1126 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			1126 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|  | /* crc32.c -- compute the CRC-32 of a data stream
 | ||
|  |  * Copyright (C) 1995-2022 Mark Adler | ||
|  |  * For conditions of distribution and use, see copyright notice in zlib.h | ||
|  |  * | ||
|  |  * This interleaved implementation of a CRC makes use of pipelined multiple | ||
|  |  * arithmetic-logic units, commonly found in modern CPU cores. It is due to | ||
|  |  * Kadatch and Jenkins (2010). See doc/crc-doc.1.0.pdf in this distribution. | ||
|  |  */ | ||
|  | 
 | ||
|  | /* @(#) $Id$ */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |   Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore | ||
|  |   protection on the static variables used to control the first-use generation | ||
|  |   of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should | ||
|  |   first call get_crc_table() to initialize the tables before allowing more than | ||
|  |   one thread to use crc32(). | ||
|  | 
 | ||
|  |   MAKECRCH can be #defined to write out crc32.h. A main() routine is also | ||
|  |   produced, so that this one source file can be compiled to an executable. | ||
|  |  */ | ||
|  | 
 | ||
|  | #ifdef MAKECRCH
 | ||
|  | #  include <stdio.h>
 | ||
|  | #  ifndef DYNAMIC_CRC_TABLE
 | ||
|  | #    define DYNAMIC_CRC_TABLE
 | ||
|  | #  endif /* !DYNAMIC_CRC_TABLE */
 | ||
|  | #endif /* MAKECRCH */
 | ||
|  | 
 | ||
|  | #include "zutil.h"      /* for Z_U4, Z_U8, z_crc_t, and FAR definitions */
 | ||
|  | 
 | ||
|  |  /*
 | ||
|  |   A CRC of a message is computed on N braids of words in the message, where | ||
|  |   each word consists of W bytes (4 or 8). If N is 3, for example, then three | ||
|  |   running sparse CRCs are calculated respectively on each braid, at these | ||
|  |   indices in the array of words: 0, 3, 6, ..., 1, 4, 7, ..., and 2, 5, 8, ... | ||
|  |   This is done starting at a word boundary, and continues until as many blocks | ||
|  |   of N * W bytes as are available have been processed. The results are combined | ||
|  |   into a single CRC at the end. For this code, N must be in the range 1..6 and | ||
|  |   W must be 4 or 8. The upper limit on N can be increased if desired by adding | ||
|  |   more #if blocks, extending the patterns apparent in the code. In addition, | ||
|  |   crc32.h would need to be regenerated, if the maximum N value is increased. | ||
|  | 
 | ||
|  |   N and W are chosen empirically by benchmarking the execution time on a given | ||
|  |   processor. The choices for N and W below were based on testing on Intel Kaby | ||
|  |   Lake i7, AMD Ryzen 7, ARM Cortex-A57, Sparc64-VII, PowerPC POWER9, and MIPS64 | ||
|  |   Octeon II processors. The Intel, AMD, and ARM processors were all fastest | ||
|  |   with N=5, W=8. The Sparc, PowerPC, and MIPS64 were all fastest at N=5, W=4. | ||
|  |   They were all tested with either gcc or clang, all using the -O3 optimization | ||
|  |   level. Your mileage may vary. | ||
|  |  */ | ||
|  | 
 | ||
|  | /* Define N */ | ||
|  | #ifdef Z_TESTN
 | ||
|  | #  define N Z_TESTN
 | ||
|  | #else
 | ||
|  | #  define N 5
 | ||
|  | #endif
 | ||
|  | #if N < 1 || N > 6
 | ||
|  | #  error N must be in 1..6
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |   z_crc_t must be at least 32 bits. z_word_t must be at least as long as | ||
|  |   z_crc_t. It is assumed here that z_word_t is either 32 bits or 64 bits, and | ||
|  |   that bytes are eight bits. | ||
|  |  */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |   Define W and the associated z_word_t type. If W is not defined, then a | ||
|  |   braided calculation is not used, and the associated tables and code are not | ||
|  |   compiled. | ||
|  |  */ | ||
|  | #ifdef Z_TESTW
 | ||
|  | #  if Z_TESTW-1 != -1
 | ||
|  | #    define W Z_TESTW
 | ||
|  | #  endif
 | ||
|  | #else
 | ||
|  | #  ifdef MAKECRCH
 | ||
|  | #    define W 8         /* required for MAKECRCH */
 | ||
|  | #  else
 | ||
|  | #    if defined(__x86_64__) || defined(__aarch64__)
 | ||
|  | #      define W 8
 | ||
|  | #    else
 | ||
|  | #      define W 4
 | ||
|  | #    endif
 | ||
|  | #  endif
 | ||
|  | #endif
 | ||
|  | #ifdef W
 | ||
|  | #  if W == 8 && defined(Z_U8)
 | ||
|  |      typedef Z_U8 z_word_t; | ||
|  | #  elif defined(Z_U4)
 | ||
|  | #    undef W
 | ||
|  | #    define W 4
 | ||
|  |      typedef Z_U4 z_word_t; | ||
|  | #  else
 | ||
|  | #    undef W
 | ||
|  | #  endif
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /* If available, use the ARM processor CRC32 instruction. */ | ||
|  | #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) && W == 8
 | ||
|  | #  define ARMCRC32
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /* Local functions. */ | ||
|  | local z_crc_t multmodp OF((z_crc_t a, z_crc_t b)); | ||
|  | local z_crc_t x2nmodp OF((z_off64_t n, unsigned k)); | ||
|  | 
 | ||
|  | #if defined(W) && (!defined(ARMCRC32) || defined(DYNAMIC_CRC_TABLE))
 | ||
|  |     local z_word_t byte_swap OF((z_word_t word)); | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if defined(W) && !defined(ARMCRC32)
 | ||
|  |     local z_crc_t crc_word OF((z_word_t data)); | ||
|  |     local z_word_t crc_word_big OF((z_word_t data)); | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if defined(W) && (!defined(ARMCRC32) || defined(DYNAMIC_CRC_TABLE))
 | ||
|  | /*
 | ||
|  |   Swap the bytes in a z_word_t to convert between little and big endian. Any | ||
|  |   self-respecting compiler will optimize this to a single machine byte-swap | ||
|  |   instruction, if one is available. This assumes that word_t is either 32 bits | ||
|  |   or 64 bits. | ||
|  |  */ | ||
|  | local z_word_t byte_swap(word) | ||
|  |     z_word_t word; | ||
|  | { | ||
|  | #  if W == 8
 | ||
|  |     return | ||
|  |         (word & 0xff00000000000000) >> 56 | | ||
|  |         (word & 0xff000000000000) >> 40 | | ||
|  |         (word & 0xff0000000000) >> 24 | | ||
|  |         (word & 0xff00000000) >> 8 | | ||
|  |         (word & 0xff000000) << 8 | | ||
|  |         (word & 0xff0000) << 24 | | ||
|  |         (word & 0xff00) << 40 | | ||
|  |         (word & 0xff) << 56; | ||
|  | #  else   /* W == 4 */
 | ||
|  |     return | ||
|  |         (word & 0xff000000) >> 24 | | ||
|  |         (word & 0xff0000) >> 8 | | ||
|  |         (word & 0xff00) << 8 | | ||
|  |         (word & 0xff) << 24; | ||
|  | #  endif
 | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /* CRC polynomial. */ | ||
|  | #define POLY 0xedb88320         /* p(x) reflected, with x^32 implied */
 | ||
|  | 
 | ||
|  | #ifdef DYNAMIC_CRC_TABLE
 | ||
|  | 
 | ||
|  | local z_crc_t FAR crc_table[256]; | ||
|  | local z_crc_t FAR x2n_table[32]; | ||
|  | local void make_crc_table OF((void)); | ||
|  | #ifdef W
 | ||
|  |    local z_word_t FAR crc_big_table[256]; | ||
|  |    local z_crc_t FAR crc_braid_table[W][256]; | ||
|  |    local z_word_t FAR crc_braid_big_table[W][256]; | ||
|  |    local void braid OF((z_crc_t [][256], z_word_t [][256], int, int)); | ||
|  | #endif
 | ||
|  | #ifdef MAKECRCH
 | ||
|  |    local void write_table OF((FILE *, const z_crc_t FAR *, int)); | ||
|  |    local void write_table32hi OF((FILE *, const z_word_t FAR *, int)); | ||
|  |    local void write_table64 OF((FILE *, const z_word_t FAR *, int)); | ||
|  | #endif /* MAKECRCH */
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |   Define a once() function depending on the availability of atomics. If this is | ||
|  |   compiled with DYNAMIC_CRC_TABLE defined, and if CRCs will be computed in | ||
|  |   multiple threads, and if atomics are not available, then get_crc_table() must | ||
|  |   be called to initialize the tables and must return before any threads are | ||
|  |   allowed to compute or combine CRCs. | ||
|  |  */ | ||
|  | 
 | ||
|  | /* Definition of once functionality. */ | ||
|  | typedef struct once_s once_t; | ||
|  | local void once OF((once_t *, void (*)(void))); | ||
|  | 
 | ||
|  | /* Check for the availability of atomics. */ | ||
|  | #if defined(__STDC__) && __STDC_VERSION__ >= 201112L && \
 | ||
|  |     !defined(__STDC_NO_ATOMICS__) | ||
|  | 
 | ||
|  | #include <stdatomic.h>
 | ||
|  | 
 | ||
|  | /* Structure for once(), which must be initialized with ONCE_INIT. */ | ||
|  | struct once_s { | ||
|  |     atomic_flag begun; | ||
|  |     atomic_int done; | ||
|  | }; | ||
|  | #define ONCE_INIT {ATOMIC_FLAG_INIT, 0}
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |   Run the provided init() function exactly once, even if multiple threads | ||
|  |   invoke once() at the same time. The state must be a once_t initialized with | ||
|  |   ONCE_INIT. | ||
|  |  */ | ||
|  | local void once(state, init) | ||
|  |     once_t *state; | ||
|  |     void (*init)(void); | ||
|  | { | ||
|  |     if (!atomic_load(&state->done)) { | ||
|  |         if (atomic_flag_test_and_set(&state->begun)) | ||
|  |             while (!atomic_load(&state->done)) | ||
|  |                 ; | ||
|  |         else { | ||
|  |             init(); | ||
|  |             atomic_store(&state->done, 1); | ||
|  |         } | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | #else   /* no atomics */
 | ||
|  | 
 | ||
|  | /* Structure for once(), which must be initialized with ONCE_INIT. */ | ||
|  | struct once_s { | ||
|  |     volatile int begun; | ||
|  |     volatile int done; | ||
|  | }; | ||
|  | #define ONCE_INIT {0, 0}
 | ||
|  | 
 | ||
|  | /* Test and set. Alas, not atomic, but tries to minimize the period of
 | ||
|  |    vulnerability. */ | ||
|  | local int test_and_set OF((int volatile *)); | ||
|  | local int test_and_set(flag) | ||
|  |     int volatile *flag; | ||
|  | { | ||
|  |     int was; | ||
|  | 
 | ||
|  |     was = *flag; | ||
|  |     *flag = 1; | ||
|  |     return was; | ||
|  | } | ||
|  | 
 | ||
|  | /* Run the provided init() function once. This is not thread-safe. */ | ||
|  | local void once(state, init) | ||
|  |     once_t *state; | ||
|  |     void (*init)(void); | ||
|  | { | ||
|  |     if (!state->done) { | ||
|  |         if (test_and_set(&state->begun)) | ||
|  |             while (!state->done) | ||
|  |                 ; | ||
|  |         else { | ||
|  |             init(); | ||
|  |             state->done = 1; | ||
|  |         } | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /* State for once(). */ | ||
|  | local once_t made = ONCE_INIT; | ||
|  | 
 | ||
|  | /*
 | ||
|  |   Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: | ||
|  |   x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. | ||
|  | 
 | ||
|  |   Polynomials over GF(2) are represented in binary, one bit per coefficient, | ||
|  |   with the lowest powers in the most significant bit. Then adding polynomials | ||
|  |   is just exclusive-or, and multiplying a polynomial by x is a right shift by | ||
|  |   one. If we call the above polynomial p, and represent a byte as the | ||
|  |   polynomial q, also with the lowest power in the most significant bit (so the | ||
|  |   byte 0xb1 is the polynomial x^7+x^3+x^2+1), then the CRC is (q*x^32) mod p, | ||
|  |   where a mod b means the remainder after dividing a by b. | ||
|  | 
 | ||
|  |   This calculation is done using the shift-register method of multiplying and | ||
|  |   taking the remainder. The register is initialized to zero, and for each | ||
|  |   incoming bit, x^32 is added mod p to the register if the bit is a one (where | ||
|  |   x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by x | ||
|  |   (which is shifting right by one and adding x^32 mod p if the bit shifted out | ||
|  |   is a one). We start with the highest power (least significant bit) of q and | ||
|  |   repeat for all eight bits of q. | ||
|  | 
 | ||
|  |   The table is simply the CRC of all possible eight bit values. This is all the | ||
|  |   information needed to generate CRCs on data a byte at a time for all | ||
|  |   combinations of CRC register values and incoming bytes. | ||
|  |  */ | ||
|  | 
 | ||
|  | local void make_crc_table() | ||
|  | { | ||
|  |     unsigned i, j, n; | ||
|  |     z_crc_t p; | ||
|  | 
 | ||
|  |     /* initialize the CRC of bytes tables */ | ||
|  |     for (i = 0; i < 256; i++) { | ||
|  |         p = i; | ||
|  |         for (j = 0; j < 8; j++) | ||
|  |             p = p & 1 ? (p >> 1) ^ POLY : p >> 1; | ||
|  |         crc_table[i] = p; | ||
|  | #ifdef W
 | ||
|  |         crc_big_table[i] = byte_swap(p); | ||
|  | #endif
 | ||
|  |     } | ||
|  | 
 | ||
|  |     /* initialize the x^2^n mod p(x) table */ | ||
|  |     p = (z_crc_t)1 << 30;         /* x^1 */ | ||
|  |     x2n_table[0] = p; | ||
|  |     for (n = 1; n < 32; n++) | ||
|  |         x2n_table[n] = p = multmodp(p, p); | ||
|  | 
 | ||
|  | #ifdef W
 | ||
|  |     /* initialize the braiding tables -- needs x2n_table[] */ | ||
|  |     braid(crc_braid_table, crc_braid_big_table, N, W); | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifdef MAKECRCH
 | ||
|  |     { | ||
|  |         /*
 | ||
|  |           The crc32.h header file contains tables for both 32-bit and 64-bit | ||
|  |           z_word_t's, and so requires a 64-bit type be available. In that case, | ||
|  |           z_word_t must be defined to be 64-bits. This code then also generates | ||
|  |           and writes out the tables for the case that z_word_t is 32 bits. | ||
|  |          */ | ||
|  | #if !defined(W) || W != 8
 | ||
|  | #  error Need a 64-bit integer type in order to generate crc32.h.
 | ||
|  | #endif
 | ||
|  |         FILE *out; | ||
|  |         int k, n; | ||
|  |         z_crc_t ltl[8][256]; | ||
|  |         z_word_t big[8][256]; | ||
|  | 
 | ||
|  |         out = fopen("crc32.h", "w"); | ||
|  |         if (out == NULL) return; | ||
|  | 
 | ||
|  |         /* write out little-endian CRC table to crc32.h */ | ||
|  |         fprintf(out, | ||
|  |             "/* crc32.h -- tables for rapid CRC calculation\n" | ||
|  |             " * Generated automatically by crc32.c\n */\n" | ||
|  |             "\n" | ||
|  |             "local const z_crc_t FAR crc_table[] = {\n" | ||
|  |             "    "); | ||
|  |         write_table(out, crc_table, 256); | ||
|  |         fprintf(out, | ||
|  |             "};\n"); | ||
|  | 
 | ||
|  |         /* write out big-endian CRC table for 64-bit z_word_t to crc32.h */ | ||
|  |         fprintf(out, | ||
|  |             "\n" | ||
|  |             "#ifdef W\n" | ||
|  |             "\n" | ||
|  |             "#if W == 8\n" | ||
|  |             "\n" | ||
|  |             "local const z_word_t FAR crc_big_table[] = {\n" | ||
|  |             "    "); | ||
|  |         write_table64(out, crc_big_table, 256); | ||
|  |         fprintf(out, | ||
|  |             "};\n"); | ||
|  | 
 | ||
|  |         /* write out big-endian CRC table for 32-bit z_word_t to crc32.h */ | ||
|  |         fprintf(out, | ||
|  |             "\n" | ||
|  |             "#else /* W == 4 */\n" | ||
|  |             "\n" | ||
|  |             "local const z_word_t FAR crc_big_table[] = {\n" | ||
|  |             "    "); | ||
|  |         write_table32hi(out, crc_big_table, 256); | ||
|  |         fprintf(out, | ||
|  |             "};\n" | ||
|  |             "\n" | ||
|  |             "#endif\n"); | ||
|  | 
 | ||
|  |         /* write out braid tables for each value of N */ | ||
|  |         for (n = 1; n <= 6; n++) { | ||
|  |             fprintf(out, | ||
|  |             "\n" | ||
|  |             "#if N == %d\n", n); | ||
|  | 
 | ||
|  |             /* compute braid tables for this N and 64-bit word_t */ | ||
|  |             braid(ltl, big, n, 8); | ||
|  | 
 | ||
|  |             /* write out braid tables for 64-bit z_word_t to crc32.h */ | ||
|  |             fprintf(out, | ||
|  |             "\n" | ||
|  |             "#if W == 8\n" | ||
|  |             "\n" | ||
|  |             "local const z_crc_t FAR crc_braid_table[][256] = {\n"); | ||
|  |             for (k = 0; k < 8; k++) { | ||
|  |                 fprintf(out, "   {"); | ||
|  |                 write_table(out, ltl[k], 256); | ||
|  |                 fprintf(out, "}%s", k < 7 ? ",\n" : ""); | ||
|  |             } | ||
|  |             fprintf(out, | ||
|  |             "};\n" | ||
|  |             "\n" | ||
|  |             "local const z_word_t FAR crc_braid_big_table[][256] = {\n"); | ||
|  |             for (k = 0; k < 8; k++) { | ||
|  |                 fprintf(out, "   {"); | ||
|  |                 write_table64(out, big[k], 256); | ||
|  |                 fprintf(out, "}%s", k < 7 ? ",\n" : ""); | ||
|  |             } | ||
|  |             fprintf(out, | ||
|  |             "};\n"); | ||
|  | 
 | ||
|  |             /* compute braid tables for this N and 32-bit word_t */ | ||
|  |             braid(ltl, big, n, 4); | ||
|  | 
 | ||
|  |             /* write out braid tables for 32-bit z_word_t to crc32.h */ | ||
|  |             fprintf(out, | ||
|  |             "\n" | ||
|  |             "#else /* W == 4 */\n" | ||
|  |             "\n" | ||
|  |             "local const z_crc_t FAR crc_braid_table[][256] = {\n"); | ||
|  |             for (k = 0; k < 4; k++) { | ||
|  |                 fprintf(out, "   {"); | ||
|  |                 write_table(out, ltl[k], 256); | ||
|  |                 fprintf(out, "}%s", k < 3 ? ",\n" : ""); | ||
|  |             } | ||
|  |             fprintf(out, | ||
|  |             "};\n" | ||
|  |             "\n" | ||
|  |             "local const z_word_t FAR crc_braid_big_table[][256] = {\n"); | ||
|  |             for (k = 0; k < 4; k++) { | ||
|  |                 fprintf(out, "   {"); | ||
|  |                 write_table32hi(out, big[k], 256); | ||
|  |                 fprintf(out, "}%s", k < 3 ? ",\n" : ""); | ||
|  |             } | ||
|  |             fprintf(out, | ||
|  |             "};\n" | ||
|  |             "\n" | ||
|  |             "#endif\n" | ||
|  |             "\n" | ||
|  |             "#endif\n"); | ||
|  |         } | ||
|  |         fprintf(out, | ||
|  |             "\n" | ||
|  |             "#endif\n"); | ||
|  | 
 | ||
|  |         /* write out zeros operator table to crc32.h */ | ||
|  |         fprintf(out, | ||
|  |             "\n" | ||
|  |             "local const z_crc_t FAR x2n_table[] = {\n" | ||
|  |             "    "); | ||
|  |         write_table(out, x2n_table, 32); | ||
|  |         fprintf(out, | ||
|  |             "};\n"); | ||
|  |         fclose(out); | ||
|  |     } | ||
|  | #endif /* MAKECRCH */
 | ||
|  | } | ||
|  | 
 | ||
|  | #ifdef MAKECRCH
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |    Write the 32-bit values in table[0..k-1] to out, five per line in | ||
|  |    hexadecimal separated by commas. | ||
|  |  */ | ||
|  | local void write_table(out, table, k) | ||
|  |     FILE *out; | ||
|  |     const z_crc_t FAR *table; | ||
|  |     int k; | ||
|  | { | ||
|  |     int n; | ||
|  | 
 | ||
|  |     for (n = 0; n < k; n++) | ||
|  |         fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : "    ", | ||
|  |                 (unsigned long)(table[n]), | ||
|  |                 n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", ")); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |    Write the high 32-bits of each value in table[0..k-1] to out, five per line | ||
|  |    in hexadecimal separated by commas. | ||
|  |  */ | ||
|  | local void write_table32hi(out, table, k) | ||
|  | FILE *out; | ||
|  | const z_word_t FAR *table; | ||
|  | int k; | ||
|  | { | ||
|  |     int n; | ||
|  | 
 | ||
|  |     for (n = 0; n < k; n++) | ||
|  |         fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : "    ", | ||
|  |                 (unsigned long)(table[n] >> 32), | ||
|  |                 n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", ")); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |   Write the 64-bit values in table[0..k-1] to out, three per line in | ||
|  |   hexadecimal separated by commas. This assumes that if there is a 64-bit | ||
|  |   type, then there is also a long long integer type, and it is at least 64 | ||
|  |   bits. If not, then the type cast and format string can be adjusted | ||
|  |   accordingly. | ||
|  |  */ | ||
|  | local void write_table64(out, table, k) | ||
|  |     FILE *out; | ||
|  |     const z_word_t FAR *table; | ||
|  |     int k; | ||
|  | { | ||
|  |     int n; | ||
|  | 
 | ||
|  |     for (n = 0; n < k; n++) | ||
|  |         fprintf(out, "%s0x%016llx%s", n == 0 || n % 3 ? "" : "    ", | ||
|  |                 (unsigned long long)(table[n]), | ||
|  |                 n == k - 1 ? "" : (n % 3 == 2 ? ",\n" : ", ")); | ||
|  | } | ||
|  | 
 | ||
|  | /* Actually do the deed. */ | ||
|  | int main() | ||
|  | { | ||
|  |     make_crc_table(); | ||
|  |     return 0; | ||
|  | } | ||
|  | 
 | ||
|  | #endif /* MAKECRCH */
 | ||
|  | 
 | ||
|  | #ifdef W
 | ||
|  | /*
 | ||
|  |   Generate the little and big-endian braid tables for the given n and z_word_t | ||
|  |   size w. Each array must have room for w blocks of 256 elements. | ||
|  |  */ | ||
|  | local void braid(ltl, big, n, w) | ||
|  |     z_crc_t ltl[][256]; | ||
|  |     z_word_t big[][256]; | ||
|  |     int n; | ||
|  |     int w; | ||
|  | { | ||
|  |     int k; | ||
|  |     z_crc_t i, p, q; | ||
|  |     for (k = 0; k < w; k++) { | ||
|  |         p = x2nmodp((n * w + 3 - k) << 3, 0); | ||
|  |         ltl[k][0] = 0; | ||
|  |         big[w - 1 - k][0] = 0; | ||
|  |         for (i = 1; i < 256; i++) { | ||
|  |             ltl[k][i] = q = multmodp(i << 24, p); | ||
|  |             big[w - 1 - k][i] = byte_swap(q); | ||
|  |         } | ||
|  |     } | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #else /* !DYNAMIC_CRC_TABLE */
 | ||
|  | /* ========================================================================
 | ||
|  |  * Tables for byte-wise and braided CRC-32 calculations, and a table of powers | ||
|  |  * of x for combining CRC-32s, all made by make_crc_table(). | ||
|  |  */ | ||
|  | #include "crc32.h"
 | ||
|  | #endif /* DYNAMIC_CRC_TABLE */
 | ||
|  | 
 | ||
|  | /* ========================================================================
 | ||
|  |  * Routines used for CRC calculation. Some are also required for the table | ||
|  |  * generation above. | ||
|  |  */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |   Return a(x) multiplied by b(x) modulo p(x), where p(x) is the CRC polynomial, | ||
|  |   reflected. For speed, this requires that a not be zero. | ||
|  |  */ | ||
|  | local z_crc_t multmodp(a, b) | ||
|  |     z_crc_t a; | ||
|  |     z_crc_t b; | ||
|  | { | ||
|  |     z_crc_t m, p; | ||
|  | 
 | ||
|  |     m = (z_crc_t)1 << 31; | ||
|  |     p = 0; | ||
|  |     for (;;) { | ||
|  |         if (a & m) { | ||
|  |             p ^= b; | ||
|  |             if ((a & (m - 1)) == 0) | ||
|  |                 break; | ||
|  |         } | ||
|  |         m >>= 1; | ||
|  |         b = b & 1 ? (b >> 1) ^ POLY : b >> 1; | ||
|  |     } | ||
|  |     return p; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |   Return x^(n * 2^k) modulo p(x). Requires that x2n_table[] has been | ||
|  |   initialized. | ||
|  |  */ | ||
|  | local z_crc_t x2nmodp(n, k) | ||
|  |     z_off64_t n; | ||
|  |     unsigned k; | ||
|  | { | ||
|  |     z_crc_t p; | ||
|  | 
 | ||
|  |     p = (z_crc_t)1 << 31;           /* x^0 == 1 */ | ||
|  |     while (n) { | ||
|  |         if (n & 1) | ||
|  |             p = multmodp(x2n_table[k & 31], p); | ||
|  |         n >>= 1; | ||
|  |         k++; | ||
|  |     } | ||
|  |     return p; | ||
|  | } | ||
|  | 
 | ||
|  | /* =========================================================================
 | ||
|  |  * This function can be used by asm versions of crc32(), and to force the | ||
|  |  * generation of the CRC tables in a threaded application. | ||
|  |  */ | ||
|  | const z_crc_t FAR * ZEXPORT get_crc_table() | ||
|  | { | ||
|  | #ifdef DYNAMIC_CRC_TABLE
 | ||
|  |     once(&made, make_crc_table); | ||
|  | #endif /* DYNAMIC_CRC_TABLE */
 | ||
|  |     return (const z_crc_t FAR *)crc_table; | ||
|  | } | ||
|  | 
 | ||
|  | /* =========================================================================
 | ||
|  |  * Use ARM machine instructions if available. This will compute the CRC about | ||
|  |  * ten times faster than the braided calculation. This code does not check for | ||
|  |  * the presence of the CRC instruction at run time. __ARM_FEATURE_CRC32 will | ||
|  |  * only be defined if the compilation specifies an ARM processor architecture | ||
|  |  * that has the instructions. For example, compiling with -march=armv8.1-a or | ||
|  |  * -march=armv8-a+crc, or -march=native if the compile machine has the crc32 | ||
|  |  * instructions. | ||
|  |  */ | ||
|  | #ifdef ARMCRC32
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |    Constants empirically determined to maximize speed. These values are from | ||
|  |    measurements on a Cortex-A57. Your mileage may vary. | ||
|  |  */ | ||
|  | #define Z_BATCH 3990                /* number of words in a batch */
 | ||
|  | #define Z_BATCH_ZEROS 0xa10d3d0c    /* computed from Z_BATCH = 3990 */
 | ||
|  | #define Z_BATCH_MIN 800             /* fewest words in a final batch */
 | ||
|  | 
 | ||
|  | unsigned long ZEXPORT crc32_z(crc, buf, len) | ||
|  |     unsigned long crc; | ||
|  |     const unsigned char FAR *buf; | ||
|  |     z_size_t len; | ||
|  | { | ||
|  |     z_crc_t val; | ||
|  |     z_word_t crc1, crc2; | ||
|  |     const z_word_t *word; | ||
|  |     z_word_t val0, val1, val2; | ||
|  |     z_size_t last, last2, i; | ||
|  |     z_size_t num; | ||
|  | 
 | ||
|  |     /* Return initial CRC, if requested. */ | ||
|  |     if (buf == Z_NULL) return 0; | ||
|  | 
 | ||
|  | #ifdef DYNAMIC_CRC_TABLE
 | ||
|  |     once(&made, make_crc_table); | ||
|  | #endif /* DYNAMIC_CRC_TABLE */
 | ||
|  | 
 | ||
|  |     /* Pre-condition the CRC */ | ||
|  |     crc = (~crc) & 0xffffffff; | ||
|  | 
 | ||
|  |     /* Compute the CRC up to a word boundary. */ | ||
|  |     while (len && ((z_size_t)buf & 7) != 0) { | ||
|  |         len--; | ||
|  |         val = *buf++; | ||
|  |         __asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val)); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* Prepare to compute the CRC on full 64-bit words word[0..num-1]. */ | ||
|  |     word = (z_word_t const *)buf; | ||
|  |     num = len >> 3; | ||
|  |     len &= 7; | ||
|  | 
 | ||
|  |     /* Do three interleaved CRCs to realize the throughput of one crc32x
 | ||
|  |        instruction per cycle. Each CRC is calculated on Z_BATCH words. The | ||
|  |        three CRCs are combined into a single CRC after each set of batches. */ | ||
|  |     while (num >= 3 * Z_BATCH) { | ||
|  |         crc1 = 0; | ||
|  |         crc2 = 0; | ||
|  |         for (i = 0; i < Z_BATCH; i++) { | ||
|  |             val0 = word[i]; | ||
|  |             val1 = word[i + Z_BATCH]; | ||
|  |             val2 = word[i + 2 * Z_BATCH]; | ||
|  |             __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0)); | ||
|  |             __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1)); | ||
|  |             __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2)); | ||
|  |         } | ||
|  |         word += 3 * Z_BATCH; | ||
|  |         num -= 3 * Z_BATCH; | ||
|  |         crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc1; | ||
|  |         crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc2; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* Do one last smaller batch with the remaining words, if there are enough
 | ||
|  |        to pay for the combination of CRCs. */ | ||
|  |     last = num / 3; | ||
|  |     if (last >= Z_BATCH_MIN) { | ||
|  |         last2 = last << 1; | ||
|  |         crc1 = 0; | ||
|  |         crc2 = 0; | ||
|  |         for (i = 0; i < last; i++) { | ||
|  |             val0 = word[i]; | ||
|  |             val1 = word[i + last]; | ||
|  |             val2 = word[i + last2]; | ||
|  |             __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0)); | ||
|  |             __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1)); | ||
|  |             __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2)); | ||
|  |         } | ||
|  |         word += 3 * last; | ||
|  |         num -= 3 * last; | ||
|  |         val = x2nmodp(last, 6); | ||
|  |         crc = multmodp(val, crc) ^ crc1; | ||
|  |         crc = multmodp(val, crc) ^ crc2; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* Compute the CRC on any remaining words. */ | ||
|  |     for (i = 0; i < num; i++) { | ||
|  |         val0 = word[i]; | ||
|  |         __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0)); | ||
|  |     } | ||
|  |     word += num; | ||
|  | 
 | ||
|  |     /* Complete the CRC on any remaining bytes. */ | ||
|  |     buf = (const unsigned char FAR *)word; | ||
|  |     while (len) { | ||
|  |         len--; | ||
|  |         val = *buf++; | ||
|  |         __asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val)); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* Return the CRC, post-conditioned. */ | ||
|  |     return crc ^ 0xffffffff; | ||
|  | } | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | #ifdef W
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |   Return the CRC of the W bytes in the word_t data, taking the | ||
|  |   least-significant byte of the word as the first byte of data, without any pre | ||
|  |   or post conditioning. This is used to combine the CRCs of each braid. | ||
|  |  */ | ||
|  | local z_crc_t crc_word(data) | ||
|  |     z_word_t data; | ||
|  | { | ||
|  |     int k; | ||
|  |     for (k = 0; k < W; k++) | ||
|  |         data = (data >> 8) ^ crc_table[data & 0xff]; | ||
|  |     return (z_crc_t)data; | ||
|  | } | ||
|  | 
 | ||
|  | local z_word_t crc_word_big(data) | ||
|  |     z_word_t data; | ||
|  | { | ||
|  |     int k; | ||
|  |     for (k = 0; k < W; k++) | ||
|  |         data = (data << 8) ^ | ||
|  |             crc_big_table[(data >> ((W - 1) << 3)) & 0xff]; | ||
|  |     return data; | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /* ========================================================================= */ | ||
|  | unsigned long ZEXPORT crc32_z(crc, buf, len) | ||
|  |     unsigned long crc; | ||
|  |     const unsigned char FAR *buf; | ||
|  |     z_size_t len; | ||
|  | { | ||
|  |     /* Return initial CRC, if requested. */ | ||
|  |     if (buf == Z_NULL) return 0; | ||
|  | 
 | ||
|  | #ifdef DYNAMIC_CRC_TABLE
 | ||
|  |     once(&made, make_crc_table); | ||
|  | #endif /* DYNAMIC_CRC_TABLE */
 | ||
|  | 
 | ||
|  |     /* Pre-condition the CRC */ | ||
|  |     crc = (~crc) & 0xffffffff; | ||
|  | 
 | ||
|  | #ifdef W
 | ||
|  | 
 | ||
|  |     /* If provided enough bytes, do a braided CRC calculation. */ | ||
|  |     if (len >= N * W + W - 1) { | ||
|  |         z_size_t blks; | ||
|  |         z_word_t const *words; | ||
|  |         unsigned endian; | ||
|  |         int k; | ||
|  | 
 | ||
|  |         /* Compute the CRC up to a z_word_t boundary. */ | ||
|  |         while (len && ((z_size_t)buf & (W - 1)) != 0) { | ||
|  |             len--; | ||
|  |             crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | ||
|  |         } | ||
|  | 
 | ||
|  |         /* Compute the CRC on as many N z_word_t blocks as are available. */ | ||
|  |         blks = len / (N * W); | ||
|  |         len -= blks * N * W; | ||
|  |         words = (z_word_t const *)buf; | ||
|  | 
 | ||
|  |         /* Do endian check at execution time instead of compile time, since ARM
 | ||
|  |            processors can change the endianess at execution time. If the | ||
|  |            compiler knows what the endianess will be, it can optimize out the | ||
|  |            check and the unused branch. */ | ||
|  |         endian = 1; | ||
|  |         if (*(unsigned char *)&endian) { | ||
|  |             /* Little endian. */ | ||
|  | 
 | ||
|  |             z_crc_t crc0; | ||
|  |             z_word_t word0; | ||
|  | #if N > 1
 | ||
|  |             z_crc_t crc1; | ||
|  |             z_word_t word1; | ||
|  | #if N > 2
 | ||
|  |             z_crc_t crc2; | ||
|  |             z_word_t word2; | ||
|  | #if N > 3
 | ||
|  |             z_crc_t crc3; | ||
|  |             z_word_t word3; | ||
|  | #if N > 4
 | ||
|  |             z_crc_t crc4; | ||
|  |             z_word_t word4; | ||
|  | #if N > 5
 | ||
|  |             z_crc_t crc5; | ||
|  |             z_word_t word5; | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  |             /* Initialize the CRC for each braid. */ | ||
|  |             crc0 = crc; | ||
|  | #if N > 1
 | ||
|  |             crc1 = 0; | ||
|  | #if N > 2
 | ||
|  |             crc2 = 0; | ||
|  | #if N > 3
 | ||
|  |             crc3 = 0; | ||
|  | #if N > 4
 | ||
|  |             crc4 = 0; | ||
|  | #if N > 5
 | ||
|  |             crc5 = 0; | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  |             /*
 | ||
|  |               Process the first blks-1 blocks, computing the CRCs on each braid | ||
|  |               independently. | ||
|  |              */ | ||
|  |             while (--blks) { | ||
|  |                 /* Load the word for each braid into registers. */ | ||
|  |                 word0 = crc0 ^ words[0]; | ||
|  | #if N > 1
 | ||
|  |                 word1 = crc1 ^ words[1]; | ||
|  | #if N > 2
 | ||
|  |                 word2 = crc2 ^ words[2]; | ||
|  | #if N > 3
 | ||
|  |                 word3 = crc3 ^ words[3]; | ||
|  | #if N > 4
 | ||
|  |                 word4 = crc4 ^ words[4]; | ||
|  | #if N > 5
 | ||
|  |                 word5 = crc5 ^ words[5]; | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  |                 words += N; | ||
|  | 
 | ||
|  |                 /* Compute and update the CRC for each word. The loop should
 | ||
|  |                    get unrolled. */ | ||
|  |                 crc0 = crc_braid_table[0][word0 & 0xff]; | ||
|  | #if N > 1
 | ||
|  |                 crc1 = crc_braid_table[0][word1 & 0xff]; | ||
|  | #if N > 2
 | ||
|  |                 crc2 = crc_braid_table[0][word2 & 0xff]; | ||
|  | #if N > 3
 | ||
|  |                 crc3 = crc_braid_table[0][word3 & 0xff]; | ||
|  | #if N > 4
 | ||
|  |                 crc4 = crc_braid_table[0][word4 & 0xff]; | ||
|  | #if N > 5
 | ||
|  |                 crc5 = crc_braid_table[0][word5 & 0xff]; | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  |                 for (k = 1; k < W; k++) { | ||
|  |                     crc0 ^= crc_braid_table[k][(word0 >> (k << 3)) & 0xff]; | ||
|  | #if N > 1
 | ||
|  |                     crc1 ^= crc_braid_table[k][(word1 >> (k << 3)) & 0xff]; | ||
|  | #if N > 2
 | ||
|  |                     crc2 ^= crc_braid_table[k][(word2 >> (k << 3)) & 0xff]; | ||
|  | #if N > 3
 | ||
|  |                     crc3 ^= crc_braid_table[k][(word3 >> (k << 3)) & 0xff]; | ||
|  | #if N > 4
 | ||
|  |                     crc4 ^= crc_braid_table[k][(word4 >> (k << 3)) & 0xff]; | ||
|  | #if N > 5
 | ||
|  |                     crc5 ^= crc_braid_table[k][(word5 >> (k << 3)) & 0xff]; | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  |                 } | ||
|  |             } | ||
|  | 
 | ||
|  |             /*
 | ||
|  |               Process the last block, combining the CRCs of the N braids at the | ||
|  |               same time. | ||
|  |              */ | ||
|  |             crc = crc_word(crc0 ^ words[0]); | ||
|  | #if N > 1
 | ||
|  |             crc = crc_word(crc1 ^ words[1] ^ crc); | ||
|  | #if N > 2
 | ||
|  |             crc = crc_word(crc2 ^ words[2] ^ crc); | ||
|  | #if N > 3
 | ||
|  |             crc = crc_word(crc3 ^ words[3] ^ crc); | ||
|  | #if N > 4
 | ||
|  |             crc = crc_word(crc4 ^ words[4] ^ crc); | ||
|  | #if N > 5
 | ||
|  |             crc = crc_word(crc5 ^ words[5] ^ crc); | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  |             words += N; | ||
|  |         } | ||
|  |         else { | ||
|  |             /* Big endian. */ | ||
|  | 
 | ||
|  |             z_word_t crc0, word0, comb; | ||
|  | #if N > 1
 | ||
|  |             z_word_t crc1, word1; | ||
|  | #if N > 2
 | ||
|  |             z_word_t crc2, word2; | ||
|  | #if N > 3
 | ||
|  |             z_word_t crc3, word3; | ||
|  | #if N > 4
 | ||
|  |             z_word_t crc4, word4; | ||
|  | #if N > 5
 | ||
|  |             z_word_t crc5, word5; | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  |             /* Initialize the CRC for each braid. */ | ||
|  |             crc0 = byte_swap(crc); | ||
|  | #if N > 1
 | ||
|  |             crc1 = 0; | ||
|  | #if N > 2
 | ||
|  |             crc2 = 0; | ||
|  | #if N > 3
 | ||
|  |             crc3 = 0; | ||
|  | #if N > 4
 | ||
|  |             crc4 = 0; | ||
|  | #if N > 5
 | ||
|  |             crc5 = 0; | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  |             /*
 | ||
|  |               Process the first blks-1 blocks, computing the CRCs on each braid | ||
|  |               independently. | ||
|  |              */ | ||
|  |             while (--blks) { | ||
|  |                 /* Load the word for each braid into registers. */ | ||
|  |                 word0 = crc0 ^ words[0]; | ||
|  | #if N > 1
 | ||
|  |                 word1 = crc1 ^ words[1]; | ||
|  | #if N > 2
 | ||
|  |                 word2 = crc2 ^ words[2]; | ||
|  | #if N > 3
 | ||
|  |                 word3 = crc3 ^ words[3]; | ||
|  | #if N > 4
 | ||
|  |                 word4 = crc4 ^ words[4]; | ||
|  | #if N > 5
 | ||
|  |                 word5 = crc5 ^ words[5]; | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  |                 words += N; | ||
|  | 
 | ||
|  |                 /* Compute and update the CRC for each word. The loop should
 | ||
|  |                    get unrolled. */ | ||
|  |                 crc0 = crc_braid_big_table[0][word0 & 0xff]; | ||
|  | #if N > 1
 | ||
|  |                 crc1 = crc_braid_big_table[0][word1 & 0xff]; | ||
|  | #if N > 2
 | ||
|  |                 crc2 = crc_braid_big_table[0][word2 & 0xff]; | ||
|  | #if N > 3
 | ||
|  |                 crc3 = crc_braid_big_table[0][word3 & 0xff]; | ||
|  | #if N > 4
 | ||
|  |                 crc4 = crc_braid_big_table[0][word4 & 0xff]; | ||
|  | #if N > 5
 | ||
|  |                 crc5 = crc_braid_big_table[0][word5 & 0xff]; | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  |                 for (k = 1; k < W; k++) { | ||
|  |                     crc0 ^= crc_braid_big_table[k][(word0 >> (k << 3)) & 0xff]; | ||
|  | #if N > 1
 | ||
|  |                     crc1 ^= crc_braid_big_table[k][(word1 >> (k << 3)) & 0xff]; | ||
|  | #if N > 2
 | ||
|  |                     crc2 ^= crc_braid_big_table[k][(word2 >> (k << 3)) & 0xff]; | ||
|  | #if N > 3
 | ||
|  |                     crc3 ^= crc_braid_big_table[k][(word3 >> (k << 3)) & 0xff]; | ||
|  | #if N > 4
 | ||
|  |                     crc4 ^= crc_braid_big_table[k][(word4 >> (k << 3)) & 0xff]; | ||
|  | #if N > 5
 | ||
|  |                     crc5 ^= crc_braid_big_table[k][(word5 >> (k << 3)) & 0xff]; | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  |                 } | ||
|  |             } | ||
|  | 
 | ||
|  |             /*
 | ||
|  |               Process the last block, combining the CRCs of the N braids at the | ||
|  |               same time. | ||
|  |              */ | ||
|  |             comb = crc_word_big(crc0 ^ words[0]); | ||
|  | #if N > 1
 | ||
|  |             comb = crc_word_big(crc1 ^ words[1] ^ comb); | ||
|  | #if N > 2
 | ||
|  |             comb = crc_word_big(crc2 ^ words[2] ^ comb); | ||
|  | #if N > 3
 | ||
|  |             comb = crc_word_big(crc3 ^ words[3] ^ comb); | ||
|  | #if N > 4
 | ||
|  |             comb = crc_word_big(crc4 ^ words[4] ^ comb); | ||
|  | #if N > 5
 | ||
|  |             comb = crc_word_big(crc5 ^ words[5] ^ comb); | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  |             words += N; | ||
|  |             crc = byte_swap(comb); | ||
|  |         } | ||
|  | 
 | ||
|  |         /*
 | ||
|  |           Update the pointer to the remaining bytes to process. | ||
|  |          */ | ||
|  |         buf = (unsigned char const *)words; | ||
|  |     } | ||
|  | 
 | ||
|  | #endif /* W */
 | ||
|  | 
 | ||
|  |     /* Complete the computation of the CRC on any remaining bytes. */ | ||
|  |     while (len >= 8) { | ||
|  |         len -= 8; | ||
|  |         crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | ||
|  |         crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | ||
|  |         crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | ||
|  |         crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | ||
|  |         crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | ||
|  |         crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | ||
|  |         crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | ||
|  |         crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | ||
|  |     } | ||
|  |     while (len) { | ||
|  |         len--; | ||
|  |         crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* Return the CRC, post-conditioned. */ | ||
|  |     return crc ^ 0xffffffff; | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /* ========================================================================= */ | ||
|  | unsigned long ZEXPORT crc32(crc, buf, len) | ||
|  |     unsigned long crc; | ||
|  |     const unsigned char FAR *buf; | ||
|  |     uInt len; | ||
|  | { | ||
|  |     return crc32_z(crc, buf, len); | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================= */ | ||
|  | uLong ZEXPORT crc32_combine64(crc1, crc2, len2) | ||
|  |     uLong crc1; | ||
|  |     uLong crc2; | ||
|  |     z_off64_t len2; | ||
|  | { | ||
|  | #ifdef DYNAMIC_CRC_TABLE
 | ||
|  |     once(&made, make_crc_table); | ||
|  | #endif /* DYNAMIC_CRC_TABLE */
 | ||
|  |     return multmodp(x2nmodp(len2, 3), crc1) ^ (crc2 & 0xffffffff); | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================= */ | ||
|  | uLong ZEXPORT crc32_combine(crc1, crc2, len2) | ||
|  |     uLong crc1; | ||
|  |     uLong crc2; | ||
|  |     z_off_t len2; | ||
|  | { | ||
|  |     return crc32_combine64(crc1, crc2, (z_off64_t)len2); | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================= */ | ||
|  | uLong ZEXPORT crc32_combine_gen64(len2) | ||
|  |     z_off64_t len2; | ||
|  | { | ||
|  | #ifdef DYNAMIC_CRC_TABLE
 | ||
|  |     once(&made, make_crc_table); | ||
|  | #endif /* DYNAMIC_CRC_TABLE */
 | ||
|  |     return x2nmodp(len2, 3); | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================= */ | ||
|  | uLong ZEXPORT crc32_combine_gen(len2) | ||
|  |     z_off_t len2; | ||
|  | { | ||
|  |     return crc32_combine_gen64((z_off64_t)len2); | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================= */ | ||
|  | uLong ZEXPORT crc32_combine_op(crc1, crc2, op) | ||
|  |     uLong crc1; | ||
|  |     uLong crc2; | ||
|  |     uLong op; | ||
|  | { | ||
|  |     return multmodp(op, crc1) ^ (crc2 & 0xffffffff); | ||
|  | } |