245 lines
7.5 KiB
Python
Raw Normal View History

2025-01-22 16:18:30 +01:00
from .pack_algo import PackingAlgorithm
from .geometry import Rectangle
import itertools
import collections
import operator
first_item = operator.itemgetter(0)
class MaxRects(PackingAlgorithm):
def __init__(self, width, height, rot=True, *args, **kwargs):
super(MaxRects, self).__init__(width, height, rot, *args, **kwargs)
def _rect_fitness(self, max_rect, width, height):
"""
Arguments:
max_rect (Rectangle): Destination max_rect
width (int, float): Rectangle width
height (int, float): Rectangle height
Returns:
None: Rectangle couldn't be placed into max_rect
integer, float: fitness value
"""
if width <= max_rect.width and height <= max_rect.height:
return 0
else:
return None
def _select_position(self, w, h):
"""
Find max_rect with best fitness for placing a rectangle
of dimentsions w*h
Arguments:
w (int, float): Rectangle width
h (int, float): Rectangle height
Returns:
(rect, max_rect)
rect (Rectangle): Placed rectangle or None if was unable.
max_rect (Rectangle): Maximal rectangle were rect was placed
"""
if not self._max_rects:
return None, None
# Normal rectangle
fitn = ((self._rect_fitness(m, w, h), w, h, m) for m in self._max_rects
if self._rect_fitness(m, w, h) is not None)
# Rotated rectangle
fitr = ((self._rect_fitness(m, h, w), h, w, m) for m in self._max_rects
if self._rect_fitness(m, h, w) is not None)
if not self.rot:
fitr = []
fit = itertools.chain(fitn, fitr)
try:
_, w, h, m = min(fit, key=first_item)
except ValueError:
return None, None
return Rectangle(m.x, m.y, w, h), m
def _generate_splits(self, m, r):
"""
When a rectangle is placed inside a maximal rectangle, it stops being one
and up to 4 new maximal rectangles may appear depending on the placement.
_generate_splits calculates them.
Arguments:
m (Rectangle): max_rect rectangle
r (Rectangle): rectangle placed
Returns:
list : list containing new maximal rectangles or an empty list
"""
new_rects = []
if r.left > m.left:
new_rects.append(Rectangle(m.left, m.bottom, r.left-m.left, m.height))
if r.right < m.right:
new_rects.append(Rectangle(r.right, m.bottom, m.right-r.right, m.height))
if r.top < m.top:
new_rects.append(Rectangle(m.left, r.top, m.width, m.top-r.top))
if r.bottom > m.bottom:
new_rects.append(Rectangle(m.left, m.bottom, m.width, r.bottom-m.bottom))
return new_rects
def _split(self, rect):
"""
Split all max_rects intersecting the rectangle rect into up to
4 new max_rects.
Arguments:
rect (Rectangle): Rectangle
Returns:
split (Rectangle list): List of rectangles resulting from the split
"""
max_rects = collections.deque()
for r in self._max_rects:
if r.intersects(rect):
max_rects.extend(self._generate_splits(r, rect))
else:
max_rects.append(r)
# Add newly generated max_rects
self._max_rects = list(max_rects)
def _remove_duplicates(self):
"""
Remove every maximal rectangle contained by another one.
"""
contained = set()
for m1, m2 in itertools.combinations(self._max_rects, 2):
if m1.contains(m2):
contained.add(m2)
elif m2.contains(m1):
contained.add(m1)
# Remove from max_rects
self._max_rects = [m for m in self._max_rects if m not in contained]
def fitness(self, width, height):
"""
Metric used to rate how much space is wasted if a rectangle is placed.
Returns a value greater or equal to zero, the smaller the value the more
'fit' is the rectangle. If the rectangle can't be placed, returns None.
Arguments:
width (int, float): Rectangle width
height (int, float): Rectangle height
Returns:
int, float: Rectangle fitness
None: Rectangle can't be placed
"""
assert(width > 0 and height > 0)
rect, max_rect = self._select_position(width, height)
if rect is None:
return None
# Return fitness
return self._rect_fitness(max_rect, rect.width, rect.height)
def add_rect(self, width, height, rid=None):
"""
Add rectangle of widthxheight dimensions.
Arguments:
width (int, float): Rectangle width
height (int, float): Rectangle height
rid: Optional rectangle user id
Returns:
Rectangle: Rectangle with placemente coordinates
None: If the rectangle couldn be placed.
"""
assert(width > 0 and height >0)
# Search best position and orientation
rect, _ = self._select_position(width, height)
if not rect:
return None
# Subdivide all the max rectangles intersecting with the selected
# rectangle.
self._split(rect)
# Remove any max_rect contained by another
self._remove_duplicates()
# Store and return rectangle position.
rect.rid = rid
self.rectangles.append(rect)
return rect
def reset(self):
super(MaxRects, self).reset()
self._max_rects = [Rectangle(0, 0, self.width, self.height)]
class MaxRectsBl(MaxRects):
def _select_position(self, w, h):
"""
Select the position where the y coordinate of the top of the rectangle
is lower, if there are severtal pick the one with the smallest x
coordinate
"""
fitn = ((m.y+h, m.x, w, h, m) for m in self._max_rects
if self._rect_fitness(m, w, h) is not None)
fitr = ((m.y+w, m.x, h, w, m) for m in self._max_rects
if self._rect_fitness(m, h, w) is not None)
if not self.rot:
fitr = []
fit = itertools.chain(fitn, fitr)
try:
_, _, w, h, m = min(fit, key=first_item)
except ValueError:
return None, None
return Rectangle(m.x, m.y, w, h), m
class MaxRectsBssf(MaxRects):
"""Best Sort Side Fit minimize short leftover side"""
def _rect_fitness(self, max_rect, width, height):
if width > max_rect.width or height > max_rect.height:
return None
return min(max_rect.width-width, max_rect.height-height)
class MaxRectsBaf(MaxRects):
"""Best Area Fit pick maximal rectangle with smallest area
where the rectangle can be placed"""
def _rect_fitness(self, max_rect, width, height):
if width > max_rect.width or height > max_rect.height:
return None
return (max_rect.width*max_rect.height)-(width*height)
class MaxRectsBlsf(MaxRects):
"""Best Long Side Fit minimize long leftover side"""
def _rect_fitness(self, max_rect, width, height):
if width > max_rect.width or height > max_rect.height:
return None
return max(max_rect.width-width, max_rect.height-height)