243 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			243 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | /*
 | ||
|  | Bullet Continuous Collision Detection and Physics Library | ||
|  | Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | ||
|  | 
 | ||
|  | This software is provided 'as-is', without any express or implied warranty. | ||
|  | In no event will the authors be held liable for any damages arising from the use of this software. | ||
|  | Permission is granted to anyone to use this software for any purpose,  | ||
|  | including commercial applications, and to alter it and redistribute it freely,  | ||
|  | subject to the following restrictions: | ||
|  | 
 | ||
|  | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | ||
|  | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | ||
|  | 3. This notice may not be removed or altered from any source distribution. | ||
|  | */ | ||
|  | 
 | ||
|  | 
 | ||
|  | #include "btContinuousConvexCollision.h"
 | ||
|  | #include "BulletCollision/CollisionShapes/btConvexShape.h"
 | ||
|  | #include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h"
 | ||
|  | #include "LinearMath/btTransformUtil.h"
 | ||
|  | #include "BulletCollision/CollisionShapes/btSphereShape.h"
 | ||
|  | 
 | ||
|  | #include "btGjkPairDetector.h"
 | ||
|  | #include "btPointCollector.h"
 | ||
|  | #include "BulletCollision/CollisionShapes/btStaticPlaneShape.h"
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | btContinuousConvexCollision::btContinuousConvexCollision ( const btConvexShape*	convexA,const btConvexShape*	convexB,btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* penetrationDepthSolver) | ||
|  | :m_simplexSolver(simplexSolver), | ||
|  | m_penetrationDepthSolver(penetrationDepthSolver), | ||
|  | m_convexA(convexA),m_convexB1(convexB),m_planeShape(0) | ||
|  | { | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | btContinuousConvexCollision::btContinuousConvexCollision( const btConvexShape*	convexA,const btStaticPlaneShape*	plane) | ||
|  | :m_simplexSolver(0), | ||
|  | m_penetrationDepthSolver(0), | ||
|  | m_convexA(convexA),m_convexB1(0),m_planeShape(plane) | ||
|  | { | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /// This maximum should not be necessary. It allows for untested/degenerate cases in production code.
 | ||
|  | /// You don't want your game ever to lock-up.
 | ||
|  | #define MAX_ITERATIONS 64
 | ||
|  | 
 | ||
|  | void btContinuousConvexCollision::computeClosestPoints( const btTransform& transA, const btTransform& transB,btPointCollector& pointCollector) | ||
|  | { | ||
|  | 	if (m_convexB1) | ||
|  | 	{ | ||
|  | 		m_simplexSolver->reset(); | ||
|  | 		btGjkPairDetector gjk(m_convexA,m_convexB1,m_convexA->getShapeType(),m_convexB1->getShapeType(),m_convexA->getMargin(),m_convexB1->getMargin(),m_simplexSolver,m_penetrationDepthSolver);		 | ||
|  | 		btGjkPairDetector::ClosestPointInput input; | ||
|  | 		input.m_transformA = transA; | ||
|  | 		input.m_transformB = transB; | ||
|  | 		gjk.getClosestPoints(input,pointCollector,0); | ||
|  | 	} else | ||
|  | 	{ | ||
|  | 		//convex versus plane
 | ||
|  | 		const btConvexShape* convexShape = m_convexA; | ||
|  | 		const btStaticPlaneShape* planeShape = m_planeShape; | ||
|  | 		 | ||
|  | 		const btVector3& planeNormal = planeShape->getPlaneNormal(); | ||
|  | 		const btScalar& planeConstant = planeShape->getPlaneConstant(); | ||
|  | 		 | ||
|  | 		btTransform convexWorldTransform = transA; | ||
|  | 		btTransform convexInPlaneTrans; | ||
|  | 		convexInPlaneTrans= transB.inverse() * convexWorldTransform; | ||
|  | 		btTransform planeInConvex; | ||
|  | 		planeInConvex= convexWorldTransform.inverse() * transB; | ||
|  | 		 | ||
|  | 		btVector3 vtx = convexShape->localGetSupportingVertex(planeInConvex.getBasis()*-planeNormal); | ||
|  | 
 | ||
|  | 		btVector3 vtxInPlane = convexInPlaneTrans(vtx); | ||
|  | 		btScalar distance = (planeNormal.dot(vtxInPlane) - planeConstant); | ||
|  | 
 | ||
|  | 		btVector3 vtxInPlaneProjected = vtxInPlane - distance*planeNormal; | ||
|  | 		btVector3 vtxInPlaneWorld = transB * vtxInPlaneProjected; | ||
|  | 		btVector3 normalOnSurfaceB = transB.getBasis() * planeNormal; | ||
|  | 
 | ||
|  | 		pointCollector.addContactPoint( | ||
|  | 			normalOnSurfaceB, | ||
|  | 			vtxInPlaneWorld, | ||
|  | 			distance); | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | bool	btContinuousConvexCollision::calcTimeOfImpact( | ||
|  | 				const btTransform& fromA, | ||
|  | 				const btTransform& toA, | ||
|  | 				const btTransform& fromB, | ||
|  | 				const btTransform& toB, | ||
|  | 				CastResult& result) | ||
|  | { | ||
|  | 
 | ||
|  | 
 | ||
|  | 	/// compute linear and angular velocity for this interval, to interpolate
 | ||
|  | 	btVector3 linVelA,angVelA,linVelB,angVelB; | ||
|  | 	btTransformUtil::calculateVelocity(fromA,toA,btScalar(1.),linVelA,angVelA); | ||
|  | 	btTransformUtil::calculateVelocity(fromB,toB,btScalar(1.),linVelB,angVelB); | ||
|  | 
 | ||
|  | 
 | ||
|  | 	btScalar boundingRadiusA = m_convexA->getAngularMotionDisc(); | ||
|  | 	btScalar boundingRadiusB = m_convexB1?m_convexB1->getAngularMotionDisc():0.f; | ||
|  | 
 | ||
|  | 	btScalar maxAngularProjectedVelocity = angVelA.length() * boundingRadiusA + angVelB.length() * boundingRadiusB; | ||
|  | 	btVector3 relLinVel = (linVelB-linVelA); | ||
|  | 
 | ||
|  | 	btScalar relLinVelocLength = (linVelB-linVelA).length(); | ||
|  | 	 | ||
|  | 	if ((relLinVelocLength+maxAngularProjectedVelocity) == 0.f) | ||
|  | 		return false; | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	btScalar lambda = btScalar(0.); | ||
|  | 	btVector3 v(1,0,0); | ||
|  | 
 | ||
|  | 	int maxIter = MAX_ITERATIONS; | ||
|  | 
 | ||
|  | 	btVector3 n; | ||
|  | 	n.setValue(btScalar(0.),btScalar(0.),btScalar(0.)); | ||
|  | 	bool hasResult = false; | ||
|  | 	btVector3 c; | ||
|  | 
 | ||
|  | 	btScalar lastLambda = lambda; | ||
|  | 	//btScalar epsilon = btScalar(0.001);
 | ||
|  | 
 | ||
|  | 	int numIter = 0; | ||
|  | 	//first solution, using GJK
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	btScalar radius = 0.001f; | ||
|  | //	result.drawCoordSystem(sphereTr);
 | ||
|  | 
 | ||
|  | 	btPointCollector	pointCollector1; | ||
|  | 
 | ||
|  | 	{ | ||
|  | 	 | ||
|  | 		computeClosestPoints(fromA,fromB,pointCollector1); | ||
|  | 
 | ||
|  | 		hasResult = pointCollector1.m_hasResult; | ||
|  | 		c = pointCollector1.m_pointInWorld; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (hasResult) | ||
|  | 	{ | ||
|  | 		btScalar dist; | ||
|  | 		dist = pointCollector1.m_distance + result.m_allowedPenetration; | ||
|  | 		n = pointCollector1.m_normalOnBInWorld; | ||
|  | 		btScalar projectedLinearVelocity = relLinVel.dot(n); | ||
|  | 		if ((projectedLinearVelocity+ maxAngularProjectedVelocity)<=SIMD_EPSILON) | ||
|  | 			return false; | ||
|  | 
 | ||
|  | 		//not close enough
 | ||
|  | 		while (dist > radius) | ||
|  | 		{ | ||
|  | 			if (result.m_debugDrawer) | ||
|  | 			{ | ||
|  | 				result.m_debugDrawer->drawSphere(c,0.2f,btVector3(1,1,1)); | ||
|  | 			} | ||
|  | 			btScalar dLambda = btScalar(0.); | ||
|  | 
 | ||
|  | 			projectedLinearVelocity = relLinVel.dot(n); | ||
|  | 
 | ||
|  | 			 | ||
|  | 			//don't report time of impact for motion away from the contact normal (or causes minor penetration)
 | ||
|  | 			if ((projectedLinearVelocity+ maxAngularProjectedVelocity)<=SIMD_EPSILON) | ||
|  | 				return false; | ||
|  | 			 | ||
|  | 			dLambda = dist / (projectedLinearVelocity+ maxAngularProjectedVelocity); | ||
|  | 
 | ||
|  | 			 | ||
|  | 			 | ||
|  | 			lambda = lambda + dLambda; | ||
|  | 
 | ||
|  | 			if (lambda > btScalar(1.)) | ||
|  | 				return false; | ||
|  | 
 | ||
|  | 			if (lambda < btScalar(0.)) | ||
|  | 				return false; | ||
|  | 
 | ||
|  | 
 | ||
|  | 			//todo: next check with relative epsilon
 | ||
|  | 			if (lambda <= lastLambda) | ||
|  | 			{ | ||
|  | 				return false; | ||
|  | 				//n.setValue(0,0,0);
 | ||
|  | 				break; | ||
|  | 			} | ||
|  | 			lastLambda = lambda; | ||
|  | 
 | ||
|  | 			 | ||
|  | 
 | ||
|  | 			//interpolate to next lambda
 | ||
|  | 			btTransform interpolatedTransA,interpolatedTransB,relativeTrans; | ||
|  | 
 | ||
|  | 			btTransformUtil::integrateTransform(fromA,linVelA,angVelA,lambda,interpolatedTransA); | ||
|  | 			btTransformUtil::integrateTransform(fromB,linVelB,angVelB,lambda,interpolatedTransB); | ||
|  | 			relativeTrans = interpolatedTransB.inverseTimes(interpolatedTransA); | ||
|  | 
 | ||
|  | 			if (result.m_debugDrawer) | ||
|  | 			{ | ||
|  | 				result.m_debugDrawer->drawSphere(interpolatedTransA.getOrigin(),0.2f,btVector3(1,0,0)); | ||
|  | 			} | ||
|  | 
 | ||
|  | 			result.DebugDraw( lambda ); | ||
|  | 
 | ||
|  | 			btPointCollector	pointCollector; | ||
|  | 			computeClosestPoints(interpolatedTransA,interpolatedTransB,pointCollector); | ||
|  | 
 | ||
|  | 			if (pointCollector.m_hasResult) | ||
|  | 			{ | ||
|  | 				dist = pointCollector.m_distance+result.m_allowedPenetration; | ||
|  | 				c = pointCollector.m_pointInWorld;		 | ||
|  | 				n = pointCollector.m_normalOnBInWorld; | ||
|  | 			} else | ||
|  | 			{ | ||
|  | 				result.reportFailure(-1, numIter); | ||
|  | 				return false; | ||
|  | 			} | ||
|  | 
 | ||
|  | 			numIter++; | ||
|  | 			if (numIter > maxIter) | ||
|  | 			{ | ||
|  | 				result.reportFailure(-2, numIter); | ||
|  | 				return false; | ||
|  | 			} | ||
|  | 		} | ||
|  | 	 | ||
|  | 		result.m_fraction = lambda; | ||
|  | 		result.m_normal = n; | ||
|  | 		result.m_hitPoint = c; | ||
|  | 		return true; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return false; | ||
|  | 
 | ||
|  | } | ||
|  | 
 |