2081 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			2081 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| 
								 | 
							
								/*************************************************************************
							 | 
						||
| 
								 | 
							
								*                                                                       *
							 | 
						||
| 
								 | 
							
								* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith.       *
							 | 
						||
| 
								 | 
							
								* All rights reserved.  Email: russ@q12.org   Web: www.q12.org          *
							 | 
						||
| 
								 | 
							
								*                                                                       *
							 | 
						||
| 
								 | 
							
								* This library is free software; you can redistribute it and/or         *
							 | 
						||
| 
								 | 
							
								* modify it under the terms of EITHER:                                  *
							 | 
						||
| 
								 | 
							
								*   (1) The GNU Lesser General Public License as published by the Free  *
							 | 
						||
| 
								 | 
							
								*       Software Foundation; either version 2.1 of the License, or (at  *
							 | 
						||
| 
								 | 
							
								*       your option) any later version. The text of the GNU Lesser      *
							 | 
						||
| 
								 | 
							
								*       General Public License is included with this library in the     *
							 | 
						||
| 
								 | 
							
								*       file LICENSE.TXT.                                               *
							 | 
						||
| 
								 | 
							
								*   (2) The BSD-style license that is included with this library in     *
							 | 
						||
| 
								 | 
							
								*       the file LICENSE-BSD.TXT.                                       *
							 | 
						||
| 
								 | 
							
								*                                                                       *
							 | 
						||
| 
								 | 
							
								* This library is distributed in the hope that it will be useful,       *
							 | 
						||
| 
								 | 
							
								* but WITHOUT ANY WARRANTY; without even the implied warranty of        *
							 | 
						||
| 
								 | 
							
								* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files    *
							 | 
						||
| 
								 | 
							
								* LICENSE.TXT and LICENSE-BSD.TXT for more details.                     *
							 | 
						||
| 
								 | 
							
								*                                                                       *
							 | 
						||
| 
								 | 
							
								*************************************************************************/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								THE ALGORITHM
							 | 
						||
| 
								 | 
							
								-------------
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								solve A*x = b+w, with x and w subject to certain LCP conditions.
							 | 
						||
| 
								 | 
							
								each x(i),w(i) must lie on one of the three line segments in the following
							 | 
						||
| 
								 | 
							
								diagram. each line segment corresponds to one index set :
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     w(i)
							 | 
						||
| 
								 | 
							
								     /|\      |           :
							 | 
						||
| 
								 | 
							
								      |       |           :
							 | 
						||
| 
								 | 
							
								      |       |i in N     :
							 | 
						||
| 
								 | 
							
								  w>0 |       |state[i]=0 :
							 | 
						||
| 
								 | 
							
								      |       |           :
							 | 
						||
| 
								 | 
							
								      |       |           :  i in C
							 | 
						||
| 
								 | 
							
								  w=0 +       +-----------------------+
							 | 
						||
| 
								 | 
							
								      |                   :           |
							 | 
						||
| 
								 | 
							
								      |                   :           |
							 | 
						||
| 
								 | 
							
								  w<0 |                   :           |i in N
							 | 
						||
| 
								 | 
							
								      |                   :           |state[i]=1
							 | 
						||
| 
								 | 
							
								      |                   :           |
							 | 
						||
| 
								 | 
							
								      |                   :           |
							 | 
						||
| 
								 | 
							
								      +-------|-----------|-----------|----------> x(i)
							 | 
						||
| 
								 | 
							
								             lo           0           hi
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								the Dantzig algorithm proceeds as follows:
							 | 
						||
| 
								 | 
							
								  for i=1:n
							 | 
						||
| 
								 | 
							
								    * if (x(i),w(i)) is not on the line, push x(i) and w(i) positive or
							 | 
						||
| 
								 | 
							
								      negative towards the line. as this is done, the other (x(j),w(j))
							 | 
						||
| 
								 | 
							
								      for j<i are constrained to be on the line. if any (x,w) reaches the
							 | 
						||
| 
								 | 
							
								      end of a line segment then it is switched between index sets.
							 | 
						||
| 
								 | 
							
								    * i is added to the appropriate index set depending on what line segment
							 | 
						||
| 
								 | 
							
								      it hits.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								we restrict lo(i) <= 0 and hi(i) >= 0. this makes the algorithm a bit
							 | 
						||
| 
								 | 
							
								simpler, because the starting point for x(i),w(i) is always on the dotted
							 | 
						||
| 
								 | 
							
								line x=0 and x will only ever increase in one direction, so it can only hit
							 | 
						||
| 
								 | 
							
								two out of the three line segments.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								NOTES
							 | 
						||
| 
								 | 
							
								-----
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								this is an implementation of "lcp_dantzig2_ldlt.m" and "lcp_dantzig_lohi.m".
							 | 
						||
| 
								 | 
							
								the implementation is split into an LCP problem object (btLCP) and an LCP
							 | 
						||
| 
								 | 
							
								driver function. most optimization occurs in the btLCP object.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								a naive implementation of the algorithm requires either a lot of data motion
							 | 
						||
| 
								 | 
							
								or a lot of permutation-array lookup, because we are constantly re-ordering
							 | 
						||
| 
								 | 
							
								rows and columns. to avoid this and make a more optimized algorithm, a
							 | 
						||
| 
								 | 
							
								non-trivial data structure is used to represent the matrix A (this is
							 | 
						||
| 
								 | 
							
								implemented in the fast version of the btLCP object).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								during execution of this algorithm, some indexes in A are clamped (set C),
							 | 
						||
| 
								 | 
							
								some are non-clamped (set N), and some are "don't care" (where x=0).
							 | 
						||
| 
								 | 
							
								A,x,b,w (and other problem vectors) are permuted such that the clamped
							 | 
						||
| 
								 | 
							
								indexes are first, the unclamped indexes are next, and the don't-care
							 | 
						||
| 
								 | 
							
								indexes are last. this permutation is recorded in the array `p'.
							 | 
						||
| 
								 | 
							
								initially p = 0..n-1, and as the rows and columns of A,x,b,w are swapped,
							 | 
						||
| 
								 | 
							
								the corresponding elements of p are swapped.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								because the C and N elements are grouped together in the rows of A, we can do
							 | 
						||
| 
								 | 
							
								lots of work with a fast dot product function. if A,x,etc were not permuted
							 | 
						||
| 
								 | 
							
								and we only had a permutation array, then those dot products would be much
							 | 
						||
| 
								 | 
							
								slower as we would have a permutation array lookup in some inner loops.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								A is accessed through an array of row pointers, so that element (i,j) of the
							 | 
						||
| 
								 | 
							
								permuted matrix is A[i][j]. this makes row swapping fast. for column swapping
							 | 
						||
| 
								 | 
							
								we still have to actually move the data.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								during execution of this algorithm we maintain an L*D*L' factorization of
							 | 
						||
| 
								 | 
							
								the clamped submatrix of A (call it `AC') which is the top left nC*nC
							 | 
						||
| 
								 | 
							
								submatrix of A. there are two ways we could arrange the rows/columns in AC.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								(1) AC is always permuted such that L*D*L' = AC. this causes a problem
							 | 
						||
| 
								 | 
							
								when a row/column is removed from C, because then all the rows/columns of A
							 | 
						||
| 
								 | 
							
								between the deleted index and the end of C need to be rotated downward.
							 | 
						||
| 
								 | 
							
								this results in a lot of data motion and slows things down.
							 | 
						||
| 
								 | 
							
								(2) L*D*L' is actually a factorization of a *permutation* of AC (which is
							 | 
						||
| 
								 | 
							
								itself a permutation of the underlying A). this is what we do - the
							 | 
						||
| 
								 | 
							
								permutation is recorded in the vector C. call this permutation A[C,C].
							 | 
						||
| 
								 | 
							
								when a row/column is removed from C, all we have to do is swap two
							 | 
						||
| 
								 | 
							
								rows/columns and manipulate C.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "btDantzigLCP.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <string.h>//memcpy
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								bool s_error = false;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//***************************************************************************
							 | 
						||
| 
								 | 
							
								// code generation parameters
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define btLCP_FAST		// use fast btLCP object
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// option 1 : matrix row pointers (less data copying)
							 | 
						||
| 
								 | 
							
								#define BTROWPTRS
							 | 
						||
| 
								 | 
							
								#define BTATYPE btScalar **
							 | 
						||
| 
								 | 
							
								#define BTAROW(i) (m_A[i])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// option 2 : no matrix row pointers (slightly faster inner loops)
							 | 
						||
| 
								 | 
							
								//#define NOROWPTRS
							 | 
						||
| 
								 | 
							
								//#define BTATYPE btScalar *
							 | 
						||
| 
								 | 
							
								//#define BTAROW(i) (m_A+(i)*m_nskip)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define BTNUB_OPTIMIZATIONS
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* solve L*X=B, with B containing 1 right hand sides.
							 | 
						||
| 
								 | 
							
								 * L is an n*n lower triangular matrix with ones on the diagonal.
							 | 
						||
| 
								 | 
							
								 * L is stored by rows and its leading dimension is lskip.
							 | 
						||
| 
								 | 
							
								 * B is an n*1 matrix that contains the right hand sides.
							 | 
						||
| 
								 | 
							
								 * B is stored by columns and its leading dimension is also lskip.
							 | 
						||
| 
								 | 
							
								 * B is overwritten with X.
							 | 
						||
| 
								 | 
							
								 * this processes blocks of 2*2.
							 | 
						||
| 
								 | 
							
								 * if this is in the factorizer source file, n must be a multiple of 2.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void btSolveL1_1 (const btScalar *L, btScalar *B, int n, int lskip1)
							 | 
						||
| 
								 | 
							
								{  
							 | 
						||
| 
								 | 
							
								  /* declare variables - Z matrix, p and q vectors, etc */
							 | 
						||
| 
								 | 
							
								  btScalar Z11,m11,Z21,m21,p1,q1,p2,*ex;
							 | 
						||
| 
								 | 
							
								  const btScalar *ell;
							 | 
						||
| 
								 | 
							
								  int i,j;
							 | 
						||
| 
								 | 
							
								  /* compute all 2 x 1 blocks of X */
							 | 
						||
| 
								 | 
							
								  for (i=0; i < n; i+=2) {
							 | 
						||
| 
								 | 
							
								    /* compute all 2 x 1 block of X, from rows i..i+2-1 */
							 | 
						||
| 
								 | 
							
								    /* set the Z matrix to 0 */
							 | 
						||
| 
								 | 
							
								    Z11=0;
							 | 
						||
| 
								 | 
							
								    Z21=0;
							 | 
						||
| 
								 | 
							
								    ell = L + i*lskip1;
							 | 
						||
| 
								 | 
							
								    ex = B;
							 | 
						||
| 
								 | 
							
								    /* the inner loop that computes outer products and adds them to Z */
							 | 
						||
| 
								 | 
							
								    for (j=i-2; j >= 0; j -= 2) {
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      p1=ell[0];
							 | 
						||
| 
								 | 
							
								      q1=ex[0];
							 | 
						||
| 
								 | 
							
								      m11 = p1 * q1;
							 | 
						||
| 
								 | 
							
								      p2=ell[lskip1];
							 | 
						||
| 
								 | 
							
								      m21 = p2 * q1;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      Z21 += m21;
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      p1=ell[1];
							 | 
						||
| 
								 | 
							
								      q1=ex[1];
							 | 
						||
| 
								 | 
							
								      m11 = p1 * q1;
							 | 
						||
| 
								 | 
							
								      p2=ell[1+lskip1];
							 | 
						||
| 
								 | 
							
								      m21 = p2 * q1;
							 | 
						||
| 
								 | 
							
								      /* advance pointers */
							 | 
						||
| 
								 | 
							
								      ell += 2;
							 | 
						||
| 
								 | 
							
								      ex += 2;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      Z21 += m21;
							 | 
						||
| 
								 | 
							
								      /* end of inner loop */
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    /* compute left-over iterations */
							 | 
						||
| 
								 | 
							
								    j += 2;
							 | 
						||
| 
								 | 
							
								    for (; j > 0; j--) {
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      p1=ell[0];
							 | 
						||
| 
								 | 
							
								      q1=ex[0];
							 | 
						||
| 
								 | 
							
								      m11 = p1 * q1;
							 | 
						||
| 
								 | 
							
								      p2=ell[lskip1];
							 | 
						||
| 
								 | 
							
								      m21 = p2 * q1;
							 | 
						||
| 
								 | 
							
								      /* advance pointers */
							 | 
						||
| 
								 | 
							
								      ell += 1;
							 | 
						||
| 
								 | 
							
								      ex += 1;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      Z21 += m21;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    /* finish computing the X(i) block */
							 | 
						||
| 
								 | 
							
								    Z11 = ex[0] - Z11;
							 | 
						||
| 
								 | 
							
								    ex[0] = Z11;
							 | 
						||
| 
								 | 
							
								    p1 = ell[lskip1];
							 | 
						||
| 
								 | 
							
								    Z21 = ex[1] - Z21 - p1*Z11;
							 | 
						||
| 
								 | 
							
								    ex[1] = Z21;
							 | 
						||
| 
								 | 
							
								    /* end of outer loop */
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* solve L*X=B, with B containing 2 right hand sides.
							 | 
						||
| 
								 | 
							
								 * L is an n*n lower triangular matrix with ones on the diagonal.
							 | 
						||
| 
								 | 
							
								 * L is stored by rows and its leading dimension is lskip.
							 | 
						||
| 
								 | 
							
								 * B is an n*2 matrix that contains the right hand sides.
							 | 
						||
| 
								 | 
							
								 * B is stored by columns and its leading dimension is also lskip.
							 | 
						||
| 
								 | 
							
								 * B is overwritten with X.
							 | 
						||
| 
								 | 
							
								 * this processes blocks of 2*2.
							 | 
						||
| 
								 | 
							
								 * if this is in the factorizer source file, n must be a multiple of 2.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void btSolveL1_2 (const btScalar *L, btScalar *B, int n, int lskip1)
							 | 
						||
| 
								 | 
							
								{  
							 | 
						||
| 
								 | 
							
								  /* declare variables - Z matrix, p and q vectors, etc */
							 | 
						||
| 
								 | 
							
								  btScalar Z11,m11,Z12,m12,Z21,m21,Z22,m22,p1,q1,p2,q2,*ex;
							 | 
						||
| 
								 | 
							
								  const btScalar *ell;
							 | 
						||
| 
								 | 
							
								  int i,j;
							 | 
						||
| 
								 | 
							
								  /* compute all 2 x 2 blocks of X */
							 | 
						||
| 
								 | 
							
								  for (i=0; i < n; i+=2) {
							 | 
						||
| 
								 | 
							
								    /* compute all 2 x 2 block of X, from rows i..i+2-1 */
							 | 
						||
| 
								 | 
							
								    /* set the Z matrix to 0 */
							 | 
						||
| 
								 | 
							
								    Z11=0;
							 | 
						||
| 
								 | 
							
								    Z12=0;
							 | 
						||
| 
								 | 
							
								    Z21=0;
							 | 
						||
| 
								 | 
							
								    Z22=0;
							 | 
						||
| 
								 | 
							
								    ell = L + i*lskip1;
							 | 
						||
| 
								 | 
							
								    ex = B;
							 | 
						||
| 
								 | 
							
								    /* the inner loop that computes outer products and adds them to Z */
							 | 
						||
| 
								 | 
							
								    for (j=i-2; j >= 0; j -= 2) {
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      p1=ell[0];
							 | 
						||
| 
								 | 
							
								      q1=ex[0];
							 | 
						||
| 
								 | 
							
								      m11 = p1 * q1;
							 | 
						||
| 
								 | 
							
								      q2=ex[lskip1];
							 | 
						||
| 
								 | 
							
								      m12 = p1 * q2;
							 | 
						||
| 
								 | 
							
								      p2=ell[lskip1];
							 | 
						||
| 
								 | 
							
								      m21 = p2 * q1;
							 | 
						||
| 
								 | 
							
								      m22 = p2 * q2;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      Z12 += m12;
							 | 
						||
| 
								 | 
							
								      Z21 += m21;
							 | 
						||
| 
								 | 
							
								      Z22 += m22;
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      p1=ell[1];
							 | 
						||
| 
								 | 
							
								      q1=ex[1];
							 | 
						||
| 
								 | 
							
								      m11 = p1 * q1;
							 | 
						||
| 
								 | 
							
								      q2=ex[1+lskip1];
							 | 
						||
| 
								 | 
							
								      m12 = p1 * q2;
							 | 
						||
| 
								 | 
							
								      p2=ell[1+lskip1];
							 | 
						||
| 
								 | 
							
								      m21 = p2 * q1;
							 | 
						||
| 
								 | 
							
								      m22 = p2 * q2;
							 | 
						||
| 
								 | 
							
								      /* advance pointers */
							 | 
						||
| 
								 | 
							
								      ell += 2;
							 | 
						||
| 
								 | 
							
								      ex += 2;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      Z12 += m12;
							 | 
						||
| 
								 | 
							
								      Z21 += m21;
							 | 
						||
| 
								 | 
							
								      Z22 += m22;
							 | 
						||
| 
								 | 
							
								      /* end of inner loop */
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    /* compute left-over iterations */
							 | 
						||
| 
								 | 
							
								    j += 2;
							 | 
						||
| 
								 | 
							
								    for (; j > 0; j--) {
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      p1=ell[0];
							 | 
						||
| 
								 | 
							
								      q1=ex[0];
							 | 
						||
| 
								 | 
							
								      m11 = p1 * q1;
							 | 
						||
| 
								 | 
							
								      q2=ex[lskip1];
							 | 
						||
| 
								 | 
							
								      m12 = p1 * q2;
							 | 
						||
| 
								 | 
							
								      p2=ell[lskip1];
							 | 
						||
| 
								 | 
							
								      m21 = p2 * q1;
							 | 
						||
| 
								 | 
							
								      m22 = p2 * q2;
							 | 
						||
| 
								 | 
							
								      /* advance pointers */
							 | 
						||
| 
								 | 
							
								      ell += 1;
							 | 
						||
| 
								 | 
							
								      ex += 1;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      Z12 += m12;
							 | 
						||
| 
								 | 
							
								      Z21 += m21;
							 | 
						||
| 
								 | 
							
								      Z22 += m22;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    /* finish computing the X(i) block */
							 | 
						||
| 
								 | 
							
								    Z11 = ex[0] - Z11;
							 | 
						||
| 
								 | 
							
								    ex[0] = Z11;
							 | 
						||
| 
								 | 
							
								    Z12 = ex[lskip1] - Z12;
							 | 
						||
| 
								 | 
							
								    ex[lskip1] = Z12;
							 | 
						||
| 
								 | 
							
								    p1 = ell[lskip1];
							 | 
						||
| 
								 | 
							
								    Z21 = ex[1] - Z21 - p1*Z11;
							 | 
						||
| 
								 | 
							
								    ex[1] = Z21;
							 | 
						||
| 
								 | 
							
								    Z22 = ex[1+lskip1] - Z22 - p1*Z12;
							 | 
						||
| 
								 | 
							
								    ex[1+lskip1] = Z22;
							 | 
						||
| 
								 | 
							
								    /* end of outer loop */
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void btFactorLDLT (btScalar *A, btScalar *d, int n, int nskip1)
							 | 
						||
| 
								 | 
							
								{  
							 | 
						||
| 
								 | 
							
								  int i,j;
							 | 
						||
| 
								 | 
							
								  btScalar sum,*ell,*dee,dd,p1,p2,q1,q2,Z11,m11,Z21,m21,Z22,m22;
							 | 
						||
| 
								 | 
							
								  if (n < 1) return;
							 | 
						||
| 
								 | 
							
								  
							 | 
						||
| 
								 | 
							
								  for (i=0; i<=n-2; i += 2) {
							 | 
						||
| 
								 | 
							
								    /* solve L*(D*l)=a, l is scaled elements in 2 x i block at A(i,0) */
							 | 
						||
| 
								 | 
							
								    btSolveL1_2 (A,A+i*nskip1,i,nskip1);
							 | 
						||
| 
								 | 
							
								    /* scale the elements in a 2 x i block at A(i,0), and also */
							 | 
						||
| 
								 | 
							
								    /* compute Z = the outer product matrix that we'll need. */
							 | 
						||
| 
								 | 
							
								    Z11 = 0;
							 | 
						||
| 
								 | 
							
								    Z21 = 0;
							 | 
						||
| 
								 | 
							
								    Z22 = 0;
							 | 
						||
| 
								 | 
							
								    ell = A+i*nskip1;
							 | 
						||
| 
								 | 
							
								    dee = d;
							 | 
						||
| 
								 | 
							
								    for (j=i-6; j >= 0; j -= 6) {
							 | 
						||
| 
								 | 
							
								      p1 = ell[0];
							 | 
						||
| 
								 | 
							
								      p2 = ell[nskip1];
							 | 
						||
| 
								 | 
							
								      dd = dee[0];
							 | 
						||
| 
								 | 
							
								      q1 = p1*dd;
							 | 
						||
| 
								 | 
							
								      q2 = p2*dd;
							 | 
						||
| 
								 | 
							
								      ell[0] = q1;
							 | 
						||
| 
								 | 
							
								      ell[nskip1] = q2;
							 | 
						||
| 
								 | 
							
								      m11 = p1*q1;
							 | 
						||
| 
								 | 
							
								      m21 = p2*q1;
							 | 
						||
| 
								 | 
							
								      m22 = p2*q2;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      Z21 += m21;
							 | 
						||
| 
								 | 
							
								      Z22 += m22;
							 | 
						||
| 
								 | 
							
								      p1 = ell[1];
							 | 
						||
| 
								 | 
							
								      p2 = ell[1+nskip1];
							 | 
						||
| 
								 | 
							
								      dd = dee[1];
							 | 
						||
| 
								 | 
							
								      q1 = p1*dd;
							 | 
						||
| 
								 | 
							
								      q2 = p2*dd;
							 | 
						||
| 
								 | 
							
								      ell[1] = q1;
							 | 
						||
| 
								 | 
							
								      ell[1+nskip1] = q2;
							 | 
						||
| 
								 | 
							
								      m11 = p1*q1;
							 | 
						||
| 
								 | 
							
								      m21 = p2*q1;
							 | 
						||
| 
								 | 
							
								      m22 = p2*q2;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      Z21 += m21;
							 | 
						||
| 
								 | 
							
								      Z22 += m22;
							 | 
						||
| 
								 | 
							
								      p1 = ell[2];
							 | 
						||
| 
								 | 
							
								      p2 = ell[2+nskip1];
							 | 
						||
| 
								 | 
							
								      dd = dee[2];
							 | 
						||
| 
								 | 
							
								      q1 = p1*dd;
							 | 
						||
| 
								 | 
							
								      q2 = p2*dd;
							 | 
						||
| 
								 | 
							
								      ell[2] = q1;
							 | 
						||
| 
								 | 
							
								      ell[2+nskip1] = q2;
							 | 
						||
| 
								 | 
							
								      m11 = p1*q1;
							 | 
						||
| 
								 | 
							
								      m21 = p2*q1;
							 | 
						||
| 
								 | 
							
								      m22 = p2*q2;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      Z21 += m21;
							 | 
						||
| 
								 | 
							
								      Z22 += m22;
							 | 
						||
| 
								 | 
							
								      p1 = ell[3];
							 | 
						||
| 
								 | 
							
								      p2 = ell[3+nskip1];
							 | 
						||
| 
								 | 
							
								      dd = dee[3];
							 | 
						||
| 
								 | 
							
								      q1 = p1*dd;
							 | 
						||
| 
								 | 
							
								      q2 = p2*dd;
							 | 
						||
| 
								 | 
							
								      ell[3] = q1;
							 | 
						||
| 
								 | 
							
								      ell[3+nskip1] = q2;
							 | 
						||
| 
								 | 
							
								      m11 = p1*q1;
							 | 
						||
| 
								 | 
							
								      m21 = p2*q1;
							 | 
						||
| 
								 | 
							
								      m22 = p2*q2;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      Z21 += m21;
							 | 
						||
| 
								 | 
							
								      Z22 += m22;
							 | 
						||
| 
								 | 
							
								      p1 = ell[4];
							 | 
						||
| 
								 | 
							
								      p2 = ell[4+nskip1];
							 | 
						||
| 
								 | 
							
								      dd = dee[4];
							 | 
						||
| 
								 | 
							
								      q1 = p1*dd;
							 | 
						||
| 
								 | 
							
								      q2 = p2*dd;
							 | 
						||
| 
								 | 
							
								      ell[4] = q1;
							 | 
						||
| 
								 | 
							
								      ell[4+nskip1] = q2;
							 | 
						||
| 
								 | 
							
								      m11 = p1*q1;
							 | 
						||
| 
								 | 
							
								      m21 = p2*q1;
							 | 
						||
| 
								 | 
							
								      m22 = p2*q2;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      Z21 += m21;
							 | 
						||
| 
								 | 
							
								      Z22 += m22;
							 | 
						||
| 
								 | 
							
								      p1 = ell[5];
							 | 
						||
| 
								 | 
							
								      p2 = ell[5+nskip1];
							 | 
						||
| 
								 | 
							
								      dd = dee[5];
							 | 
						||
| 
								 | 
							
								      q1 = p1*dd;
							 | 
						||
| 
								 | 
							
								      q2 = p2*dd;
							 | 
						||
| 
								 | 
							
								      ell[5] = q1;
							 | 
						||
| 
								 | 
							
								      ell[5+nskip1] = q2;
							 | 
						||
| 
								 | 
							
								      m11 = p1*q1;
							 | 
						||
| 
								 | 
							
								      m21 = p2*q1;
							 | 
						||
| 
								 | 
							
								      m22 = p2*q2;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      Z21 += m21;
							 | 
						||
| 
								 | 
							
								      Z22 += m22;
							 | 
						||
| 
								 | 
							
								      ell += 6;
							 | 
						||
| 
								 | 
							
								      dee += 6;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    /* compute left-over iterations */
							 | 
						||
| 
								 | 
							
								    j += 6;
							 | 
						||
| 
								 | 
							
								    for (; j > 0; j--) {
							 | 
						||
| 
								 | 
							
								      p1 = ell[0];
							 | 
						||
| 
								 | 
							
								      p2 = ell[nskip1];
							 | 
						||
| 
								 | 
							
								      dd = dee[0];
							 | 
						||
| 
								 | 
							
								      q1 = p1*dd;
							 | 
						||
| 
								 | 
							
								      q2 = p2*dd;
							 | 
						||
| 
								 | 
							
								      ell[0] = q1;
							 | 
						||
| 
								 | 
							
								      ell[nskip1] = q2;
							 | 
						||
| 
								 | 
							
								      m11 = p1*q1;
							 | 
						||
| 
								 | 
							
								      m21 = p2*q1;
							 | 
						||
| 
								 | 
							
								      m22 = p2*q2;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      Z21 += m21;
							 | 
						||
| 
								 | 
							
								      Z22 += m22;
							 | 
						||
| 
								 | 
							
								      ell++;
							 | 
						||
| 
								 | 
							
								      dee++;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    /* solve for diagonal 2 x 2 block at A(i,i) */
							 | 
						||
| 
								 | 
							
								    Z11 = ell[0] - Z11;
							 | 
						||
| 
								 | 
							
								    Z21 = ell[nskip1] - Z21;
							 | 
						||
| 
								 | 
							
								    Z22 = ell[1+nskip1] - Z22;
							 | 
						||
| 
								 | 
							
								    dee = d + i;
							 | 
						||
| 
								 | 
							
								    /* factorize 2 x 2 block Z,dee */
							 | 
						||
| 
								 | 
							
								    /* factorize row 1 */
							 | 
						||
| 
								 | 
							
								    dee[0] = btRecip(Z11);
							 | 
						||
| 
								 | 
							
								    /* factorize row 2 */
							 | 
						||
| 
								 | 
							
								    sum = 0;
							 | 
						||
| 
								 | 
							
								    q1 = Z21;
							 | 
						||
| 
								 | 
							
								    q2 = q1 * dee[0];
							 | 
						||
| 
								 | 
							
								    Z21 = q2;
							 | 
						||
| 
								 | 
							
								    sum += q1*q2;
							 | 
						||
| 
								 | 
							
								    dee[1] = btRecip(Z22 - sum);
							 | 
						||
| 
								 | 
							
								    /* done factorizing 2 x 2 block */
							 | 
						||
| 
								 | 
							
								    ell[nskip1] = Z21;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  /* compute the (less than 2) rows at the bottom */
							 | 
						||
| 
								 | 
							
								  switch (n-i) {
							 | 
						||
| 
								 | 
							
								    case 0:
							 | 
						||
| 
								 | 
							
								    break;
							 | 
						||
| 
								 | 
							
								    
							 | 
						||
| 
								 | 
							
								    case 1:
							 | 
						||
| 
								 | 
							
								    btSolveL1_1 (A,A+i*nskip1,i,nskip1);
							 | 
						||
| 
								 | 
							
								    /* scale the elements in a 1 x i block at A(i,0), and also */
							 | 
						||
| 
								 | 
							
								    /* compute Z = the outer product matrix that we'll need. */
							 | 
						||
| 
								 | 
							
								    Z11 = 0;
							 | 
						||
| 
								 | 
							
								    ell = A+i*nskip1;
							 | 
						||
| 
								 | 
							
								    dee = d;
							 | 
						||
| 
								 | 
							
								    for (j=i-6; j >= 0; j -= 6) {
							 | 
						||
| 
								 | 
							
								      p1 = ell[0];
							 | 
						||
| 
								 | 
							
								      dd = dee[0];
							 | 
						||
| 
								 | 
							
								      q1 = p1*dd;
							 | 
						||
| 
								 | 
							
								      ell[0] = q1;
							 | 
						||
| 
								 | 
							
								      m11 = p1*q1;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      p1 = ell[1];
							 | 
						||
| 
								 | 
							
								      dd = dee[1];
							 | 
						||
| 
								 | 
							
								      q1 = p1*dd;
							 | 
						||
| 
								 | 
							
								      ell[1] = q1;
							 | 
						||
| 
								 | 
							
								      m11 = p1*q1;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      p1 = ell[2];
							 | 
						||
| 
								 | 
							
								      dd = dee[2];
							 | 
						||
| 
								 | 
							
								      q1 = p1*dd;
							 | 
						||
| 
								 | 
							
								      ell[2] = q1;
							 | 
						||
| 
								 | 
							
								      m11 = p1*q1;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      p1 = ell[3];
							 | 
						||
| 
								 | 
							
								      dd = dee[3];
							 | 
						||
| 
								 | 
							
								      q1 = p1*dd;
							 | 
						||
| 
								 | 
							
								      ell[3] = q1;
							 | 
						||
| 
								 | 
							
								      m11 = p1*q1;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      p1 = ell[4];
							 | 
						||
| 
								 | 
							
								      dd = dee[4];
							 | 
						||
| 
								 | 
							
								      q1 = p1*dd;
							 | 
						||
| 
								 | 
							
								      ell[4] = q1;
							 | 
						||
| 
								 | 
							
								      m11 = p1*q1;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      p1 = ell[5];
							 | 
						||
| 
								 | 
							
								      dd = dee[5];
							 | 
						||
| 
								 | 
							
								      q1 = p1*dd;
							 | 
						||
| 
								 | 
							
								      ell[5] = q1;
							 | 
						||
| 
								 | 
							
								      m11 = p1*q1;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      ell += 6;
							 | 
						||
| 
								 | 
							
								      dee += 6;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    /* compute left-over iterations */
							 | 
						||
| 
								 | 
							
								    j += 6;
							 | 
						||
| 
								 | 
							
								    for (; j > 0; j--) {
							 | 
						||
| 
								 | 
							
								      p1 = ell[0];
							 | 
						||
| 
								 | 
							
								      dd = dee[0];
							 | 
						||
| 
								 | 
							
								      q1 = p1*dd;
							 | 
						||
| 
								 | 
							
								      ell[0] = q1;
							 | 
						||
| 
								 | 
							
								      m11 = p1*q1;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      ell++;
							 | 
						||
| 
								 | 
							
								      dee++;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    /* solve for diagonal 1 x 1 block at A(i,i) */
							 | 
						||
| 
								 | 
							
								    Z11 = ell[0] - Z11;
							 | 
						||
| 
								 | 
							
								    dee = d + i;
							 | 
						||
| 
								 | 
							
								    /* factorize 1 x 1 block Z,dee */
							 | 
						||
| 
								 | 
							
								    /* factorize row 1 */
							 | 
						||
| 
								 | 
							
								    dee[0] = btRecip(Z11);
							 | 
						||
| 
								 | 
							
								    /* done factorizing 1 x 1 block */
							 | 
						||
| 
								 | 
							
								    break;
							 | 
						||
| 
								 | 
							
								    
							 | 
						||
| 
								 | 
							
								    //default: *((char*)0)=0;  /* this should never happen! */
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* solve L*X=B, with B containing 1 right hand sides.
							 | 
						||
| 
								 | 
							
								 * L is an n*n lower triangular matrix with ones on the diagonal.
							 | 
						||
| 
								 | 
							
								 * L is stored by rows and its leading dimension is lskip.
							 | 
						||
| 
								 | 
							
								 * B is an n*1 matrix that contains the right hand sides.
							 | 
						||
| 
								 | 
							
								 * B is stored by columns and its leading dimension is also lskip.
							 | 
						||
| 
								 | 
							
								 * B is overwritten with X.
							 | 
						||
| 
								 | 
							
								 * this processes blocks of 4*4.
							 | 
						||
| 
								 | 
							
								 * if this is in the factorizer source file, n must be a multiple of 4.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void btSolveL1 (const btScalar *L, btScalar *B, int n, int lskip1)
							 | 
						||
| 
								 | 
							
								{  
							 | 
						||
| 
								 | 
							
								  /* declare variables - Z matrix, p and q vectors, etc */
							 | 
						||
| 
								 | 
							
								  btScalar Z11,Z21,Z31,Z41,p1,q1,p2,p3,p4,*ex;
							 | 
						||
| 
								 | 
							
								  const btScalar *ell;
							 | 
						||
| 
								 | 
							
								  int lskip2,lskip3,i,j;
							 | 
						||
| 
								 | 
							
								  /* compute lskip values */
							 | 
						||
| 
								 | 
							
								  lskip2 = 2*lskip1;
							 | 
						||
| 
								 | 
							
								  lskip3 = 3*lskip1;
							 | 
						||
| 
								 | 
							
								  /* compute all 4 x 1 blocks of X */
							 | 
						||
| 
								 | 
							
								  for (i=0; i <= n-4; i+=4) {
							 | 
						||
| 
								 | 
							
								    /* compute all 4 x 1 block of X, from rows i..i+4-1 */
							 | 
						||
| 
								 | 
							
								    /* set the Z matrix to 0 */
							 | 
						||
| 
								 | 
							
								    Z11=0;
							 | 
						||
| 
								 | 
							
								    Z21=0;
							 | 
						||
| 
								 | 
							
								    Z31=0;
							 | 
						||
| 
								 | 
							
								    Z41=0;
							 | 
						||
| 
								 | 
							
								    ell = L + i*lskip1;
							 | 
						||
| 
								 | 
							
								    ex = B;
							 | 
						||
| 
								 | 
							
								    /* the inner loop that computes outer products and adds them to Z */
							 | 
						||
| 
								 | 
							
								    for (j=i-12; j >= 0; j -= 12) {
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[0];
							 | 
						||
| 
								 | 
							
								      q1=ex[0];
							 | 
						||
| 
								 | 
							
								      p2=ell[lskip1];
							 | 
						||
| 
								 | 
							
								      p3=ell[lskip2];
							 | 
						||
| 
								 | 
							
								      p4=ell[lskip3];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      Z11 += p1 * q1;
							 | 
						||
| 
								 | 
							
								      Z21 += p2 * q1;
							 | 
						||
| 
								 | 
							
								      Z31 += p3 * q1;
							 | 
						||
| 
								 | 
							
								      Z41 += p4 * q1;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[1];
							 | 
						||
| 
								 | 
							
								      q1=ex[1];
							 | 
						||
| 
								 | 
							
								      p2=ell[1+lskip1];
							 | 
						||
| 
								 | 
							
								      p3=ell[1+lskip2];
							 | 
						||
| 
								 | 
							
								      p4=ell[1+lskip3];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      Z11 += p1 * q1;
							 | 
						||
| 
								 | 
							
								      Z21 += p2 * q1;
							 | 
						||
| 
								 | 
							
								      Z31 += p3 * q1;
							 | 
						||
| 
								 | 
							
								      Z41 += p4 * q1;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[2];
							 | 
						||
| 
								 | 
							
								      q1=ex[2];
							 | 
						||
| 
								 | 
							
								      p2=ell[2+lskip1];
							 | 
						||
| 
								 | 
							
								      p3=ell[2+lskip2];
							 | 
						||
| 
								 | 
							
								      p4=ell[2+lskip3];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      Z11 += p1 * q1;
							 | 
						||
| 
								 | 
							
								      Z21 += p2 * q1;
							 | 
						||
| 
								 | 
							
								      Z31 += p3 * q1;
							 | 
						||
| 
								 | 
							
								      Z41 += p4 * q1;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[3];
							 | 
						||
| 
								 | 
							
								      q1=ex[3];
							 | 
						||
| 
								 | 
							
								      p2=ell[3+lskip1];
							 | 
						||
| 
								 | 
							
								      p3=ell[3+lskip2];
							 | 
						||
| 
								 | 
							
								      p4=ell[3+lskip3];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      Z11 += p1 * q1;
							 | 
						||
| 
								 | 
							
								      Z21 += p2 * q1;
							 | 
						||
| 
								 | 
							
								      Z31 += p3 * q1;
							 | 
						||
| 
								 | 
							
								      Z41 += p4 * q1;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[4];
							 | 
						||
| 
								 | 
							
								      q1=ex[4];
							 | 
						||
| 
								 | 
							
								      p2=ell[4+lskip1];
							 | 
						||
| 
								 | 
							
								      p3=ell[4+lskip2];
							 | 
						||
| 
								 | 
							
								      p4=ell[4+lskip3];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      Z11 += p1 * q1;
							 | 
						||
| 
								 | 
							
								      Z21 += p2 * q1;
							 | 
						||
| 
								 | 
							
								      Z31 += p3 * q1;
							 | 
						||
| 
								 | 
							
								      Z41 += p4 * q1;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[5];
							 | 
						||
| 
								 | 
							
								      q1=ex[5];
							 | 
						||
| 
								 | 
							
								      p2=ell[5+lskip1];
							 | 
						||
| 
								 | 
							
								      p3=ell[5+lskip2];
							 | 
						||
| 
								 | 
							
								      p4=ell[5+lskip3];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      Z11 += p1 * q1;
							 | 
						||
| 
								 | 
							
								      Z21 += p2 * q1;
							 | 
						||
| 
								 | 
							
								      Z31 += p3 * q1;
							 | 
						||
| 
								 | 
							
								      Z41 += p4 * q1;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[6];
							 | 
						||
| 
								 | 
							
								      q1=ex[6];
							 | 
						||
| 
								 | 
							
								      p2=ell[6+lskip1];
							 | 
						||
| 
								 | 
							
								      p3=ell[6+lskip2];
							 | 
						||
| 
								 | 
							
								      p4=ell[6+lskip3];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      Z11 += p1 * q1;
							 | 
						||
| 
								 | 
							
								      Z21 += p2 * q1;
							 | 
						||
| 
								 | 
							
								      Z31 += p3 * q1;
							 | 
						||
| 
								 | 
							
								      Z41 += p4 * q1;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[7];
							 | 
						||
| 
								 | 
							
								      q1=ex[7];
							 | 
						||
| 
								 | 
							
								      p2=ell[7+lskip1];
							 | 
						||
| 
								 | 
							
								      p3=ell[7+lskip2];
							 | 
						||
| 
								 | 
							
								      p4=ell[7+lskip3];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      Z11 += p1 * q1;
							 | 
						||
| 
								 | 
							
								      Z21 += p2 * q1;
							 | 
						||
| 
								 | 
							
								      Z31 += p3 * q1;
							 | 
						||
| 
								 | 
							
								      Z41 += p4 * q1;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[8];
							 | 
						||
| 
								 | 
							
								      q1=ex[8];
							 | 
						||
| 
								 | 
							
								      p2=ell[8+lskip1];
							 | 
						||
| 
								 | 
							
								      p3=ell[8+lskip2];
							 | 
						||
| 
								 | 
							
								      p4=ell[8+lskip3];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      Z11 += p1 * q1;
							 | 
						||
| 
								 | 
							
								      Z21 += p2 * q1;
							 | 
						||
| 
								 | 
							
								      Z31 += p3 * q1;
							 | 
						||
| 
								 | 
							
								      Z41 += p4 * q1;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[9];
							 | 
						||
| 
								 | 
							
								      q1=ex[9];
							 | 
						||
| 
								 | 
							
								      p2=ell[9+lskip1];
							 | 
						||
| 
								 | 
							
								      p3=ell[9+lskip2];
							 | 
						||
| 
								 | 
							
								      p4=ell[9+lskip3];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      Z11 += p1 * q1;
							 | 
						||
| 
								 | 
							
								      Z21 += p2 * q1;
							 | 
						||
| 
								 | 
							
								      Z31 += p3 * q1;
							 | 
						||
| 
								 | 
							
								      Z41 += p4 * q1;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[10];
							 | 
						||
| 
								 | 
							
								      q1=ex[10];
							 | 
						||
| 
								 | 
							
								      p2=ell[10+lskip1];
							 | 
						||
| 
								 | 
							
								      p3=ell[10+lskip2];
							 | 
						||
| 
								 | 
							
								      p4=ell[10+lskip3];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      Z11 += p1 * q1;
							 | 
						||
| 
								 | 
							
								      Z21 += p2 * q1;
							 | 
						||
| 
								 | 
							
								      Z31 += p3 * q1;
							 | 
						||
| 
								 | 
							
								      Z41 += p4 * q1;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[11];
							 | 
						||
| 
								 | 
							
								      q1=ex[11];
							 | 
						||
| 
								 | 
							
								      p2=ell[11+lskip1];
							 | 
						||
| 
								 | 
							
								      p3=ell[11+lskip2];
							 | 
						||
| 
								 | 
							
								      p4=ell[11+lskip3];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      Z11 += p1 * q1;
							 | 
						||
| 
								 | 
							
								      Z21 += p2 * q1;
							 | 
						||
| 
								 | 
							
								      Z31 += p3 * q1;
							 | 
						||
| 
								 | 
							
								      Z41 += p4 * q1;
							 | 
						||
| 
								 | 
							
								      /* advance pointers */
							 | 
						||
| 
								 | 
							
								      ell += 12;
							 | 
						||
| 
								 | 
							
								      ex += 12;
							 | 
						||
| 
								 | 
							
								      /* end of inner loop */
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    /* compute left-over iterations */
							 | 
						||
| 
								 | 
							
								    j += 12;
							 | 
						||
| 
								 | 
							
								    for (; j > 0; j--) {
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[0];
							 | 
						||
| 
								 | 
							
								      q1=ex[0];
							 | 
						||
| 
								 | 
							
								      p2=ell[lskip1];
							 | 
						||
| 
								 | 
							
								      p3=ell[lskip2];
							 | 
						||
| 
								 | 
							
								      p4=ell[lskip3];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      Z11 += p1 * q1;
							 | 
						||
| 
								 | 
							
								      Z21 += p2 * q1;
							 | 
						||
| 
								 | 
							
								      Z31 += p3 * q1;
							 | 
						||
| 
								 | 
							
								      Z41 += p4 * q1;
							 | 
						||
| 
								 | 
							
								      /* advance pointers */
							 | 
						||
| 
								 | 
							
								      ell += 1;
							 | 
						||
| 
								 | 
							
								      ex += 1;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    /* finish computing the X(i) block */
							 | 
						||
| 
								 | 
							
								    Z11 = ex[0] - Z11;
							 | 
						||
| 
								 | 
							
								    ex[0] = Z11;
							 | 
						||
| 
								 | 
							
								    p1 = ell[lskip1];
							 | 
						||
| 
								 | 
							
								    Z21 = ex[1] - Z21 - p1*Z11;
							 | 
						||
| 
								 | 
							
								    ex[1] = Z21;
							 | 
						||
| 
								 | 
							
								    p1 = ell[lskip2];
							 | 
						||
| 
								 | 
							
								    p2 = ell[1+lskip2];
							 | 
						||
| 
								 | 
							
								    Z31 = ex[2] - Z31 - p1*Z11 - p2*Z21;
							 | 
						||
| 
								 | 
							
								    ex[2] = Z31;
							 | 
						||
| 
								 | 
							
								    p1 = ell[lskip3];
							 | 
						||
| 
								 | 
							
								    p2 = ell[1+lskip3];
							 | 
						||
| 
								 | 
							
								    p3 = ell[2+lskip3];
							 | 
						||
| 
								 | 
							
								    Z41 = ex[3] - Z41 - p1*Z11 - p2*Z21 - p3*Z31;
							 | 
						||
| 
								 | 
							
								    ex[3] = Z41;
							 | 
						||
| 
								 | 
							
								    /* end of outer loop */
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  /* compute rows at end that are not a multiple of block size */
							 | 
						||
| 
								 | 
							
								  for (; i < n; i++) {
							 | 
						||
| 
								 | 
							
								    /* compute all 1 x 1 block of X, from rows i..i+1-1 */
							 | 
						||
| 
								 | 
							
								    /* set the Z matrix to 0 */
							 | 
						||
| 
								 | 
							
								    Z11=0;
							 | 
						||
| 
								 | 
							
								    ell = L + i*lskip1;
							 | 
						||
| 
								 | 
							
								    ex = B;
							 | 
						||
| 
								 | 
							
								    /* the inner loop that computes outer products and adds them to Z */
							 | 
						||
| 
								 | 
							
								    for (j=i-12; j >= 0; j -= 12) {
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[0];
							 | 
						||
| 
								 | 
							
								      q1=ex[0];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      Z11 += p1 * q1;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[1];
							 | 
						||
| 
								 | 
							
								      q1=ex[1];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      Z11 += p1 * q1;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[2];
							 | 
						||
| 
								 | 
							
								      q1=ex[2];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      Z11 += p1 * q1;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[3];
							 | 
						||
| 
								 | 
							
								      q1=ex[3];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      Z11 += p1 * q1;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[4];
							 | 
						||
| 
								 | 
							
								      q1=ex[4];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      Z11 += p1 * q1;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[5];
							 | 
						||
| 
								 | 
							
								      q1=ex[5];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      Z11 += p1 * q1;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[6];
							 | 
						||
| 
								 | 
							
								      q1=ex[6];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      Z11 += p1 * q1;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[7];
							 | 
						||
| 
								 | 
							
								      q1=ex[7];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      Z11 += p1 * q1;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[8];
							 | 
						||
| 
								 | 
							
								      q1=ex[8];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      Z11 += p1 * q1;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[9];
							 | 
						||
| 
								 | 
							
								      q1=ex[9];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      Z11 += p1 * q1;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[10];
							 | 
						||
| 
								 | 
							
								      q1=ex[10];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      Z11 += p1 * q1;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[11];
							 | 
						||
| 
								 | 
							
								      q1=ex[11];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      Z11 += p1 * q1;
							 | 
						||
| 
								 | 
							
								      /* advance pointers */
							 | 
						||
| 
								 | 
							
								      ell += 12;
							 | 
						||
| 
								 | 
							
								      ex += 12;
							 | 
						||
| 
								 | 
							
								      /* end of inner loop */
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    /* compute left-over iterations */
							 | 
						||
| 
								 | 
							
								    j += 12;
							 | 
						||
| 
								 | 
							
								    for (; j > 0; j--) {
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[0];
							 | 
						||
| 
								 | 
							
								      q1=ex[0];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      Z11 += p1 * q1;
							 | 
						||
| 
								 | 
							
								      /* advance pointers */
							 | 
						||
| 
								 | 
							
								      ell += 1;
							 | 
						||
| 
								 | 
							
								      ex += 1;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    /* finish computing the X(i) block */
							 | 
						||
| 
								 | 
							
								    Z11 = ex[0] - Z11;
							 | 
						||
| 
								 | 
							
								    ex[0] = Z11;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* solve L^T * x=b, with b containing 1 right hand side.
							 | 
						||
| 
								 | 
							
								 * L is an n*n lower triangular matrix with ones on the diagonal.
							 | 
						||
| 
								 | 
							
								 * L is stored by rows and its leading dimension is lskip.
							 | 
						||
| 
								 | 
							
								 * b is an n*1 matrix that contains the right hand side.
							 | 
						||
| 
								 | 
							
								 * b is overwritten with x.
							 | 
						||
| 
								 | 
							
								 * this processes blocks of 4.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void btSolveL1T (const btScalar *L, btScalar *B, int n, int lskip1)
							 | 
						||
| 
								 | 
							
								{  
							 | 
						||
| 
								 | 
							
								  /* declare variables - Z matrix, p and q vectors, etc */
							 | 
						||
| 
								 | 
							
								  btScalar Z11,m11,Z21,m21,Z31,m31,Z41,m41,p1,q1,p2,p3,p4,*ex;
							 | 
						||
| 
								 | 
							
								  const btScalar *ell;
							 | 
						||
| 
								 | 
							
								  int lskip2,i,j;
							 | 
						||
| 
								 | 
							
								//  int lskip3;
							 | 
						||
| 
								 | 
							
								  /* special handling for L and B because we're solving L1 *transpose* */
							 | 
						||
| 
								 | 
							
								  L = L + (n-1)*(lskip1+1);
							 | 
						||
| 
								 | 
							
								  B = B + n-1;
							 | 
						||
| 
								 | 
							
								  lskip1 = -lskip1;
							 | 
						||
| 
								 | 
							
								  /* compute lskip values */
							 | 
						||
| 
								 | 
							
								  lskip2 = 2*lskip1;
							 | 
						||
| 
								 | 
							
								  //lskip3 = 3*lskip1;
							 | 
						||
| 
								 | 
							
								  /* compute all 4 x 1 blocks of X */
							 | 
						||
| 
								 | 
							
								  for (i=0; i <= n-4; i+=4) {
							 | 
						||
| 
								 | 
							
								    /* compute all 4 x 1 block of X, from rows i..i+4-1 */
							 | 
						||
| 
								 | 
							
								    /* set the Z matrix to 0 */
							 | 
						||
| 
								 | 
							
								    Z11=0;
							 | 
						||
| 
								 | 
							
								    Z21=0;
							 | 
						||
| 
								 | 
							
								    Z31=0;
							 | 
						||
| 
								 | 
							
								    Z41=0;
							 | 
						||
| 
								 | 
							
								    ell = L - i;
							 | 
						||
| 
								 | 
							
								    ex = B;
							 | 
						||
| 
								 | 
							
								    /* the inner loop that computes outer products and adds them to Z */
							 | 
						||
| 
								 | 
							
								    for (j=i-4; j >= 0; j -= 4) {
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[0];
							 | 
						||
| 
								 | 
							
								      q1=ex[0];
							 | 
						||
| 
								 | 
							
								      p2=ell[-1];
							 | 
						||
| 
								 | 
							
								      p3=ell[-2];
							 | 
						||
| 
								 | 
							
								      p4=ell[-3];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      m11 = p1 * q1;
							 | 
						||
| 
								 | 
							
								      m21 = p2 * q1;
							 | 
						||
| 
								 | 
							
								      m31 = p3 * q1;
							 | 
						||
| 
								 | 
							
								      m41 = p4 * q1;
							 | 
						||
| 
								 | 
							
								      ell += lskip1;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      Z21 += m21;
							 | 
						||
| 
								 | 
							
								      Z31 += m31;
							 | 
						||
| 
								 | 
							
								      Z41 += m41;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[0];
							 | 
						||
| 
								 | 
							
								      q1=ex[-1];
							 | 
						||
| 
								 | 
							
								      p2=ell[-1];
							 | 
						||
| 
								 | 
							
								      p3=ell[-2];
							 | 
						||
| 
								 | 
							
								      p4=ell[-3];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      m11 = p1 * q1;
							 | 
						||
| 
								 | 
							
								      m21 = p2 * q1;
							 | 
						||
| 
								 | 
							
								      m31 = p3 * q1;
							 | 
						||
| 
								 | 
							
								      m41 = p4 * q1;
							 | 
						||
| 
								 | 
							
								      ell += lskip1;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      Z21 += m21;
							 | 
						||
| 
								 | 
							
								      Z31 += m31;
							 | 
						||
| 
								 | 
							
								      Z41 += m41;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[0];
							 | 
						||
| 
								 | 
							
								      q1=ex[-2];
							 | 
						||
| 
								 | 
							
								      p2=ell[-1];
							 | 
						||
| 
								 | 
							
								      p3=ell[-2];
							 | 
						||
| 
								 | 
							
								      p4=ell[-3];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      m11 = p1 * q1;
							 | 
						||
| 
								 | 
							
								      m21 = p2 * q1;
							 | 
						||
| 
								 | 
							
								      m31 = p3 * q1;
							 | 
						||
| 
								 | 
							
								      m41 = p4 * q1;
							 | 
						||
| 
								 | 
							
								      ell += lskip1;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      Z21 += m21;
							 | 
						||
| 
								 | 
							
								      Z31 += m31;
							 | 
						||
| 
								 | 
							
								      Z41 += m41;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[0];
							 | 
						||
| 
								 | 
							
								      q1=ex[-3];
							 | 
						||
| 
								 | 
							
								      p2=ell[-1];
							 | 
						||
| 
								 | 
							
								      p3=ell[-2];
							 | 
						||
| 
								 | 
							
								      p4=ell[-3];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      m11 = p1 * q1;
							 | 
						||
| 
								 | 
							
								      m21 = p2 * q1;
							 | 
						||
| 
								 | 
							
								      m31 = p3 * q1;
							 | 
						||
| 
								 | 
							
								      m41 = p4 * q1;
							 | 
						||
| 
								 | 
							
								      ell += lskip1;
							 | 
						||
| 
								 | 
							
								      ex -= 4;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      Z21 += m21;
							 | 
						||
| 
								 | 
							
								      Z31 += m31;
							 | 
						||
| 
								 | 
							
								      Z41 += m41;
							 | 
						||
| 
								 | 
							
								      /* end of inner loop */
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    /* compute left-over iterations */
							 | 
						||
| 
								 | 
							
								    j += 4;
							 | 
						||
| 
								 | 
							
								    for (; j > 0; j--) {
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[0];
							 | 
						||
| 
								 | 
							
								      q1=ex[0];
							 | 
						||
| 
								 | 
							
								      p2=ell[-1];
							 | 
						||
| 
								 | 
							
								      p3=ell[-2];
							 | 
						||
| 
								 | 
							
								      p4=ell[-3];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      m11 = p1 * q1;
							 | 
						||
| 
								 | 
							
								      m21 = p2 * q1;
							 | 
						||
| 
								 | 
							
								      m31 = p3 * q1;
							 | 
						||
| 
								 | 
							
								      m41 = p4 * q1;
							 | 
						||
| 
								 | 
							
								      ell += lskip1;
							 | 
						||
| 
								 | 
							
								      ex -= 1;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      Z21 += m21;
							 | 
						||
| 
								 | 
							
								      Z31 += m31;
							 | 
						||
| 
								 | 
							
								      Z41 += m41;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    /* finish computing the X(i) block */
							 | 
						||
| 
								 | 
							
								    Z11 = ex[0] - Z11;
							 | 
						||
| 
								 | 
							
								    ex[0] = Z11;
							 | 
						||
| 
								 | 
							
								    p1 = ell[-1];
							 | 
						||
| 
								 | 
							
								    Z21 = ex[-1] - Z21 - p1*Z11;
							 | 
						||
| 
								 | 
							
								    ex[-1] = Z21;
							 | 
						||
| 
								 | 
							
								    p1 = ell[-2];
							 | 
						||
| 
								 | 
							
								    p2 = ell[-2+lskip1];
							 | 
						||
| 
								 | 
							
								    Z31 = ex[-2] - Z31 - p1*Z11 - p2*Z21;
							 | 
						||
| 
								 | 
							
								    ex[-2] = Z31;
							 | 
						||
| 
								 | 
							
								    p1 = ell[-3];
							 | 
						||
| 
								 | 
							
								    p2 = ell[-3+lskip1];
							 | 
						||
| 
								 | 
							
								    p3 = ell[-3+lskip2];
							 | 
						||
| 
								 | 
							
								    Z41 = ex[-3] - Z41 - p1*Z11 - p2*Z21 - p3*Z31;
							 | 
						||
| 
								 | 
							
								    ex[-3] = Z41;
							 | 
						||
| 
								 | 
							
								    /* end of outer loop */
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  /* compute rows at end that are not a multiple of block size */
							 | 
						||
| 
								 | 
							
								  for (; i < n; i++) {
							 | 
						||
| 
								 | 
							
								    /* compute all 1 x 1 block of X, from rows i..i+1-1 */
							 | 
						||
| 
								 | 
							
								    /* set the Z matrix to 0 */
							 | 
						||
| 
								 | 
							
								    Z11=0;
							 | 
						||
| 
								 | 
							
								    ell = L - i;
							 | 
						||
| 
								 | 
							
								    ex = B;
							 | 
						||
| 
								 | 
							
								    /* the inner loop that computes outer products and adds them to Z */
							 | 
						||
| 
								 | 
							
								    for (j=i-4; j >= 0; j -= 4) {
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[0];
							 | 
						||
| 
								 | 
							
								      q1=ex[0];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      m11 = p1 * q1;
							 | 
						||
| 
								 | 
							
								      ell += lskip1;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[0];
							 | 
						||
| 
								 | 
							
								      q1=ex[-1];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      m11 = p1 * q1;
							 | 
						||
| 
								 | 
							
								      ell += lskip1;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[0];
							 | 
						||
| 
								 | 
							
								      q1=ex[-2];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      m11 = p1 * q1;
							 | 
						||
| 
								 | 
							
								      ell += lskip1;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[0];
							 | 
						||
| 
								 | 
							
								      q1=ex[-3];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      m11 = p1 * q1;
							 | 
						||
| 
								 | 
							
								      ell += lskip1;
							 | 
						||
| 
								 | 
							
								      ex -= 4;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								      /* end of inner loop */
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    /* compute left-over iterations */
							 | 
						||
| 
								 | 
							
								    j += 4;
							 | 
						||
| 
								 | 
							
								    for (; j > 0; j--) {
							 | 
						||
| 
								 | 
							
								      /* load p and q values */
							 | 
						||
| 
								 | 
							
								      p1=ell[0];
							 | 
						||
| 
								 | 
							
								      q1=ex[0];
							 | 
						||
| 
								 | 
							
								      /* compute outer product and add it to the Z matrix */
							 | 
						||
| 
								 | 
							
								      m11 = p1 * q1;
							 | 
						||
| 
								 | 
							
								      ell += lskip1;
							 | 
						||
| 
								 | 
							
								      ex -= 1;
							 | 
						||
| 
								 | 
							
								      Z11 += m11;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    /* finish computing the X(i) block */
							 | 
						||
| 
								 | 
							
								    Z11 = ex[0] - Z11;
							 | 
						||
| 
								 | 
							
								    ex[0] = Z11;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void btVectorScale (btScalar *a, const btScalar *d, int n)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  btAssert (a && d && n >= 0);
							 | 
						||
| 
								 | 
							
								  for (int i=0; i<n; i++) {
							 | 
						||
| 
								 | 
							
								    a[i] *= d[i];
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void btSolveLDLT (const btScalar *L, const btScalar *d, btScalar *b, int n, int nskip)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  btAssert (L && d && b && n > 0 && nskip >= n);
							 | 
						||
| 
								 | 
							
								  btSolveL1 (L,b,n,nskip);
							 | 
						||
| 
								 | 
							
								  btVectorScale (b,d,n);
							 | 
						||
| 
								 | 
							
								  btSolveL1T (L,b,n,nskip);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//***************************************************************************
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// swap row/column i1 with i2 in the n*n matrix A. the leading dimension of
							 | 
						||
| 
								 | 
							
								// A is nskip. this only references and swaps the lower triangle.
							 | 
						||
| 
								 | 
							
								// if `do_fast_row_swaps' is nonzero and row pointers are being used, then
							 | 
						||
| 
								 | 
							
								// rows will be swapped by exchanging row pointers. otherwise the data will
							 | 
						||
| 
								 | 
							
								// be copied.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void btSwapRowsAndCols (BTATYPE A, int n, int i1, int i2, int nskip, 
							 | 
						||
| 
								 | 
							
								  int do_fast_row_swaps)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  btAssert (A && n > 0 && i1 >= 0 && i2 >= 0 && i1 < n && i2 < n &&
							 | 
						||
| 
								 | 
							
								    nskip >= n && i1 < i2);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# ifdef BTROWPTRS
							 | 
						||
| 
								 | 
							
								  btScalar *A_i1 = A[i1];
							 | 
						||
| 
								 | 
							
								  btScalar *A_i2 = A[i2];
							 | 
						||
| 
								 | 
							
								  for (int i=i1+1; i<i2; ++i) {
							 | 
						||
| 
								 | 
							
								    btScalar *A_i_i1 = A[i] + i1;
							 | 
						||
| 
								 | 
							
								    A_i1[i] = *A_i_i1;
							 | 
						||
| 
								 | 
							
								    *A_i_i1 = A_i2[i];
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  A_i1[i2] = A_i1[i1];
							 | 
						||
| 
								 | 
							
								  A_i1[i1] = A_i2[i1];
							 | 
						||
| 
								 | 
							
								  A_i2[i1] = A_i2[i2];
							 | 
						||
| 
								 | 
							
								  // swap rows, by swapping row pointers
							 | 
						||
| 
								 | 
							
								  if (do_fast_row_swaps) {
							 | 
						||
| 
								 | 
							
								    A[i1] = A_i2;
							 | 
						||
| 
								 | 
							
								    A[i2] = A_i1;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  else {
							 | 
						||
| 
								 | 
							
								    // Only swap till i2 column to match A plain storage variant.
							 | 
						||
| 
								 | 
							
								    for (int k = 0; k <= i2; ++k) {
							 | 
						||
| 
								 | 
							
								      btScalar tmp = A_i1[k];
							 | 
						||
| 
								 | 
							
								      A_i1[k] = A_i2[k];
							 | 
						||
| 
								 | 
							
								      A_i2[k] = tmp;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  // swap columns the hard way
							 | 
						||
| 
								 | 
							
								  for (int j=i2+1; j<n; ++j) {
							 | 
						||
| 
								 | 
							
								    btScalar *A_j = A[j];
							 | 
						||
| 
								 | 
							
								    btScalar tmp = A_j[i1];
							 | 
						||
| 
								 | 
							
								    A_j[i1] = A_j[i2];
							 | 
						||
| 
								 | 
							
								    A_j[i2] = tmp;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								# else
							 | 
						||
| 
								 | 
							
								  btScalar *A_i1 = A+i1*nskip;
							 | 
						||
| 
								 | 
							
								  btScalar *A_i2 = A+i2*nskip;
							 | 
						||
| 
								 | 
							
								  for (int k = 0; k < i1; ++k) {
							 | 
						||
| 
								 | 
							
								    btScalar tmp = A_i1[k];
							 | 
						||
| 
								 | 
							
								    A_i1[k] = A_i2[k];
							 | 
						||
| 
								 | 
							
								    A_i2[k] = tmp;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  btScalar *A_i = A_i1 + nskip;
							 | 
						||
| 
								 | 
							
								  for (int i=i1+1; i<i2; A_i+=nskip, ++i) {
							 | 
						||
| 
								 | 
							
								    btScalar tmp = A_i2[i];
							 | 
						||
| 
								 | 
							
								    A_i2[i] = A_i[i1];
							 | 
						||
| 
								 | 
							
								    A_i[i1] = tmp;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    btScalar tmp = A_i1[i1];
							 | 
						||
| 
								 | 
							
								    A_i1[i1] = A_i2[i2];
							 | 
						||
| 
								 | 
							
								    A_i2[i2] = tmp;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  btScalar *A_j = A_i2 + nskip;
							 | 
						||
| 
								 | 
							
								  for (int j=i2+1; j<n; A_j+=nskip, ++j) {
							 | 
						||
| 
								 | 
							
								    btScalar tmp = A_j[i1];
							 | 
						||
| 
								 | 
							
								    A_j[i1] = A_j[i2];
							 | 
						||
| 
								 | 
							
								    A_j[i2] = tmp;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								# endif
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// swap two indexes in the n*n LCP problem. i1 must be <= i2.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void btSwapProblem (BTATYPE A, btScalar *x, btScalar *b, btScalar *w, btScalar *lo,
							 | 
						||
| 
								 | 
							
								                         btScalar *hi, int *p, bool *state, int *findex,
							 | 
						||
| 
								 | 
							
								                         int n, int i1, int i2, int nskip,
							 | 
						||
| 
								 | 
							
								                         int do_fast_row_swaps)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  btScalar tmpr;
							 | 
						||
| 
								 | 
							
								  int tmpi;
							 | 
						||
| 
								 | 
							
								  bool tmpb;
							 | 
						||
| 
								 | 
							
								  btAssert (n>0 && i1 >=0 && i2 >= 0 && i1 < n && i2 < n && nskip >= n && i1 <= i2);
							 | 
						||
| 
								 | 
							
								  if (i1==i2) return;
							 | 
						||
| 
								 | 
							
								  
							 | 
						||
| 
								 | 
							
								  btSwapRowsAndCols (A,n,i1,i2,nskip,do_fast_row_swaps);
							 | 
						||
| 
								 | 
							
								  
							 | 
						||
| 
								 | 
							
								  tmpr = x[i1];
							 | 
						||
| 
								 | 
							
								  x[i1] = x[i2];
							 | 
						||
| 
								 | 
							
								  x[i2] = tmpr;
							 | 
						||
| 
								 | 
							
								  
							 | 
						||
| 
								 | 
							
								  tmpr = b[i1];
							 | 
						||
| 
								 | 
							
								  b[i1] = b[i2];
							 | 
						||
| 
								 | 
							
								  b[i2] = tmpr;
							 | 
						||
| 
								 | 
							
								  
							 | 
						||
| 
								 | 
							
								  tmpr = w[i1];
							 | 
						||
| 
								 | 
							
								  w[i1] = w[i2];
							 | 
						||
| 
								 | 
							
								  w[i2] = tmpr;
							 | 
						||
| 
								 | 
							
								  
							 | 
						||
| 
								 | 
							
								  tmpr = lo[i1];
							 | 
						||
| 
								 | 
							
								  lo[i1] = lo[i2];
							 | 
						||
| 
								 | 
							
								  lo[i2] = tmpr;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  tmpr = hi[i1];
							 | 
						||
| 
								 | 
							
								  hi[i1] = hi[i2];
							 | 
						||
| 
								 | 
							
								  hi[i2] = tmpr;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  tmpi = p[i1];
							 | 
						||
| 
								 | 
							
								  p[i1] = p[i2];
							 | 
						||
| 
								 | 
							
								  p[i2] = tmpi;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  tmpb = state[i1];
							 | 
						||
| 
								 | 
							
								  state[i1] = state[i2];
							 | 
						||
| 
								 | 
							
								  state[i2] = tmpb;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  if (findex) {
							 | 
						||
| 
								 | 
							
								    tmpi = findex[i1];
							 | 
						||
| 
								 | 
							
								    findex[i1] = findex[i2];
							 | 
						||
| 
								 | 
							
								    findex[i2] = tmpi;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//***************************************************************************
							 | 
						||
| 
								 | 
							
								// btLCP manipulator object. this represents an n*n LCP problem.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// two index sets C and N are kept. each set holds a subset of
							 | 
						||
| 
								 | 
							
								// the variable indexes 0..n-1. an index can only be in one set.
							 | 
						||
| 
								 | 
							
								// initially both sets are empty.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// the index set C is special: solutions to A(C,C)\A(C,i) can be generated.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//***************************************************************************
							 | 
						||
| 
								 | 
							
								// fast implementation of btLCP. see the above definition of btLCP for
							 | 
						||
| 
								 | 
							
								// interface comments.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// `p' records the permutation of A,x,b,w,etc. p is initially 1:n and is
							 | 
						||
| 
								 | 
							
								// permuted as the other vectors/matrices are permuted.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// A,x,b,w,lo,hi,state,findex,p,c are permuted such that sets C,N have
							 | 
						||
| 
								 | 
							
								// contiguous indexes. the don't-care indexes follow N.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// an L*D*L' factorization is maintained of A(C,C), and whenever indexes are
							 | 
						||
| 
								 | 
							
								// added or removed from the set C the factorization is updated.
							 | 
						||
| 
								 | 
							
								// thus L*D*L'=A[C,C], i.e. a permuted top left nC*nC submatrix of A.
							 | 
						||
| 
								 | 
							
								// the leading dimension of the matrix L is always `nskip'.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// at the start there may be other indexes that are unbounded but are not
							 | 
						||
| 
								 | 
							
								// included in `nub'. btLCP will permute the matrix so that absolutely all
							 | 
						||
| 
								 | 
							
								// unbounded vectors are at the start. thus there may be some initial
							 | 
						||
| 
								 | 
							
								// permutation.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// the algorithms here assume certain patterns, particularly with respect to
							 | 
						||
| 
								 | 
							
								// index transfer.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifdef btLCP_FAST
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								struct btLCP 
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const int m_n;
							 | 
						||
| 
								 | 
							
									const int m_nskip;
							 | 
						||
| 
								 | 
							
									int m_nub;
							 | 
						||
| 
								 | 
							
									int m_nC, m_nN;				// size of each index set
							 | 
						||
| 
								 | 
							
									BTATYPE const m_A;				// A rows
							 | 
						||
| 
								 | 
							
									btScalar *const m_x, * const m_b, *const m_w, *const m_lo,* const m_hi;	// permuted LCP problem data
							 | 
						||
| 
								 | 
							
									btScalar *const m_L, *const m_d;				// L*D*L' factorization of set C
							 | 
						||
| 
								 | 
							
									btScalar *const m_Dell, *const m_ell, *const m_tmp;
							 | 
						||
| 
								 | 
							
									bool *const m_state;
							 | 
						||
| 
								 | 
							
									int *const m_findex, *const m_p, *const m_C;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									btLCP (int _n, int _nskip, int _nub, btScalar *_Adata, btScalar *_x, btScalar *_b, btScalar *_w,
							 | 
						||
| 
								 | 
							
										btScalar *_lo, btScalar *_hi, btScalar *l, btScalar *_d,
							 | 
						||
| 
								 | 
							
										btScalar *_Dell, btScalar *_ell, btScalar *_tmp,
							 | 
						||
| 
								 | 
							
										bool *_state, int *_findex, int *p, int *c, btScalar **Arows);
							 | 
						||
| 
								 | 
							
									int getNub() const { return m_nub; }
							 | 
						||
| 
								 | 
							
									void transfer_i_to_C (int i);
							 | 
						||
| 
								 | 
							
									void transfer_i_to_N (int i) { m_nN++; }			// because we can assume C and N span 1:i-1
							 | 
						||
| 
								 | 
							
									void transfer_i_from_N_to_C (int i);
							 | 
						||
| 
								 | 
							
									void transfer_i_from_C_to_N (int i, btAlignedObjectArray<btScalar>& scratch);
							 | 
						||
| 
								 | 
							
									int numC() const { return m_nC; }
							 | 
						||
| 
								 | 
							
									int numN() const { return m_nN; }
							 | 
						||
| 
								 | 
							
									int indexC (int i) const { return i; }
							 | 
						||
| 
								 | 
							
									int indexN (int i) const { return i+m_nC; }
							 | 
						||
| 
								 | 
							
									btScalar Aii (int i) const  { return BTAROW(i)[i]; }
							 | 
						||
| 
								 | 
							
									btScalar AiC_times_qC (int i, btScalar *q) const { return btLargeDot (BTAROW(i), q, m_nC); }
							 | 
						||
| 
								 | 
							
									btScalar AiN_times_qN (int i, btScalar *q) const { return btLargeDot (BTAROW(i)+m_nC, q+m_nC, m_nN); }
							 | 
						||
| 
								 | 
							
									void pN_equals_ANC_times_qC (btScalar *p, btScalar *q);
							 | 
						||
| 
								 | 
							
									void pN_plusequals_ANi (btScalar *p, int i, int sign=1);
							 | 
						||
| 
								 | 
							
									void pC_plusequals_s_times_qC (btScalar *p, btScalar s, btScalar *q);
							 | 
						||
| 
								 | 
							
									void pN_plusequals_s_times_qN (btScalar *p, btScalar s, btScalar *q);
							 | 
						||
| 
								 | 
							
									void solve1 (btScalar *a, int i, int dir=1, int only_transfer=0);
							 | 
						||
| 
								 | 
							
									void unpermute();
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								btLCP::btLCP (int _n, int _nskip, int _nub, btScalar *_Adata, btScalar *_x, btScalar *_b, btScalar *_w,
							 | 
						||
| 
								 | 
							
								            btScalar *_lo, btScalar *_hi, btScalar *l, btScalar *_d,
							 | 
						||
| 
								 | 
							
								            btScalar *_Dell, btScalar *_ell, btScalar *_tmp,
							 | 
						||
| 
								 | 
							
								            bool *_state, int *_findex, int *p, int *c, btScalar **Arows):
							 | 
						||
| 
								 | 
							
								  m_n(_n), m_nskip(_nskip), m_nub(_nub), m_nC(0), m_nN(0),
							 | 
						||
| 
								 | 
							
								# ifdef BTROWPTRS
							 | 
						||
| 
								 | 
							
								  m_A(Arows),
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
								  m_A(_Adata),
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								  m_x(_x), m_b(_b), m_w(_w), m_lo(_lo), m_hi(_hi),
							 | 
						||
| 
								 | 
							
								  m_L(l), m_d(_d), m_Dell(_Dell), m_ell(_ell), m_tmp(_tmp),
							 | 
						||
| 
								 | 
							
								  m_state(_state), m_findex(_findex), m_p(p), m_C(c)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    btSetZero (m_x,m_n);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								# ifdef BTROWPTRS
							 | 
						||
| 
								 | 
							
								    // make matrix row pointers
							 | 
						||
| 
								 | 
							
								    btScalar *aptr = _Adata;
							 | 
						||
| 
								 | 
							
								    BTATYPE A = m_A;
							 | 
						||
| 
								 | 
							
								    const int n = m_n, nskip = m_nskip;
							 | 
						||
| 
								 | 
							
								    for (int k=0; k<n; aptr+=nskip, ++k) A[k] = aptr;
							 | 
						||
| 
								 | 
							
								# endif
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    int *p = m_p;
							 | 
						||
| 
								 | 
							
								    const int n = m_n;
							 | 
						||
| 
								 | 
							
								    for (int k=0; k<n; ++k) p[k]=k;		// initially unpermuted
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  /*
							 | 
						||
| 
								 | 
							
								  // for testing, we can do some random swaps in the area i > nub
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    const int n = m_n;
							 | 
						||
| 
								 | 
							
								    const int nub = m_nub;
							 | 
						||
| 
								 | 
							
								    if (nub < n) {
							 | 
						||
| 
								 | 
							
								    for (int k=0; k<100; k++) {
							 | 
						||
| 
								 | 
							
								      int i1,i2;
							 | 
						||
| 
								 | 
							
								      do {
							 | 
						||
| 
								 | 
							
								        i1 = dRandInt(n-nub)+nub;
							 | 
						||
| 
								 | 
							
								        i2 = dRandInt(n-nub)+nub;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      while (i1 > i2); 
							 | 
						||
| 
								 | 
							
								      //printf ("--> %d %d\n",i1,i2);
							 | 
						||
| 
								 | 
							
								      btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,n,i1,i2,m_nskip,0);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // permute the problem so that *all* the unbounded variables are at the
							 | 
						||
| 
								 | 
							
								  // start, i.e. look for unbounded variables not included in `nub'. we can
							 | 
						||
| 
								 | 
							
								  // potentially push up `nub' this way and get a bigger initial factorization.
							 | 
						||
| 
								 | 
							
								  // note that when we swap rows/cols here we must not just swap row pointers,
							 | 
						||
| 
								 | 
							
								  // as the initial factorization relies on the data being all in one chunk.
							 | 
						||
| 
								 | 
							
								  // variables that have findex >= 0 are *not* considered to be unbounded even
							 | 
						||
| 
								 | 
							
								  // if lo=-inf and hi=inf - this is because these limits may change during the
							 | 
						||
| 
								 | 
							
								  // solution process.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    int *findex = m_findex;
							 | 
						||
| 
								 | 
							
								    btScalar *lo = m_lo, *hi = m_hi;
							 | 
						||
| 
								 | 
							
								    const int n = m_n;
							 | 
						||
| 
								 | 
							
								    for (int k = m_nub; k<n; ++k) {
							 | 
						||
| 
								 | 
							
								      if (findex && findex[k] >= 0) continue;
							 | 
						||
| 
								 | 
							
								      if (lo[k]==-BT_INFINITY && hi[k]==BT_INFINITY) {
							 | 
						||
| 
								 | 
							
								        btSwapProblem (m_A,m_x,m_b,m_w,lo,hi,m_p,m_state,findex,n,m_nub,k,m_nskip,0);
							 | 
						||
| 
								 | 
							
								        m_nub++;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // if there are unbounded variables at the start, factorize A up to that
							 | 
						||
| 
								 | 
							
								  // point and solve for x. this puts all indexes 0..nub-1 into C.
							 | 
						||
| 
								 | 
							
								  if (m_nub > 0) {
							 | 
						||
| 
								 | 
							
								    const int nub = m_nub;
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								      btScalar *Lrow = m_L;
							 | 
						||
| 
								 | 
							
								      const int nskip = m_nskip;
							 | 
						||
| 
								 | 
							
								      for (int j=0; j<nub; Lrow+=nskip, ++j) memcpy(Lrow,BTAROW(j),(j+1)*sizeof(btScalar));
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    btFactorLDLT (m_L,m_d,nub,m_nskip);
							 | 
						||
| 
								 | 
							
								    memcpy (m_x,m_b,nub*sizeof(btScalar));
							 | 
						||
| 
								 | 
							
								    btSolveLDLT (m_L,m_d,m_x,nub,m_nskip);
							 | 
						||
| 
								 | 
							
								    btSetZero (m_w,nub);
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								      int *C = m_C;
							 | 
						||
| 
								 | 
							
								      for (int k=0; k<nub; ++k) C[k] = k;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    m_nC = nub;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // permute the indexes > nub such that all findex variables are at the end
							 | 
						||
| 
								 | 
							
								  if (m_findex) {
							 | 
						||
| 
								 | 
							
								    const int nub = m_nub;
							 | 
						||
| 
								 | 
							
								    int *findex = m_findex;
							 | 
						||
| 
								 | 
							
								    int num_at_end = 0;
							 | 
						||
| 
								 | 
							
								    for (int k=m_n-1; k >= nub; k--) {
							 | 
						||
| 
								 | 
							
								      if (findex[k] >= 0) {
							 | 
						||
| 
								 | 
							
								        btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,findex,m_n,k,m_n-1-num_at_end,m_nskip,1);
							 | 
						||
| 
								 | 
							
								        num_at_end++;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // print info about indexes
							 | 
						||
| 
								 | 
							
								  /*
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    const int n = m_n;
							 | 
						||
| 
								 | 
							
								    const int nub = m_nub;
							 | 
						||
| 
								 | 
							
								    for (int k=0; k<n; k++) {
							 | 
						||
| 
								 | 
							
								      if (k<nub) printf ("C");
							 | 
						||
| 
								 | 
							
								      else if (m_lo[k]==-BT_INFINITY && m_hi[k]==BT_INFINITY) printf ("c");
							 | 
						||
| 
								 | 
							
								      else printf (".");
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    printf ("\n");
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  */
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void btLCP::transfer_i_to_C (int i)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    if (m_nC > 0) {
							 | 
						||
| 
								 | 
							
								      // ell,Dell were computed by solve1(). note, ell = D \ L1solve (L,A(i,C))
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								        const int nC = m_nC;
							 | 
						||
| 
								 | 
							
								        btScalar *const Ltgt = m_L + nC*m_nskip, *ell = m_ell;
							 | 
						||
| 
								 | 
							
								        for (int j=0; j<nC; ++j) Ltgt[j] = ell[j];
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      const int nC = m_nC;
							 | 
						||
| 
								 | 
							
								      m_d[nC] = btRecip (BTAROW(i)[i] - btLargeDot(m_ell,m_Dell,nC));
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    else {
							 | 
						||
| 
								 | 
							
								      m_d[0] = btRecip (BTAROW(i)[i]);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,m_n,m_nC,i,m_nskip,1);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    const int nC = m_nC;
							 | 
						||
| 
								 | 
							
								    m_C[nC] = nC;
							 | 
						||
| 
								 | 
							
								    m_nC = nC + 1; // nC value is outdated after this line
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void btLCP::transfer_i_from_N_to_C (int i)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    if (m_nC > 0) {
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								        btScalar *const aptr = BTAROW(i);
							 | 
						||
| 
								 | 
							
								        btScalar *Dell = m_Dell;
							 | 
						||
| 
								 | 
							
								        const int *C = m_C;
							 | 
						||
| 
								 | 
							
								#   ifdef BTNUB_OPTIMIZATIONS
							 | 
						||
| 
								 | 
							
								        // if nub>0, initial part of aptr unpermuted
							 | 
						||
| 
								 | 
							
								        const int nub = m_nub;
							 | 
						||
| 
								 | 
							
								        int j=0;
							 | 
						||
| 
								 | 
							
								        for ( ; j<nub; ++j) Dell[j] = aptr[j];
							 | 
						||
| 
								 | 
							
								        const int nC = m_nC;
							 | 
						||
| 
								 | 
							
								        for ( ; j<nC; ++j) Dell[j] = aptr[C[j]];
							 | 
						||
| 
								 | 
							
								#   else
							 | 
						||
| 
								 | 
							
								        const int nC = m_nC;
							 | 
						||
| 
								 | 
							
								        for (int j=0; j<nC; ++j) Dell[j] = aptr[C[j]];
							 | 
						||
| 
								 | 
							
								#   endif
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      btSolveL1 (m_L,m_Dell,m_nC,m_nskip);
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								        const int nC = m_nC;
							 | 
						||
| 
								 | 
							
								        btScalar *const Ltgt = m_L + nC*m_nskip;
							 | 
						||
| 
								 | 
							
								        btScalar *ell = m_ell, *Dell = m_Dell, *d = m_d;
							 | 
						||
| 
								 | 
							
								        for (int j=0; j<nC; ++j) Ltgt[j] = ell[j] = Dell[j] * d[j];
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      const int nC = m_nC;
							 | 
						||
| 
								 | 
							
								      m_d[nC] = btRecip (BTAROW(i)[i] - btLargeDot(m_ell,m_Dell,nC));
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    else {
							 | 
						||
| 
								 | 
							
								      m_d[0] = btRecip (BTAROW(i)[i]);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,m_n,m_nC,i,m_nskip,1);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    const int nC = m_nC;
							 | 
						||
| 
								 | 
							
								    m_C[nC] = nC;
							 | 
						||
| 
								 | 
							
								    m_nN--;
							 | 
						||
| 
								 | 
							
								    m_nC = nC + 1; // nC value is outdated after this line
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // @@@ TO DO LATER
							 | 
						||
| 
								 | 
							
								  // if we just finish here then we'll go back and re-solve for
							 | 
						||
| 
								 | 
							
								  // delta_x. but actually we can be more efficient and incrementally
							 | 
						||
| 
								 | 
							
								  // update delta_x here. but if we do this, we wont have ell and Dell
							 | 
						||
| 
								 | 
							
								  // to use in updating the factorization later.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void btRemoveRowCol (btScalar *A, int n, int nskip, int r)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  btAssert(A && n > 0 && nskip >= n && r >= 0 && r < n);
							 | 
						||
| 
								 | 
							
								  if (r >= n-1) return;
							 | 
						||
| 
								 | 
							
								  if (r > 0) {
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								      const size_t move_size = (n-r-1)*sizeof(btScalar);
							 | 
						||
| 
								 | 
							
								      btScalar *Adst = A + r;
							 | 
						||
| 
								 | 
							
								      for (int i=0; i<r; Adst+=nskip,++i) {
							 | 
						||
| 
								 | 
							
								        btScalar *Asrc = Adst + 1;
							 | 
						||
| 
								 | 
							
								        memmove (Adst,Asrc,move_size);
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								      const size_t cpy_size = r*sizeof(btScalar);
							 | 
						||
| 
								 | 
							
								      btScalar *Adst = A + r * nskip;
							 | 
						||
| 
								 | 
							
								      for (int i=r; i<(n-1); ++i) {
							 | 
						||
| 
								 | 
							
								        btScalar *Asrc = Adst + nskip;
							 | 
						||
| 
								 | 
							
								        memcpy (Adst,Asrc,cpy_size);
							 | 
						||
| 
								 | 
							
								        Adst = Asrc;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    const size_t cpy_size = (n-r-1)*sizeof(btScalar);
							 | 
						||
| 
								 | 
							
								    btScalar *Adst = A + r * (nskip + 1);
							 | 
						||
| 
								 | 
							
								    for (int i=r; i<(n-1); ++i) {
							 | 
						||
| 
								 | 
							
								      btScalar *Asrc = Adst + (nskip + 1);
							 | 
						||
| 
								 | 
							
								      memcpy (Adst,Asrc,cpy_size);
							 | 
						||
| 
								 | 
							
								      Adst = Asrc - 1;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void btLDLTAddTL (btScalar *L, btScalar *d, const btScalar *a, int n, int nskip, btAlignedObjectArray<btScalar>& scratch)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  btAssert (L && d && a && n > 0 && nskip >= n);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  if (n < 2) return;
							 | 
						||
| 
								 | 
							
								  scratch.resize(2*nskip);
							 | 
						||
| 
								 | 
							
								  btScalar *W1 = &scratch[0];
							 | 
						||
| 
								 | 
							
								  
							 | 
						||
| 
								 | 
							
								  btScalar *W2 = W1 + nskip;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  W1[0] = btScalar(0.0);
							 | 
						||
| 
								 | 
							
								  W2[0] = btScalar(0.0);
							 | 
						||
| 
								 | 
							
								  for (int j=1; j<n; ++j) {
							 | 
						||
| 
								 | 
							
								    W1[j] = W2[j] = (btScalar) (a[j] * SIMDSQRT12);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  btScalar W11 = (btScalar) ((btScalar(0.5)*a[0]+1)*SIMDSQRT12);
							 | 
						||
| 
								 | 
							
								  btScalar W21 = (btScalar) ((btScalar(0.5)*a[0]-1)*SIMDSQRT12);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  btScalar alpha1 = btScalar(1.0);
							 | 
						||
| 
								 | 
							
								  btScalar alpha2 = btScalar(1.0);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    btScalar dee = d[0];
							 | 
						||
| 
								 | 
							
								    btScalar alphanew = alpha1 + (W11*W11)*dee;
							 | 
						||
| 
								 | 
							
								    btAssert(alphanew != btScalar(0.0));
							 | 
						||
| 
								 | 
							
								    dee /= alphanew;
							 | 
						||
| 
								 | 
							
								    btScalar gamma1 = W11 * dee;
							 | 
						||
| 
								 | 
							
								    dee *= alpha1;
							 | 
						||
| 
								 | 
							
								    alpha1 = alphanew;
							 | 
						||
| 
								 | 
							
								    alphanew = alpha2 - (W21*W21)*dee;
							 | 
						||
| 
								 | 
							
								    dee /= alphanew;
							 | 
						||
| 
								 | 
							
								    //btScalar gamma2 = W21 * dee;
							 | 
						||
| 
								 | 
							
								    alpha2 = alphanew;
							 | 
						||
| 
								 | 
							
								    btScalar k1 = btScalar(1.0) - W21*gamma1;
							 | 
						||
| 
								 | 
							
								    btScalar k2 = W21*gamma1*W11 - W21;
							 | 
						||
| 
								 | 
							
								    btScalar *ll = L + nskip;
							 | 
						||
| 
								 | 
							
								    for (int p=1; p<n; ll+=nskip, ++p) {
							 | 
						||
| 
								 | 
							
								      btScalar Wp = W1[p];
							 | 
						||
| 
								 | 
							
								      btScalar ell = *ll;
							 | 
						||
| 
								 | 
							
								      W1[p] =    Wp - W11*ell;
							 | 
						||
| 
								 | 
							
								      W2[p] = k1*Wp +  k2*ell;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  btScalar *ll = L + (nskip + 1);
							 | 
						||
| 
								 | 
							
								  for (int j=1; j<n; ll+=nskip+1, ++j) {
							 | 
						||
| 
								 | 
							
								    btScalar k1 = W1[j];
							 | 
						||
| 
								 | 
							
								    btScalar k2 = W2[j];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    btScalar dee = d[j];
							 | 
						||
| 
								 | 
							
								    btScalar alphanew = alpha1 + (k1*k1)*dee;
							 | 
						||
| 
								 | 
							
								    btAssert(alphanew != btScalar(0.0));
							 | 
						||
| 
								 | 
							
								    dee /= alphanew;
							 | 
						||
| 
								 | 
							
								    btScalar gamma1 = k1 * dee;
							 | 
						||
| 
								 | 
							
								    dee *= alpha1;
							 | 
						||
| 
								 | 
							
								    alpha1 = alphanew;
							 | 
						||
| 
								 | 
							
								    alphanew = alpha2 - (k2*k2)*dee;
							 | 
						||
| 
								 | 
							
								    dee /= alphanew;
							 | 
						||
| 
								 | 
							
								    btScalar gamma2 = k2 * dee;
							 | 
						||
| 
								 | 
							
								    dee *= alpha2;
							 | 
						||
| 
								 | 
							
								    d[j] = dee;
							 | 
						||
| 
								 | 
							
								    alpha2 = alphanew;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    btScalar *l = ll + nskip;
							 | 
						||
| 
								 | 
							
								    for (int p=j+1; p<n; l+=nskip, ++p) {
							 | 
						||
| 
								 | 
							
								      btScalar ell = *l;
							 | 
						||
| 
								 | 
							
								      btScalar Wp = W1[p] - k1 * ell;
							 | 
						||
| 
								 | 
							
								      ell += gamma1 * Wp;
							 | 
						||
| 
								 | 
							
								      W1[p] = Wp;
							 | 
						||
| 
								 | 
							
								      Wp = W2[p] - k2 * ell;
							 | 
						||
| 
								 | 
							
								      ell -= gamma2 * Wp;
							 | 
						||
| 
								 | 
							
								      W2[p] = Wp;
							 | 
						||
| 
								 | 
							
								      *l = ell;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define _BTGETA(i,j) (A[i][j])
							 | 
						||
| 
								 | 
							
								//#define _GETA(i,j) (A[(i)*nskip+(j)])
							 | 
						||
| 
								 | 
							
								#define BTGETA(i,j) ((i > j) ? _BTGETA(i,j) : _BTGETA(j,i))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline size_t btEstimateLDLTAddTLTmpbufSize(int nskip)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  return nskip * 2 * sizeof(btScalar);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void btLDLTRemove (btScalar **A, const int *p, btScalar *L, btScalar *d,
							 | 
						||
| 
								 | 
							
								    int n1, int n2, int r, int nskip, btAlignedObjectArray<btScalar>& scratch)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  btAssert(A && p && L && d && n1 > 0 && n2 > 0 && r >= 0 && r < n2 &&
							 | 
						||
| 
								 | 
							
									   n1 >= n2 && nskip >= n1);
							 | 
						||
| 
								 | 
							
								  #ifdef BT_DEBUG
							 | 
						||
| 
								 | 
							
									for (int i=0; i<n2; ++i) 
							 | 
						||
| 
								 | 
							
										btAssert(p[i] >= 0 && p[i] < n1);
							 | 
						||
| 
								 | 
							
								  #endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  if (r==n2-1) {
							 | 
						||
| 
								 | 
							
								    return;		// deleting last row/col is easy
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  else {
							 | 
						||
| 
								 | 
							
								    size_t LDLTAddTL_size = btEstimateLDLTAddTLTmpbufSize(nskip);
							 | 
						||
| 
								 | 
							
								    btAssert(LDLTAddTL_size % sizeof(btScalar) == 0);
							 | 
						||
| 
								 | 
							
									scratch.resize(nskip * 2+n2);
							 | 
						||
| 
								 | 
							
								    btScalar *tmp = &scratch[0];
							 | 
						||
| 
								 | 
							
								    if (r==0) {
							 | 
						||
| 
								 | 
							
								      btScalar *a = (btScalar *)((char *)tmp + LDLTAddTL_size);
							 | 
						||
| 
								 | 
							
								      const int p_0 = p[0];
							 | 
						||
| 
								 | 
							
								      for (int i=0; i<n2; ++i) {
							 | 
						||
| 
								 | 
							
								        a[i] = -BTGETA(p[i],p_0);
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      a[0] += btScalar(1.0);
							 | 
						||
| 
								 | 
							
								      btLDLTAddTL (L,d,a,n2,nskip,scratch);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    else {
							 | 
						||
| 
								 | 
							
								      btScalar *t = (btScalar *)((char *)tmp + LDLTAddTL_size);
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								        btScalar *Lcurr = L + r*nskip;
							 | 
						||
| 
								 | 
							
								        for (int i=0; i<r; ++Lcurr, ++i) {
							 | 
						||
| 
								 | 
							
								          btAssert(d[i] != btScalar(0.0));
							 | 
						||
| 
								 | 
							
								          t[i] = *Lcurr / d[i];
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      btScalar *a = t + r;
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								        btScalar *Lcurr = L + r*nskip;
							 | 
						||
| 
								 | 
							
								        const int *pp_r = p + r, p_r = *pp_r;
							 | 
						||
| 
								 | 
							
								        const int n2_minus_r = n2-r;
							 | 
						||
| 
								 | 
							
								        for (int i=0; i<n2_minus_r; Lcurr+=nskip,++i) {
							 | 
						||
| 
								 | 
							
								          a[i] = btLargeDot(Lcurr,t,r) - BTGETA(pp_r[i],p_r);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      a[0] += btScalar(1.0);
							 | 
						||
| 
								 | 
							
								      btLDLTAddTL (L + r*nskip+r, d+r, a, n2-r, nskip, scratch);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // snip out row/column r from L and d
							 | 
						||
| 
								 | 
							
								  btRemoveRowCol (L,n2,nskip,r);
							 | 
						||
| 
								 | 
							
								  if (r < (n2-1)) memmove (d+r,d+r+1,(n2-r-1)*sizeof(btScalar));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void btLCP::transfer_i_from_C_to_N (int i, btAlignedObjectArray<btScalar>& scratch)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    int *C = m_C;
							 | 
						||
| 
								 | 
							
								    // remove a row/column from the factorization, and adjust the
							 | 
						||
| 
								 | 
							
								    // indexes (black magic!)
							 | 
						||
| 
								 | 
							
								    int last_idx = -1;
							 | 
						||
| 
								 | 
							
								    const int nC = m_nC;
							 | 
						||
| 
								 | 
							
								    int j = 0;
							 | 
						||
| 
								 | 
							
								    for ( ; j<nC; ++j) {
							 | 
						||
| 
								 | 
							
								      if (C[j]==nC-1) {
							 | 
						||
| 
								 | 
							
								        last_idx = j;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      if (C[j]==i) {
							 | 
						||
| 
								 | 
							
								        btLDLTRemove (m_A,C,m_L,m_d,m_n,nC,j,m_nskip,scratch);
							 | 
						||
| 
								 | 
							
								        int k;
							 | 
						||
| 
								 | 
							
								        if (last_idx == -1) {
							 | 
						||
| 
								 | 
							
								          for (k=j+1 ; k<nC; ++k) {
							 | 
						||
| 
								 | 
							
								            if (C[k]==nC-1) {
							 | 
						||
| 
								 | 
							
								              break;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								          }
							 | 
						||
| 
								 | 
							
								          btAssert (k < nC);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else {
							 | 
						||
| 
								 | 
							
								          k = last_idx;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        C[k] = C[j];
							 | 
						||
| 
								 | 
							
								        if (j < (nC-1)) memmove (C+j,C+j+1,(nC-j-1)*sizeof(int));
							 | 
						||
| 
								 | 
							
								        break;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    btAssert (j < nC);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,m_n,i,nC-1,m_nskip,1);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    m_nN++;
							 | 
						||
| 
								 | 
							
								    m_nC = nC - 1; // nC value is outdated after this line
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void btLCP::pN_equals_ANC_times_qC (btScalar *p, btScalar *q)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  // we could try to make this matrix-vector multiplication faster using
							 | 
						||
| 
								 | 
							
								  // outer product matrix tricks, e.g. with the dMultidotX() functions.
							 | 
						||
| 
								 | 
							
								  // but i tried it and it actually made things slower on random 100x100
							 | 
						||
| 
								 | 
							
								  // problems because of the overhead involved. so we'll stick with the
							 | 
						||
| 
								 | 
							
								  // simple method for now.
							 | 
						||
| 
								 | 
							
								  const int nC = m_nC;
							 | 
						||
| 
								 | 
							
								  btScalar *ptgt = p + nC;
							 | 
						||
| 
								 | 
							
								  const int nN = m_nN;
							 | 
						||
| 
								 | 
							
								  for (int i=0; i<nN; ++i) {
							 | 
						||
| 
								 | 
							
								    ptgt[i] = btLargeDot (BTAROW(i+nC),q,nC);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void btLCP::pN_plusequals_ANi (btScalar *p, int i, int sign)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  const int nC = m_nC;
							 | 
						||
| 
								 | 
							
								  btScalar *aptr = BTAROW(i) + nC;
							 | 
						||
| 
								 | 
							
								  btScalar *ptgt = p + nC;
							 | 
						||
| 
								 | 
							
								  if (sign > 0) {
							 | 
						||
| 
								 | 
							
								    const int nN = m_nN;
							 | 
						||
| 
								 | 
							
								    for (int j=0; j<nN; ++j) ptgt[j] += aptr[j];
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  else {
							 | 
						||
| 
								 | 
							
								    const int nN = m_nN;
							 | 
						||
| 
								 | 
							
								    for (int j=0; j<nN; ++j) ptgt[j] -= aptr[j];
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void btLCP::pC_plusequals_s_times_qC (btScalar *p, btScalar s, btScalar *q)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  const int nC = m_nC;
							 | 
						||
| 
								 | 
							
								  for (int i=0; i<nC; ++i) {
							 | 
						||
| 
								 | 
							
								    p[i] += s*q[i];
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void btLCP::pN_plusequals_s_times_qN (btScalar *p, btScalar s, btScalar *q)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  const int nC = m_nC;
							 | 
						||
| 
								 | 
							
								  btScalar *ptgt = p + nC, *qsrc = q + nC;
							 | 
						||
| 
								 | 
							
								  const int nN = m_nN;
							 | 
						||
| 
								 | 
							
								  for (int i=0; i<nN; ++i) {
							 | 
						||
| 
								 | 
							
								    ptgt[i] += s*qsrc[i];
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void btLCP::solve1 (btScalar *a, int i, int dir, int only_transfer)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  // the `Dell' and `ell' that are computed here are saved. if index i is
							 | 
						||
| 
								 | 
							
								  // later added to the factorization then they can be reused.
							 | 
						||
| 
								 | 
							
								  //
							 | 
						||
| 
								 | 
							
								  // @@@ question: do we need to solve for entire delta_x??? yes, but
							 | 
						||
| 
								 | 
							
								  //     only if an x goes below 0 during the step.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  if (m_nC > 0) {
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								      btScalar *Dell = m_Dell;
							 | 
						||
| 
								 | 
							
								      int *C = m_C;
							 | 
						||
| 
								 | 
							
								      btScalar *aptr = BTAROW(i);
							 | 
						||
| 
								 | 
							
								#   ifdef BTNUB_OPTIMIZATIONS
							 | 
						||
| 
								 | 
							
								      // if nub>0, initial part of aptr[] is guaranteed unpermuted
							 | 
						||
| 
								 | 
							
								      const int nub = m_nub;
							 | 
						||
| 
								 | 
							
								      int j=0;
							 | 
						||
| 
								 | 
							
								      for ( ; j<nub; ++j) Dell[j] = aptr[j];
							 | 
						||
| 
								 | 
							
								      const int nC = m_nC;
							 | 
						||
| 
								 | 
							
								      for ( ; j<nC; ++j) Dell[j] = aptr[C[j]];
							 | 
						||
| 
								 | 
							
								#   else
							 | 
						||
| 
								 | 
							
								      const int nC = m_nC;
							 | 
						||
| 
								 | 
							
								      for (int j=0; j<nC; ++j) Dell[j] = aptr[C[j]];
							 | 
						||
| 
								 | 
							
								#   endif
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    btSolveL1 (m_L,m_Dell,m_nC,m_nskip);
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								      btScalar *ell = m_ell, *Dell = m_Dell, *d = m_d;
							 | 
						||
| 
								 | 
							
								      const int nC = m_nC;
							 | 
						||
| 
								 | 
							
								      for (int j=0; j<nC; ++j) ell[j] = Dell[j] * d[j];
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if (!only_transfer) {
							 | 
						||
| 
								 | 
							
								      btScalar *tmp = m_tmp, *ell = m_ell;
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								        const int nC = m_nC;
							 | 
						||
| 
								 | 
							
								        for (int j=0; j<nC; ++j) tmp[j] = ell[j];
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      btSolveL1T (m_L,tmp,m_nC,m_nskip);
							 | 
						||
| 
								 | 
							
								      if (dir > 0) {
							 | 
						||
| 
								 | 
							
								        int *C = m_C;
							 | 
						||
| 
								 | 
							
								        btScalar *tmp = m_tmp;
							 | 
						||
| 
								 | 
							
								        const int nC = m_nC;
							 | 
						||
| 
								 | 
							
								        for (int j=0; j<nC; ++j) a[C[j]] = -tmp[j];
							 | 
						||
| 
								 | 
							
								      } else {
							 | 
						||
| 
								 | 
							
								        int *C = m_C;
							 | 
						||
| 
								 | 
							
								        btScalar *tmp = m_tmp;
							 | 
						||
| 
								 | 
							
								        const int nC = m_nC;
							 | 
						||
| 
								 | 
							
								        for (int j=0; j<nC; ++j) a[C[j]] = tmp[j];
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void btLCP::unpermute()
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  // now we have to un-permute x and w
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    memcpy (m_tmp,m_x,m_n*sizeof(btScalar));
							 | 
						||
| 
								 | 
							
								    btScalar *x = m_x, *tmp = m_tmp;
							 | 
						||
| 
								 | 
							
								    const int *p = m_p;
							 | 
						||
| 
								 | 
							
								    const int n = m_n;
							 | 
						||
| 
								 | 
							
								    for (int j=0; j<n; ++j) x[p[j]] = tmp[j];
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    memcpy (m_tmp,m_w,m_n*sizeof(btScalar));
							 | 
						||
| 
								 | 
							
								    btScalar *w = m_w, *tmp = m_tmp;
							 | 
						||
| 
								 | 
							
								    const int *p = m_p;
							 | 
						||
| 
								 | 
							
								    const int n = m_n;
							 | 
						||
| 
								 | 
							
								    for (int j=0; j<n; ++j) w[p[j]] = tmp[j];
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif // btLCP_FAST
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//***************************************************************************
							 | 
						||
| 
								 | 
							
								// an optimized Dantzig LCP driver routine for the lo-hi LCP problem.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								bool btSolveDantzigLCP (int n, btScalar *A, btScalar *x, btScalar *b,
							 | 
						||
| 
								 | 
							
								                btScalar* outer_w, int nub, btScalar *lo, btScalar *hi, int *findex, btDantzigScratchMemory& scratchMem)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									s_error = false;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//	printf("btSolveDantzigLCP n=%d\n",n);
							 | 
						||
| 
								 | 
							
								  btAssert (n>0 && A && x && b && lo && hi && nub >= 0 && nub <= n);
							 | 
						||
| 
								 | 
							
								  btAssert(outer_w);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifdef BT_DEBUG
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    // check restrictions on lo and hi
							 | 
						||
| 
								 | 
							
								    for (int k=0; k<n; ++k) 
							 | 
						||
| 
								 | 
							
										btAssert (lo[k] <= 0 && hi[k] >= 0);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								# endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // if all the variables are unbounded then we can just factor, solve,
							 | 
						||
| 
								 | 
							
								  // and return
							 | 
						||
| 
								 | 
							
								  if (nub >= n) 
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								   
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    int nskip = (n);
							 | 
						||
| 
								 | 
							
								    btFactorLDLT (A, outer_w, n, nskip);
							 | 
						||
| 
								 | 
							
								    btSolveLDLT (A, outer_w, b, n, nskip);
							 | 
						||
| 
								 | 
							
								    memcpy (x, b, n*sizeof(btScalar));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return !s_error;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  const int nskip = (n);
							 | 
						||
| 
								 | 
							
								  scratchMem.L.resize(n*nskip);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  scratchMem.d.resize(n);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  btScalar *w = outer_w;
							 | 
						||
| 
								 | 
							
								  scratchMem.delta_w.resize(n);
							 | 
						||
| 
								 | 
							
								  scratchMem.delta_x.resize(n);
							 | 
						||
| 
								 | 
							
								  scratchMem.Dell.resize(n);
							 | 
						||
| 
								 | 
							
								  scratchMem.ell.resize(n);
							 | 
						||
| 
								 | 
							
								  scratchMem.Arows.resize(n);
							 | 
						||
| 
								 | 
							
								  scratchMem.p.resize(n);
							 | 
						||
| 
								 | 
							
								  scratchMem.C.resize(n);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // for i in N, state[i] is 0 if x(i)==lo(i) or 1 if x(i)==hi(i)
							 | 
						||
| 
								 | 
							
								  scratchMem.state.resize(n);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // create LCP object. note that tmp is set to delta_w to save space, this
							 | 
						||
| 
								 | 
							
								  // optimization relies on knowledge of how tmp is used, so be careful!
							 | 
						||
| 
								 | 
							
								  btLCP lcp(n,nskip,nub,A,x,b,w,lo,hi,&scratchMem.L[0],&scratchMem.d[0],&scratchMem.Dell[0],&scratchMem.ell[0],&scratchMem.delta_w[0],&scratchMem.state[0],findex,&scratchMem.p[0],&scratchMem.C[0],&scratchMem.Arows[0]);
							 | 
						||
| 
								 | 
							
								  int adj_nub = lcp.getNub();
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // loop over all indexes adj_nub..n-1. for index i, if x(i),w(i) satisfy the
							 | 
						||
| 
								 | 
							
								  // LCP conditions then i is added to the appropriate index set. otherwise
							 | 
						||
| 
								 | 
							
								  // x(i),w(i) is driven either +ve or -ve to force it to the valid region.
							 | 
						||
| 
								 | 
							
								  // as we drive x(i), x(C) is also adjusted to keep w(C) at zero.
							 | 
						||
| 
								 | 
							
								  // while driving x(i) we maintain the LCP conditions on the other variables
							 | 
						||
| 
								 | 
							
								  // 0..i-1. we do this by watching out for other x(i),w(i) values going
							 | 
						||
| 
								 | 
							
								  // outside the valid region, and then switching them between index sets
							 | 
						||
| 
								 | 
							
								  // when that happens.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  bool hit_first_friction_index = false;
							 | 
						||
| 
								 | 
							
								  for (int i=adj_nub; i<n; ++i) 
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    s_error = false;
							 | 
						||
| 
								 | 
							
								    // the index i is the driving index and indexes i+1..n-1 are "dont care",
							 | 
						||
| 
								 | 
							
								    // i.e. when we make changes to the system those x's will be zero and we
							 | 
						||
| 
								 | 
							
								    // don't care what happens to those w's. in other words, we only consider
							 | 
						||
| 
								 | 
							
								    // an (i+1)*(i+1) sub-problem of A*x=b+w.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // if we've hit the first friction index, we have to compute the lo and
							 | 
						||
| 
								 | 
							
								    // hi values based on the values of x already computed. we have been
							 | 
						||
| 
								 | 
							
								    // permuting the indexes, so the values stored in the findex vector are
							 | 
						||
| 
								 | 
							
								    // no longer valid. thus we have to temporarily unpermute the x vector. 
							 | 
						||
| 
								 | 
							
								    // for the purposes of this computation, 0*infinity = 0 ... so if the
							 | 
						||
| 
								 | 
							
								    // contact constraint's normal force is 0, there should be no tangential
							 | 
						||
| 
								 | 
							
								    // force applied.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if (!hit_first_friction_index && findex && findex[i] >= 0) {
							 | 
						||
| 
								 | 
							
								      // un-permute x into delta_w, which is not being used at the moment
							 | 
						||
| 
								 | 
							
								      for (int j=0; j<n; ++j) scratchMem.delta_w[scratchMem.p[j]] = x[j];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      // set lo and hi values
							 | 
						||
| 
								 | 
							
								      for (int k=i; k<n; ++k) {
							 | 
						||
| 
								 | 
							
								        btScalar wfk = scratchMem.delta_w[findex[k]];
							 | 
						||
| 
								 | 
							
								        if (wfk == 0) {
							 | 
						||
| 
								 | 
							
								          hi[k] = 0;
							 | 
						||
| 
								 | 
							
								          lo[k] = 0;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else {
							 | 
						||
| 
								 | 
							
								          hi[k] = btFabs (hi[k] * wfk);
							 | 
						||
| 
								 | 
							
								          lo[k] = -hi[k];
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      hit_first_friction_index = true;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // thus far we have not even been computing the w values for indexes
							 | 
						||
| 
								 | 
							
								    // greater than i, so compute w[i] now.
							 | 
						||
| 
								 | 
							
								    w[i] = lcp.AiC_times_qC (i,x) + lcp.AiN_times_qN (i,x) - b[i];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // if lo=hi=0 (which can happen for tangential friction when normals are
							 | 
						||
| 
								 | 
							
								    // 0) then the index will be assigned to set N with some state. however,
							 | 
						||
| 
								 | 
							
								    // set C's line has zero size, so the index will always remain in set N.
							 | 
						||
| 
								 | 
							
								    // with the "normal" switching logic, if w changed sign then the index
							 | 
						||
| 
								 | 
							
								    // would have to switch to set C and then back to set N with an inverted
							 | 
						||
| 
								 | 
							
								    // state. this is pointless, and also computationally expensive. to
							 | 
						||
| 
								 | 
							
								    // prevent this from happening, we use the rule that indexes with lo=hi=0
							 | 
						||
| 
								 | 
							
								    // will never be checked for set changes. this means that the state for
							 | 
						||
| 
								 | 
							
								    // these indexes may be incorrect, but that doesn't matter.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // see if x(i),w(i) is in a valid region
							 | 
						||
| 
								 | 
							
								    if (lo[i]==0 && w[i] >= 0) {
							 | 
						||
| 
								 | 
							
								      lcp.transfer_i_to_N (i);
							 | 
						||
| 
								 | 
							
								      scratchMem.state[i] = false;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    else if (hi[i]==0 && w[i] <= 0) {
							 | 
						||
| 
								 | 
							
								      lcp.transfer_i_to_N (i);
							 | 
						||
| 
								 | 
							
								      scratchMem.state[i] = true;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    else if (w[i]==0) {
							 | 
						||
| 
								 | 
							
								      // this is a degenerate case. by the time we get to this test we know
							 | 
						||
| 
								 | 
							
								      // that lo != 0, which means that lo < 0 as lo is not allowed to be +ve,
							 | 
						||
| 
								 | 
							
								      // and similarly that hi > 0. this means that the line segment
							 | 
						||
| 
								 | 
							
								      // corresponding to set C is at least finite in extent, and we are on it.
							 | 
						||
| 
								 | 
							
								      // NOTE: we must call lcp.solve1() before lcp.transfer_i_to_C()
							 | 
						||
| 
								 | 
							
								      lcp.solve1 (&scratchMem.delta_x[0],i,0,1);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      lcp.transfer_i_to_C (i);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    else {
							 | 
						||
| 
								 | 
							
								      // we must push x(i) and w(i)
							 | 
						||
| 
								 | 
							
								      for (;;) {
							 | 
						||
| 
								 | 
							
								        int dir;
							 | 
						||
| 
								 | 
							
								        btScalar dirf;
							 | 
						||
| 
								 | 
							
								        // find direction to push on x(i)
							 | 
						||
| 
								 | 
							
								        if (w[i] <= 0) {
							 | 
						||
| 
								 | 
							
								          dir = 1;
							 | 
						||
| 
								 | 
							
								          dirf = btScalar(1.0);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else {
							 | 
						||
| 
								 | 
							
								          dir = -1;
							 | 
						||
| 
								 | 
							
								          dirf = btScalar(-1.0);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        // compute: delta_x(C) = -dir*A(C,C)\A(C,i)
							 | 
						||
| 
								 | 
							
								        lcp.solve1 (&scratchMem.delta_x[0],i,dir);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        // note that delta_x[i] = dirf, but we wont bother to set it
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        // compute: delta_w = A*delta_x ... note we only care about
							 | 
						||
| 
								 | 
							
								        // delta_w(N) and delta_w(i), the rest is ignored
							 | 
						||
| 
								 | 
							
								        lcp.pN_equals_ANC_times_qC (&scratchMem.delta_w[0],&scratchMem.delta_x[0]);
							 | 
						||
| 
								 | 
							
								        lcp.pN_plusequals_ANi (&scratchMem.delta_w[0],i,dir);
							 | 
						||
| 
								 | 
							
								        scratchMem.delta_w[i] = lcp.AiC_times_qC (i,&scratchMem.delta_x[0]) + lcp.Aii(i)*dirf;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        // find largest step we can take (size=s), either to drive x(i),w(i)
							 | 
						||
| 
								 | 
							
								        // to the valid LCP region or to drive an already-valid variable
							 | 
						||
| 
								 | 
							
								        // outside the valid region.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        int cmd = 1;		// index switching command
							 | 
						||
| 
								 | 
							
								        int si = 0;		// si = index to switch if cmd>3
							 | 
						||
| 
								 | 
							
								        btScalar s = -w[i]/scratchMem.delta_w[i];
							 | 
						||
| 
								 | 
							
								        if (dir > 0) {
							 | 
						||
| 
								 | 
							
								          if (hi[i] < BT_INFINITY) {
							 | 
						||
| 
								 | 
							
								            btScalar s2 = (hi[i]-x[i])*dirf;	// was (hi[i]-x[i])/dirf	// step to x(i)=hi(i)
							 | 
						||
| 
								 | 
							
								            if (s2 < s) {
							 | 
						||
| 
								 | 
							
								              s = s2;
							 | 
						||
| 
								 | 
							
								              cmd = 3;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								          }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else {
							 | 
						||
| 
								 | 
							
								          if (lo[i] > -BT_INFINITY) {
							 | 
						||
| 
								 | 
							
								            btScalar s2 = (lo[i]-x[i])*dirf;	// was (lo[i]-x[i])/dirf	// step to x(i)=lo(i)
							 | 
						||
| 
								 | 
							
								            if (s2 < s) {
							 | 
						||
| 
								 | 
							
								              s = s2;
							 | 
						||
| 
								 | 
							
								              cmd = 2;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								          }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        {
							 | 
						||
| 
								 | 
							
								          const int numN = lcp.numN();
							 | 
						||
| 
								 | 
							
								          for (int k=0; k < numN; ++k) {
							 | 
						||
| 
								 | 
							
								            const int indexN_k = lcp.indexN(k);
							 | 
						||
| 
								 | 
							
								            if (!scratchMem.state[indexN_k] ? scratchMem.delta_w[indexN_k] < 0 : scratchMem.delta_w[indexN_k] > 0) {
							 | 
						||
| 
								 | 
							
								                // don't bother checking if lo=hi=0
							 | 
						||
| 
								 | 
							
								                if (lo[indexN_k] == 0 && hi[indexN_k] == 0) continue;
							 | 
						||
| 
								 | 
							
								                btScalar s2 = -w[indexN_k] / scratchMem.delta_w[indexN_k];
							 | 
						||
| 
								 | 
							
								                if (s2 < s) {
							 | 
						||
| 
								 | 
							
								                  s = s2;
							 | 
						||
| 
								 | 
							
								                  cmd = 4;
							 | 
						||
| 
								 | 
							
								                  si = indexN_k;
							 | 
						||
| 
								 | 
							
								                }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								          }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        {
							 | 
						||
| 
								 | 
							
								          const int numC = lcp.numC();
							 | 
						||
| 
								 | 
							
								          for (int k=adj_nub; k < numC; ++k) {
							 | 
						||
| 
								 | 
							
								            const int indexC_k = lcp.indexC(k);
							 | 
						||
| 
								 | 
							
								            if (scratchMem.delta_x[indexC_k] < 0 && lo[indexC_k] > -BT_INFINITY) {
							 | 
						||
| 
								 | 
							
								              btScalar s2 = (lo[indexC_k]-x[indexC_k]) / scratchMem.delta_x[indexC_k];
							 | 
						||
| 
								 | 
							
								              if (s2 < s) {
							 | 
						||
| 
								 | 
							
								                s = s2;
							 | 
						||
| 
								 | 
							
								                cmd = 5;
							 | 
						||
| 
								 | 
							
								                si = indexC_k;
							 | 
						||
| 
								 | 
							
								              }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            if (scratchMem.delta_x[indexC_k] > 0 && hi[indexC_k] < BT_INFINITY) {
							 | 
						||
| 
								 | 
							
								              btScalar s2 = (hi[indexC_k]-x[indexC_k]) / scratchMem.delta_x[indexC_k];
							 | 
						||
| 
								 | 
							
								              if (s2 < s) {
							 | 
						||
| 
								 | 
							
								                s = s2;
							 | 
						||
| 
								 | 
							
								                cmd = 6;
							 | 
						||
| 
								 | 
							
								                si = indexC_k;
							 | 
						||
| 
								 | 
							
								              }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								          }
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        //static char* cmdstring[8] = {0,"->C","->NL","->NH","N->C",
							 | 
						||
| 
								 | 
							
								        //			     "C->NL","C->NH"};
							 | 
						||
| 
								 | 
							
								        //printf ("cmd=%d (%s), si=%d\n",cmd,cmdstring[cmd],(cmd>3) ? si : i);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        // if s <= 0 then we've got a problem. if we just keep going then
							 | 
						||
| 
								 | 
							
								        // we're going to get stuck in an infinite loop. instead, just cross
							 | 
						||
| 
								 | 
							
								        // our fingers and exit with the current solution.
							 | 
						||
| 
								 | 
							
								        if (s <= btScalar(0.0)) 
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
								//          printf("LCP internal error, s <= 0 (s=%.4e)",(double)s);
							 | 
						||
| 
								 | 
							
								          if (i < n) {
							 | 
						||
| 
								 | 
							
								            btSetZero (x+i,n-i);
							 | 
						||
| 
								 | 
							
								            btSetZero (w+i,n-i);
							 | 
						||
| 
								 | 
							
								          }
							 | 
						||
| 
								 | 
							
								          s_error = true;
							 | 
						||
| 
								 | 
							
								          break;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        // apply x = x + s * delta_x
							 | 
						||
| 
								 | 
							
								        lcp.pC_plusequals_s_times_qC (x, s, &scratchMem.delta_x[0]);
							 | 
						||
| 
								 | 
							
								        x[i] += s * dirf;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        // apply w = w + s * delta_w
							 | 
						||
| 
								 | 
							
								        lcp.pN_plusequals_s_times_qN (w, s, &scratchMem.delta_w[0]);
							 | 
						||
| 
								 | 
							
								        w[i] += s * scratchMem.delta_w[i];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//        void *tmpbuf;
							 | 
						||
| 
								 | 
							
								        // switch indexes between sets if necessary
							 | 
						||
| 
								 | 
							
								        switch (cmd) {
							 | 
						||
| 
								 | 
							
								        case 1:		// done
							 | 
						||
| 
								 | 
							
								          w[i] = 0;
							 | 
						||
| 
								 | 
							
								          lcp.transfer_i_to_C (i);
							 | 
						||
| 
								 | 
							
								          break;
							 | 
						||
| 
								 | 
							
								        case 2:		// done
							 | 
						||
| 
								 | 
							
								          x[i] = lo[i];
							 | 
						||
| 
								 | 
							
								          scratchMem.state[i] = false;
							 | 
						||
| 
								 | 
							
								          lcp.transfer_i_to_N (i);
							 | 
						||
| 
								 | 
							
								          break;
							 | 
						||
| 
								 | 
							
								        case 3:		// done
							 | 
						||
| 
								 | 
							
								          x[i] = hi[i];
							 | 
						||
| 
								 | 
							
								          scratchMem.state[i] = true;
							 | 
						||
| 
								 | 
							
								          lcp.transfer_i_to_N (i);
							 | 
						||
| 
								 | 
							
								          break;
							 | 
						||
| 
								 | 
							
								        case 4:		// keep going
							 | 
						||
| 
								 | 
							
								          w[si] = 0;
							 | 
						||
| 
								 | 
							
								          lcp.transfer_i_from_N_to_C (si);
							 | 
						||
| 
								 | 
							
								          break;
							 | 
						||
| 
								 | 
							
								        case 5:		// keep going
							 | 
						||
| 
								 | 
							
								          x[si] = lo[si];
							 | 
						||
| 
								 | 
							
								          scratchMem.state[si] = false;
							 | 
						||
| 
								 | 
							
										  lcp.transfer_i_from_C_to_N (si, scratchMem.m_scratch);
							 | 
						||
| 
								 | 
							
								          break;
							 | 
						||
| 
								 | 
							
								        case 6:		// keep going
							 | 
						||
| 
								 | 
							
								          x[si] = hi[si];
							 | 
						||
| 
								 | 
							
								          scratchMem.state[si] = true;
							 | 
						||
| 
								 | 
							
								          lcp.transfer_i_from_C_to_N (si, scratchMem.m_scratch);
							 | 
						||
| 
								 | 
							
								          break;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if (cmd <= 3) break;
							 | 
						||
| 
								 | 
							
								      } // for (;;)
							 | 
						||
| 
								 | 
							
								    } // else
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if (s_error) 
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
								      break;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  } // for (int i=adj_nub; i<n; ++i)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  lcp.unpermute();
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  return !s_error;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 |