max']) if node.clamp_type == 'MINMAX': # Condition is minVal < maxVal, otherwise use 'RANGE' type return f'clamp({value}, {minVal}, {maxVal})' elif node.clamp_type == 'RANGE': return f'{minVal} < {maxVal} ? clamp({value}, {minVal}, {maxVal}) : clamp({value}, {maxVal}, {minVal})' else: log.warn(f'Clamp node: unsupported clamp type {node.clamp_type}.') return value def parse_valtorgb(node: bpy.types.ShaderNodeValToRGB, out_socket: bpy.types.NodeSocket, state: ParserState) -> Union[floatstr, vec3str]: # Alpha (TODO: make ColorRamp calculation vec4-based and split afterwards) if out_socket == node.outputs[1]: return '1.0' input_fac: bpy.types.NodeSocket = node.inputs[0] fac: str = c.parse_value_input(input_fac) if input_fac.is_linked else c.to_vec1(input_fac.default_value) interp = node.color_ramp.interpolation elems = node.color_ramp.elements if len(elems) == 1: return c.to_vec3(elems[0].color) # Write color array # The last entry is included twice so that the interpolation # between indices works (no out of bounds error) cols_var = c.node_name(node.name).upper() + '_COLS' if state.current_pass == ParserPass.REGULAR: cols_entries = ', '.join(f'vec3({elem.color[0]}, {elem.color[1]}, {elem.color[2]})' for elem in elems) cols_entries += f', vec3({elems[len(elems) - 1].color[0]}, {elems[len(elems) - 1].color[1]}, {elems[len(elems) - 1].color[2]})' state.curshader.add_const("vec3", cols_var, cols_entries, array_size=len(elems) + 1) fac_var = c.node_name(node.name) + '_fac' + state.get_parser_pass_suffix() state.curshader.write(f'float {fac_var} = {fac};') # Get index of the nearest left element relative to the factor index = '0 + ' index += ' + '.join([f'(({fac_var} > {elems[i].position}) ? 1 : 0)' for i in range(1, len(elems))]) # Write index index_var = c.node_name(node.name) + '_i' + state.get_parser_pass_suffix() state.curshader.write(f'int {index_var} = {index};') if interp == 'CONSTANT': return f'{cols_var}[{index_var}]' # Linear interpolation else: # Write factor array facs_var = c.node_name(node.name).upper() + '_FACS' if state.current_pass == ParserPass.REGULAR: facs_entries = ', '.join(str(elem.position) for elem in elems) # Add one more entry at the rightmost position so that the # interpolation between indices works (no out of bounds error) facs_entries += ', 1.0' state.curshader.add_const("float", facs_var, facs_entries, array_size=len(elems) + 1) # Mix color prev_stop_fac = f'{facs_var}[{index_var}]' next_stop_fac = f'{facs_var}[{index_var} + 1]' prev_stop_col = f'{cols_var}[{index_var}]' next_stop_col = f'{cols_var}[{index_var} + 1]' rel_pos = f'({fac_var} - {prev_stop_fac}) * (1.0 / ({next_stop_fac} - {prev_stop_fac}))' return f'mix({prev_stop_col}, {next_stop_col}, max({rel_pos}, 0.0))' if bpy.app.version > (3, 2, 0): def parse_combine_color(node: bpy.types.ShaderNodeCombineColor, out_socket: bpy.types.NodeSocket, state: ParserState) -> floatstr: if node.mode == 'RGB': return parse_combrgb(node, out_socket, state) elif node.mode == 'HSV': return parse_combhsv(node, out_socket, state) elif node.mode == 'HSL': log.warn('Combine Color node: HSL mode is not supported, using default value') return c.to_vec3((0.0, 0.0, 0.0)) def parse_combhsv(node: bpy.types.ShaderNodeCombineHSV, out_socket: bpy.types.NodeSocket, state: ParserState) -> vec3str: state.curshader.add_function(c_functions.str_hue_sat) h = c.parse_value_input(node.inputs[0]) s = c.parse_value_input(node.inputs[1]) v = c.parse_value_input(node.inputs[2]) return f'hsv_to_rgb(vec3({h}, {s}, {v}))' def parse_combrgb(node: bpy.types.ShaderNodeCombineRGB, out_socket: bpy.types.NodeSocket, state: ParserState) -> vec3str: r = c.parse_value_input(node.inputs[0]) g = c.parse_value_input(node.inputs[1]) b = c.parse_value_input(node.inputs[2]) return f'vec3({r}, {g}, {b})' def parse_combxyz(node: bpy.types.ShaderNodeCombineXYZ, out_socket: bpy.types.NodeSocket, state: ParserState) -> vec3str: x = c.parse_value_input(node.inputs[0]) y = c.parse_value_input(node.inputs[1]) z = c.parse_value_input(node.inputs[2]) return f'vec3({x}, {y}, {z})' def parse_wavelength(node: bpy.types.ShaderNodeWavelength, out_socket: bpy.types.NodeSocket, state: ParserState) -> vec3str: state.curshader.add_function(c_functions.str_wavelength_to_rgb) wl = c.parse_value_input(node.inputs[0]) # Roughly map to cycles - 450 to 600 nanometers return f'wavelength_to_rgb(({wl} - 450.0) / 150.0)' def parse_vectormath(node: bpy.types.ShaderNodeVectorMath, out_socket: bpy.types.NodeSocket, state: ParserState) -> Union[floatstr, vec3str]: op = node.operation vec1 = c.parse_vector_input(node.inputs[0]) vec2 = c.parse_vector_input(node.inputs[1]) if out_socket.type == 'VECTOR': if op == 'ADD': return f'({vec1} + {vec2})' elif op == 'SUBTRACT': return f'({vec1} - {vec2})' elif op == 'MULTIPLY': return f'({vec1} * {vec2})' elif op == 'DIVIDE': state.curshader.add_function(c_functions.str_safe_divide) return f'safe_divide({vec1}, {vec2})' elif op == 'NORMALIZE': return f'normalize({vec1})' elif op == 'SCALE': # Scale is input 3 despite being visually on another position (see the python tooltip in Blender) scale = c.parse_value_input(node.inputs[3]) return f'{vec1} * {scale}' elif op == 'REFLECT': return f'reflect({vec1}, normalize({vec2}))' elif op == 'PROJECT': state.curshader.add_function(c_functions.str_project) return f'project({vec1}, {vec2})' elif op == 'CROSS_PRODUCT': return f'cross({vec1}, {vec2})' elif op == 'SINE': return f'sin({vec1})' elif op == 'COSINE': return f'cos({vec1})' elif op == 'TANGENT': return f'tan({vec1})' elif op == 'MODULO': return f'mod({vec1}, {vec2})' elif op == 'FRACTION': return f'fract({vec1})' elif op == 'SNAP': state.curshader.add_function(c_functions.str_safe_divide) return f'floor(safe_divide({vec1}, {vec2})) * {vec2}' elif op == 'WRAP': vec3 = c.parse_vector_input(node.inputs[2]) state.curshader.add_function(c_functions.str_wrap) return f'wrap({vec1}, {vec2}, {vec3})' elif op == 'CEIL': return f'ceil({vec1})' elif op == 'FLOOR': return f'floor({vec1})' elif op == 'MAXIMUM': return f'max({vec1}, {vec2})' elif op == 'MINIMUM': return f'min({vec1}, {vec2})' elif op == 'ABSOLUTE': return f'abs({vec1})' log.warn(f'Vectormath node: unsupported operation {node.operation}.') return vec1 # Float output if op == 'DOT_PRODUCT': return f'dot({vec1}, {vec2})' elif op == 'DISTANCE': return f'distance({vec1}, {vec2})' elif op == 'LENGTH': return f'length({vec1})' log.warn(f'Vectormath node: unsupported operation {node.operation}.') return '0.0' def parse_math(node: bpy.types.ShaderNodeMath, out_socket: bpy.types.NodeSocket, state: ParserState) -> floatstr: val1 = c.parse_value_input(node.inputs[0]) val2 = c.parse_value_input(node.inputs[1]) op = node.operation if op == 'ADD': out_val = '({0} + {1})'.format(val1, val2) elif op == 'SUBTRACT': out_val = '({0} - {1})'.format(val1, val2) elif op == 'MULTIPLY': out_val = '({0} * {1})'.format(val1, val2) elif op == 'DIVIDE': out_val = '({0} / {1})'.format(val1, val2) elif op == 'MULTIPLY_ADD': val3 = c.parse_value_input(node.inputs[2]) out_val = '({0} * {1} + {2})'.format(val1, val2, val3) elif op == 'POWER': out_val = 'pow({0}, {1})'.format(val1, val2) elif op == 'LOGARITHM': out_val = 'log({0})'.format(val1) elif op == 'SQRT': out_val = 'sqrt({0})'.format(val1) elif op == 'INVERSE_SQRT': out_val = 'inversesqrt({0})'.format(val1) elif op == 'ABSOLUTE': out_val = 'abs({0})'.format(val1) elif op == 'EXPONENT': out_val = 'exp({0})'.format(val1) elif op == 'MINIMUM': out_val = 'min({0}, {1})'.format(val1, val2) elif op == 'MAXIMUM': out_val = 'max({0}, {1})'.format(val1, val2) elif op == 'LESS_THAN': out_val = 'float({0} < {1})'.format(val1, val2) elif op == 'GREATER_THAN': out_val = 'float({0} > {1})'.format(val1, val2) elif op == 'SIGN': out_val = 'sign({0})'.format(val1) elif op == 'COMPARE': val3 = c.parse_value_input(node.inputs[2]) out_val = 'float((abs({0} - {1}) <= max({2}, 1e-5)) ? 1.0 : 0.0)'.format(val1, val2, val3) elif op == 'SMOOTH_MIN': val3 = c.parse_value_input(node.inputs[2]) out_val = 'float(float({2} != 0.0 ? min({0},{1}) - (max({2} - abs({0} - {1}), 0.0) / {2}) * (max({2} - abs({0} - {1}), 0.0) / {2}) * (max({2} - abs({0} - {1}), 0.0) / {2}) * {2} * (1.0 / 6.0) : min({0}, {1})))'.format(val1, val2, val3) elif op == 'SMOOTH_MAX': val3 = c.parse_value_input(node.inputs[2]) out_val = 'float(0-(float({2} != 0.0 ? min(-{0},-{1}) - (max({2} - abs(-{0} - (-{1})), 0.0) / {2}) * (max({2} - abs(-{0} - (-{1})), 0.0) / {2}) * (max({2} - abs(-{0} - (-{1})), 0.0) / {2}) * {2} * (1.0 / 6.0) : min(-{0}, (-{1})))))'.format(val1, val2, val3) elif op == 'ROUND': # out_val = 'round({0})'.format(val1) out_val = 'floor({0} + 0.5)'.format(val1) elif op == 'FLOOR': out_val = 'floor({0})'.format(val1) elif op == 'CEIL': out_val = 'ceil({0})'.format(val1) elif op == 'TRUNC': out_val = 'trunc({0})'.format(val1) elif op == 'FRACT': out_val = 'fract({0})'.format(val1) elif op == 'MODULO': # out_val = 'float({0} % {1})'.format(val1, val2) out_val = 'mod({0}, {1})'.format(val1, val2) elif op == 'WRAP': val3 = c.parse_value_input(node.inputs[2]) out_val = 'float((({1}-{2}) != 0.0) ? {0} - (({1}-{2}) * floor(({0} - {2}) / ({1}-{2}))) : {2})'.format(val1, val2, val3) elif op == 'SNAP': out_val = 'floor(({1} != 0.0) ? {0} / {1} : 0.0) * {1}'.format(val1, val2) elif op == 'PINGPONG': out_val = 'float(({1} != 0.0) ? abs(fract(({0} - {1}) / ({1} * 2.0)) * {1} * 2.0 - {1}) : 0.0)'.format(val1, val2) elif op == 'SINE': out_val = 'sin({0})'.format(val1) elif op == 'COSINE': out_val = 'cos({0})'.format(val1) elif op == 'TANGENT': out_val = 'tan({0})'.format(val1) elif op == 'ARCSINE': out_val = 'asin({0})'.format(val1) elif op == 'ARCCOSINE': out_val = 'acos({0})'.format(val1) elif op == 'ARCTANGENT': out_val = 'atan({0})'.format(val1) elif op == 'ARCTAN2': out_val = 'atan({0}, {1})'.format(val1, val2) elif op == 'SINH': out_val = 'sinh({0})'.format(val1) elif op == 'COSH': out_val = 'cosh({0})'.format(val1) elif op == 'TANH': out_val = 'tanh({0})'.format(val1) elif op == 'RADIANS': out_val = 'radians({0})'.format(val1) elif op == 'DEGREES': out_val = 'degrees({0})'.format(val1) if node.use_clamp: return 'clamp({0}, 0.0, 1.0)'.format(out_val) else: return out_val def parse_rgbtobw(node: bpy.types.ShaderNodeRGBToBW, out_socket: bpy.types.NodeSocket, state: ParserState) -> floatstr: return c.rgb_to_bw(c.parse_vector_input(node.inputs[0])) if bpy.app.version > (3, 2, 0): def parse_separate_color(node: bpy.types.ShaderNodeSeparateColor, out_socket: bpy.types.NodeSocket, state: ParserState) -> floatstr: if node.mode == 'RGB': return parse_seprgb(node, out_socket, state) elif node.mode == 'HSV': return parse_sephsv(node, out_socket, state) elif node.mode == 'HSL': log.warn('Separate Color node: HSL mode is not supported, using default value') return '0.0' def parse_sephsv(node: bpy.types.ShaderNodeSeparateHSV, out_socket: bpy.types.NodeSocket, state: ParserState) -> floatstr: state.curshader.add_function(c_functions.str_hue_sat) hsv_var = c.node_name(node.name) + '_hsv' + state.get_parser_pass_suffix() if not state.curshader.contains(hsv_var): # Already written if a second output is parsed state.curshader.write(f'const vec3 {hsv_var} = rgb_to_hsv({c.parse_vector_input(node.inputs["Color"])}.rgb);') if out_socket == node.outputs[0]: return f'{hsv_var}.x' elif out_socket == node.outputs[1]: return f'{hsv_var}.y' elif out_socket == node.outputs[2]: return f'{hsv_var}.z' def parse_seprgb(node: bpy.types.ShaderNodeSeparateRGB, out_socket: bpy.types.NodeSocket, state: ParserState) -> floatstr: col = c.parse_vector_input(node.inputs[0]) if out_socket == node.outputs[0]: return '{0}.r'.format(col) elif out_socket == node.outputs[1]: return '{0}.g'.format(col) elif out_socket == node.outputs[2]: return '{0}.b'.format(col) def parse_sepxyz(node: bpy.types.ShaderNodeSeparateXYZ, out_socket: bpy.types.NodeSocket, state: ParserState) -> floatstr: vec = c.parse_vector_input(node.inputs[0]) if out_socket == node.outputs[0]: return '{0}.x'.format(vec) elif out_socket == node.outputs[1]: return '{0}.y'.format(vec) elif out_socket == node.outputs[2]: return '{0}.z'.format(vec)