161 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			161 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								Bullet Continuous Collision Detection and Physics Library
							 | 
						||
| 
								 | 
							
								Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								This software is provided 'as-is', without any express or implied warranty.
							 | 
						||
| 
								 | 
							
								In no event will the authors be held liable for any damages arising from the use of this software.
							 | 
						||
| 
								 | 
							
								Permission is granted to anyone to use this software for any purpose, 
							 | 
						||
| 
								 | 
							
								including commercial applications, and to alter it and redistribute it freely, 
							 | 
						||
| 
								 | 
							
								subject to the following restrictions:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
							 | 
						||
| 
								 | 
							
								2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
							 | 
						||
| 
								 | 
							
								3. This notice may not be removed or altered from any source distribution.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "btSubSimplexConvexCast.h"
							 | 
						||
| 
								 | 
							
								#include "BulletCollision/CollisionShapes/btConvexShape.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "BulletCollision/CollisionShapes/btMinkowskiSumShape.h"
							 | 
						||
| 
								 | 
							
								#include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h"
							 | 
						||
| 
								 | 
							
								#include "btPointCollector.h"
							 | 
						||
| 
								 | 
							
								#include "LinearMath/btTransformUtil.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								btSubsimplexConvexCast::btSubsimplexConvexCast (const btConvexShape* convexA,const btConvexShape* convexB,btSimplexSolverInterface* simplexSolver)
							 | 
						||
| 
								 | 
							
								:m_simplexSolver(simplexSolver),
							 | 
						||
| 
								 | 
							
								m_convexA(convexA),m_convexB(convexB)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								///Typically the conservative advancement reaches solution in a few iterations, clip it to 32 for degenerate cases.
							 | 
						||
| 
								 | 
							
								///See discussion about this here http://continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=565
							 | 
						||
| 
								 | 
							
								#ifdef BT_USE_DOUBLE_PRECISION
							 | 
						||
| 
								 | 
							
								#define MAX_ITERATIONS 64
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
								#define MAX_ITERATIONS 32
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								bool	btSubsimplexConvexCast::calcTimeOfImpact(
							 | 
						||
| 
								 | 
							
										const btTransform& fromA,
							 | 
						||
| 
								 | 
							
										const btTransform& toA,
							 | 
						||
| 
								 | 
							
										const btTransform& fromB,
							 | 
						||
| 
								 | 
							
										const btTransform& toB,
							 | 
						||
| 
								 | 
							
										CastResult& result)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									m_simplexSolver->reset();
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									btVector3 linVelA,linVelB;
							 | 
						||
| 
								 | 
							
									linVelA = toA.getOrigin()-fromA.getOrigin();
							 | 
						||
| 
								 | 
							
									linVelB = toB.getOrigin()-fromB.getOrigin();
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									btScalar lambda = btScalar(0.);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									btTransform interpolatedTransA = fromA;
							 | 
						||
| 
								 | 
							
									btTransform interpolatedTransB = fromB;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									///take relative motion
							 | 
						||
| 
								 | 
							
									btVector3 r = (linVelA-linVelB);
							 | 
						||
| 
								 | 
							
									btVector3 v;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									btVector3 supVertexA = fromA(m_convexA->localGetSupportingVertex(-r*fromA.getBasis()));
							 | 
						||
| 
								 | 
							
									btVector3 supVertexB = fromB(m_convexB->localGetSupportingVertex(r*fromB.getBasis()));
							 | 
						||
| 
								 | 
							
									v = supVertexA-supVertexB;
							 | 
						||
| 
								 | 
							
									int maxIter = MAX_ITERATIONS;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									btVector3 n;
							 | 
						||
| 
								 | 
							
									n.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									btVector3 c;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									btScalar dist2 = v.length2();
							 | 
						||
| 
								 | 
							
								#ifdef BT_USE_DOUBLE_PRECISION
							 | 
						||
| 
								 | 
							
									btScalar epsilon = btScalar(0.0001);
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
									btScalar epsilon = btScalar(0.0001);
							 | 
						||
| 
								 | 
							
								#endif //BT_USE_DOUBLE_PRECISION
							 | 
						||
| 
								 | 
							
									btVector3	w,p;
							 | 
						||
| 
								 | 
							
									btScalar VdotR;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									while ( (dist2 > epsilon) && maxIter--)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										supVertexA = interpolatedTransA(m_convexA->localGetSupportingVertex(-v*interpolatedTransA.getBasis()));
							 | 
						||
| 
								 | 
							
										supVertexB = interpolatedTransB(m_convexB->localGetSupportingVertex(v*interpolatedTransB.getBasis()));
							 | 
						||
| 
								 | 
							
										w = supVertexA-supVertexB;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										btScalar VdotW = v.dot(w);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										if (lambda > btScalar(1.0))
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											return false;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										if ( VdotW > btScalar(0.))
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											VdotR = v.dot(r);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											if (VdotR >= -(SIMD_EPSILON*SIMD_EPSILON))
							 | 
						||
| 
								 | 
							
												return false;
							 | 
						||
| 
								 | 
							
											else
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												lambda = lambda - VdotW / VdotR;
							 | 
						||
| 
								 | 
							
												//interpolate to next lambda
							 | 
						||
| 
								 | 
							
												//	x = s + lambda * r;
							 | 
						||
| 
								 | 
							
												interpolatedTransA.getOrigin().setInterpolate3(fromA.getOrigin(),toA.getOrigin(),lambda);
							 | 
						||
| 
								 | 
							
												interpolatedTransB.getOrigin().setInterpolate3(fromB.getOrigin(),toB.getOrigin(),lambda);
							 | 
						||
| 
								 | 
							
												//m_simplexSolver->reset();
							 | 
						||
| 
								 | 
							
												//check next line
							 | 
						||
| 
								 | 
							
												 w = supVertexA-supVertexB;
							 | 
						||
| 
								 | 
							
												
							 | 
						||
| 
								 | 
							
												n = v;
							 | 
						||
| 
								 | 
							
												
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										} 
							 | 
						||
| 
								 | 
							
										///Just like regular GJK only add the vertex if it isn't already (close) to current vertex, it would lead to divisions by zero and NaN etc.
							 | 
						||
| 
								 | 
							
										if (!m_simplexSolver->inSimplex(w))
							 | 
						||
| 
								 | 
							
											m_simplexSolver->addVertex( w, supVertexA , supVertexB);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										if (m_simplexSolver->closest(v))
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											dist2 = v.length2();
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											//todo: check this normal for validity
							 | 
						||
| 
								 | 
							
											//n=v;
							 | 
						||
| 
								 | 
							
											//printf("V=%f , %f, %f\n",v[0],v[1],v[2]);
							 | 
						||
| 
								 | 
							
											//printf("DIST2=%f\n",dist2);
							 | 
						||
| 
								 | 
							
											//printf("numverts = %i\n",m_simplexSolver->numVertices());
							 | 
						||
| 
								 | 
							
										} else
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											dist2 = btScalar(0.);
							 | 
						||
| 
								 | 
							
										} 
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									//int numiter = MAX_ITERATIONS - maxIter;
							 | 
						||
| 
								 | 
							
								//	printf("number of iterations: %d", numiter);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									//don't report a time of impact when moving 'away' from the hitnormal
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									result.m_fraction = lambda;
							 | 
						||
| 
								 | 
							
									if (n.length2() >= (SIMD_EPSILON*SIMD_EPSILON))
							 | 
						||
| 
								 | 
							
										result.m_normal = n.normalized();
							 | 
						||
| 
								 | 
							
									else
							 | 
						||
| 
								 | 
							
										result.m_normal = btVector3(btScalar(0.0), btScalar(0.0), btScalar(0.0));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									//don't report time of impact for motion away from the contact normal (or causes minor penetration)
							 | 
						||
| 
								 | 
							
									if (result.m_normal.dot(r)>=-result.m_allowedPenetration)
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									btVector3 hitA,hitB;
							 | 
						||
| 
								 | 
							
									m_simplexSolver->compute_points(hitA,hitB);
							 | 
						||
| 
								 | 
							
									result.m_hitPoint=hitB;
							 | 
						||
| 
								 | 
							
									return true;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 |