156 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			156 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								Bullet Continuous Collision Detection and Physics Library
							 | 
						||
| 
								 | 
							
								Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								This software is provided 'as-is', without any express or implied warranty.
							 | 
						||
| 
								 | 
							
								In no event will the authors be held liable for any damages arising from the use of this software.
							 | 
						||
| 
								 | 
							
								Permission is granted to anyone to use this software for any purpose, 
							 | 
						||
| 
								 | 
							
								including commercial applications, and to alter it and redistribute it freely, 
							 | 
						||
| 
								 | 
							
								subject to the following restrictions:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
							 | 
						||
| 
								 | 
							
								2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
							 | 
						||
| 
								 | 
							
								3. This notice may not be removed or altered from any source distribution.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef BT_JACOBIAN_ENTRY_H
							 | 
						||
| 
								 | 
							
								#define BT_JACOBIAN_ENTRY_H
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "LinearMath/btMatrix3x3.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//notes:
							 | 
						||
| 
								 | 
							
								// Another memory optimization would be to store m_1MinvJt in the remaining 3 w components
							 | 
						||
| 
								 | 
							
								// which makes the btJacobianEntry memory layout 16 bytes
							 | 
						||
| 
								 | 
							
								// if you only are interested in angular part, just feed massInvA and massInvB zero
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/// Jacobian entry is an abstraction that allows to describe constraints
							 | 
						||
| 
								 | 
							
								/// it can be used in combination with a constraint solver
							 | 
						||
| 
								 | 
							
								/// Can be used to relate the effect of an impulse to the constraint error
							 | 
						||
| 
								 | 
							
								ATTRIBUTE_ALIGNED16(class) btJacobianEntry
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								public:
							 | 
						||
| 
								 | 
							
									btJacobianEntry() {};
							 | 
						||
| 
								 | 
							
									//constraint between two different rigidbodies
							 | 
						||
| 
								 | 
							
									btJacobianEntry(
							 | 
						||
| 
								 | 
							
										const btMatrix3x3& world2A,
							 | 
						||
| 
								 | 
							
										const btMatrix3x3& world2B,
							 | 
						||
| 
								 | 
							
										const btVector3& rel_pos1,const btVector3& rel_pos2,
							 | 
						||
| 
								 | 
							
										const btVector3& jointAxis,
							 | 
						||
| 
								 | 
							
										const btVector3& inertiaInvA, 
							 | 
						||
| 
								 | 
							
										const btScalar massInvA,
							 | 
						||
| 
								 | 
							
										const btVector3& inertiaInvB,
							 | 
						||
| 
								 | 
							
										const btScalar massInvB)
							 | 
						||
| 
								 | 
							
										:m_linearJointAxis(jointAxis)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										m_aJ = world2A*(rel_pos1.cross(m_linearJointAxis));
							 | 
						||
| 
								 | 
							
										m_bJ = world2B*(rel_pos2.cross(-m_linearJointAxis));
							 | 
						||
| 
								 | 
							
										m_0MinvJt	= inertiaInvA * m_aJ;
							 | 
						||
| 
								 | 
							
										m_1MinvJt = inertiaInvB * m_bJ;
							 | 
						||
| 
								 | 
							
										m_Adiag = massInvA + m_0MinvJt.dot(m_aJ) + massInvB + m_1MinvJt.dot(m_bJ);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										btAssert(m_Adiag > btScalar(0.0));
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									//angular constraint between two different rigidbodies
							 | 
						||
| 
								 | 
							
									btJacobianEntry(const btVector3& jointAxis,
							 | 
						||
| 
								 | 
							
										const btMatrix3x3& world2A,
							 | 
						||
| 
								 | 
							
										const btMatrix3x3& world2B,
							 | 
						||
| 
								 | 
							
										const btVector3& inertiaInvA,
							 | 
						||
| 
								 | 
							
										const btVector3& inertiaInvB)
							 | 
						||
| 
								 | 
							
										:m_linearJointAxis(btVector3(btScalar(0.),btScalar(0.),btScalar(0.)))
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										m_aJ= world2A*jointAxis;
							 | 
						||
| 
								 | 
							
										m_bJ = world2B*-jointAxis;
							 | 
						||
| 
								 | 
							
										m_0MinvJt	= inertiaInvA * m_aJ;
							 | 
						||
| 
								 | 
							
										m_1MinvJt = inertiaInvB * m_bJ;
							 | 
						||
| 
								 | 
							
										m_Adiag =  m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										btAssert(m_Adiag > btScalar(0.0));
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									//angular constraint between two different rigidbodies
							 | 
						||
| 
								 | 
							
									btJacobianEntry(const btVector3& axisInA,
							 | 
						||
| 
								 | 
							
										const btVector3& axisInB,
							 | 
						||
| 
								 | 
							
										const btVector3& inertiaInvA,
							 | 
						||
| 
								 | 
							
										const btVector3& inertiaInvB)
							 | 
						||
| 
								 | 
							
										: m_linearJointAxis(btVector3(btScalar(0.),btScalar(0.),btScalar(0.)))
							 | 
						||
| 
								 | 
							
										, m_aJ(axisInA)
							 | 
						||
| 
								 | 
							
										, m_bJ(-axisInB)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										m_0MinvJt	= inertiaInvA * m_aJ;
							 | 
						||
| 
								 | 
							
										m_1MinvJt = inertiaInvB * m_bJ;
							 | 
						||
| 
								 | 
							
										m_Adiag =  m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										btAssert(m_Adiag > btScalar(0.0));
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									//constraint on one rigidbody
							 | 
						||
| 
								 | 
							
									btJacobianEntry(
							 | 
						||
| 
								 | 
							
										const btMatrix3x3& world2A,
							 | 
						||
| 
								 | 
							
										const btVector3& rel_pos1,const btVector3& rel_pos2,
							 | 
						||
| 
								 | 
							
										const btVector3& jointAxis,
							 | 
						||
| 
								 | 
							
										const btVector3& inertiaInvA, 
							 | 
						||
| 
								 | 
							
										const btScalar massInvA)
							 | 
						||
| 
								 | 
							
										:m_linearJointAxis(jointAxis)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										m_aJ= world2A*(rel_pos1.cross(jointAxis));
							 | 
						||
| 
								 | 
							
										m_bJ = world2A*(rel_pos2.cross(-jointAxis));
							 | 
						||
| 
								 | 
							
										m_0MinvJt	= inertiaInvA * m_aJ;
							 | 
						||
| 
								 | 
							
										m_1MinvJt = btVector3(btScalar(0.),btScalar(0.),btScalar(0.));
							 | 
						||
| 
								 | 
							
										m_Adiag = massInvA + m_0MinvJt.dot(m_aJ);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										btAssert(m_Adiag > btScalar(0.0));
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									btScalar	getDiagonal() const { return m_Adiag; }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									// for two constraints on the same rigidbody (for example vehicle friction)
							 | 
						||
| 
								 | 
							
									btScalar	getNonDiagonal(const btJacobianEntry& jacB, const btScalar massInvA) const
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const btJacobianEntry& jacA = *this;
							 | 
						||
| 
								 | 
							
										btScalar lin = massInvA * jacA.m_linearJointAxis.dot(jacB.m_linearJointAxis);
							 | 
						||
| 
								 | 
							
										btScalar ang = jacA.m_0MinvJt.dot(jacB.m_aJ);
							 | 
						||
| 
								 | 
							
										return lin + ang;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									// for two constraints on sharing two same rigidbodies (for example two contact points between two rigidbodies)
							 | 
						||
| 
								 | 
							
									btScalar	getNonDiagonal(const btJacobianEntry& jacB,const btScalar massInvA,const btScalar massInvB) const
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const btJacobianEntry& jacA = *this;
							 | 
						||
| 
								 | 
							
										btVector3 lin = jacA.m_linearJointAxis * jacB.m_linearJointAxis;
							 | 
						||
| 
								 | 
							
										btVector3 ang0 = jacA.m_0MinvJt * jacB.m_aJ;
							 | 
						||
| 
								 | 
							
										btVector3 ang1 = jacA.m_1MinvJt * jacB.m_bJ;
							 | 
						||
| 
								 | 
							
										btVector3 lin0 = massInvA * lin ;
							 | 
						||
| 
								 | 
							
										btVector3 lin1 = massInvB * lin;
							 | 
						||
| 
								 | 
							
										btVector3 sum = ang0+ang1+lin0+lin1;
							 | 
						||
| 
								 | 
							
										return sum[0]+sum[1]+sum[2];
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									btScalar getRelativeVelocity(const btVector3& linvelA,const btVector3& angvelA,const btVector3& linvelB,const btVector3& angvelB)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										btVector3 linrel = linvelA - linvelB;
							 | 
						||
| 
								 | 
							
										btVector3 angvela  = angvelA * m_aJ;
							 | 
						||
| 
								 | 
							
										btVector3 angvelb  = angvelB * m_bJ;
							 | 
						||
| 
								 | 
							
										linrel *= m_linearJointAxis;
							 | 
						||
| 
								 | 
							
										angvela += angvelb;
							 | 
						||
| 
								 | 
							
										angvela += linrel;
							 | 
						||
| 
								 | 
							
										btScalar rel_vel2 = angvela[0]+angvela[1]+angvela[2];
							 | 
						||
| 
								 | 
							
										return rel_vel2 + SIMD_EPSILON;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								//private:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									btVector3	m_linearJointAxis;
							 | 
						||
| 
								 | 
							
									btVector3	m_aJ;
							 | 
						||
| 
								 | 
							
									btVector3	m_bJ;
							 | 
						||
| 
								 | 
							
									btVector3	m_0MinvJt;
							 | 
						||
| 
								 | 
							
									btVector3	m_1MinvJt;
							 | 
						||
| 
								 | 
							
									//Optimization: can be stored in the w/last component of one of the vectors
							 | 
						||
| 
								 | 
							
									btScalar	m_Adiag;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif //BT_JACOBIAN_ENTRY_H
							 |