1227 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			1227 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|  | /* trees.c -- output deflated data using Huffman coding
 | ||
|  |  * Copyright (C) 1995-2012 Jean-loup Gailly | ||
|  |  * detect_data_type() function provided freely by Cosmin Truta, 2006 | ||
|  |  * For conditions of distribution and use, see copyright notice in zlib.h | ||
|  |  */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  *  ALGORITHM | ||
|  |  * | ||
|  |  *      The "deflation" process uses several Huffman trees. The more | ||
|  |  *      common source values are represented by shorter bit sequences. | ||
|  |  * | ||
|  |  *      Each code tree is stored in a compressed form which is itself | ||
|  |  * a Huffman encoding of the lengths of all the code strings (in | ||
|  |  * ascending order by source values).  The actual code strings are | ||
|  |  * reconstructed from the lengths in the inflate process, as described | ||
|  |  * in the deflate specification. | ||
|  |  * | ||
|  |  *  REFERENCES | ||
|  |  * | ||
|  |  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". | ||
|  |  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc | ||
|  |  * | ||
|  |  *      Storer, James A. | ||
|  |  *          Data Compression:  Methods and Theory, pp. 49-50. | ||
|  |  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5. | ||
|  |  * | ||
|  |  *      Sedgewick, R. | ||
|  |  *          Algorithms, p290. | ||
|  |  *          Addison-Wesley, 1983. ISBN 0-201-06672-6. | ||
|  |  */ | ||
|  | 
 | ||
|  | /* @(#) $Id$ */ | ||
|  | 
 | ||
|  | /* #define GEN_TREES_H */ | ||
|  | 
 | ||
|  | #include "deflate.h"
 | ||
|  | 
 | ||
|  | #ifdef DEBUG
 | ||
|  | #  include <ctype.h>
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Constants | ||
|  |  */ | ||
|  | 
 | ||
|  | #define MAX_BL_BITS 7
 | ||
|  | /* Bit length codes must not exceed MAX_BL_BITS bits */ | ||
|  | 
 | ||
|  | #define END_BLOCK 256
 | ||
|  | /* end of block literal code */ | ||
|  | 
 | ||
|  | #define REP_3_6      16
 | ||
|  | /* repeat previous bit length 3-6 times (2 bits of repeat count) */ | ||
|  | 
 | ||
|  | #define REPZ_3_10    17
 | ||
|  | /* repeat a zero length 3-10 times  (3 bits of repeat count) */ | ||
|  | 
 | ||
|  | #define REPZ_11_138  18
 | ||
|  | /* repeat a zero length 11-138 times  (7 bits of repeat count) */ | ||
|  | 
 | ||
|  | local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ | ||
|  |    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; | ||
|  | 
 | ||
|  | local const int extra_dbits[D_CODES] /* extra bits for each distance code */ | ||
|  |    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; | ||
|  | 
 | ||
|  | local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ | ||
|  |    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; | ||
|  | 
 | ||
|  | local const uch bl_order[BL_CODES] | ||
|  |    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; | ||
|  | /* The lengths of the bit length codes are sent in order of decreasing
 | ||
|  |  * probability, to avoid transmitting the lengths for unused bit length codes. | ||
|  |  */ | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Local data. These are initialized only once. | ||
|  |  */ | ||
|  | 
 | ||
|  | #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
 | ||
|  | 
 | ||
|  | #if defined(GEN_TREES_H) || !defined(STDC)
 | ||
|  | /* non ANSI compilers may not accept trees.h */ | ||
|  | 
 | ||
|  | local ct_data static_ltree[L_CODES+2]; | ||
|  | /* The static literal tree. Since the bit lengths are imposed, there is no
 | ||
|  |  * need for the L_CODES extra codes used during heap construction. However | ||
|  |  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init | ||
|  |  * below). | ||
|  |  */ | ||
|  | 
 | ||
|  | local ct_data static_dtree[D_CODES]; | ||
|  | /* The static distance tree. (Actually a trivial tree since all codes use
 | ||
|  |  * 5 bits.) | ||
|  |  */ | ||
|  | 
 | ||
|  | uch _dist_code[DIST_CODE_LEN]; | ||
|  | /* Distance codes. The first 256 values correspond to the distances
 | ||
|  |  * 3 .. 258, the last 256 values correspond to the top 8 bits of | ||
|  |  * the 15 bit distances. | ||
|  |  */ | ||
|  | 
 | ||
|  | uch _length_code[MAX_MATCH-MIN_MATCH+1]; | ||
|  | /* length code for each normalized match length (0 == MIN_MATCH) */ | ||
|  | 
 | ||
|  | local int base_length[LENGTH_CODES]; | ||
|  | /* First normalized length for each code (0 = MIN_MATCH) */ | ||
|  | 
 | ||
|  | local int base_dist[D_CODES]; | ||
|  | /* First normalized distance for each code (0 = distance of 1) */ | ||
|  | 
 | ||
|  | #else
 | ||
|  | #  include "trees.h"
 | ||
|  | #endif /* GEN_TREES_H */
 | ||
|  | 
 | ||
|  | struct static_tree_desc_s { | ||
|  |     const ct_data *static_tree;  /* static tree or NULL */ | ||
|  |     const intf *extra_bits;      /* extra bits for each code or NULL */ | ||
|  |     int     extra_base;          /* base index for extra_bits */ | ||
|  |     int     elems;               /* max number of elements in the tree */ | ||
|  |     int     max_length;          /* max bit length for the codes */ | ||
|  | }; | ||
|  | 
 | ||
|  | local static_tree_desc  static_l_desc = | ||
|  | {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; | ||
|  | 
 | ||
|  | local static_tree_desc  static_d_desc = | ||
|  | {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS}; | ||
|  | 
 | ||
|  | local static_tree_desc  static_bl_desc = | ||
|  | {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS}; | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Local (static) routines in this file. | ||
|  |  */ | ||
|  | 
 | ||
|  | local void tr_static_init OF((void)); | ||
|  | local void init_block     OF((deflate_state *s)); | ||
|  | local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k)); | ||
|  | local void gen_bitlen     OF((deflate_state *s, tree_desc *desc)); | ||
|  | local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count)); | ||
|  | local void build_tree     OF((deflate_state *s, tree_desc *desc)); | ||
|  | local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code)); | ||
|  | local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code)); | ||
|  | local int  build_bl_tree  OF((deflate_state *s)); | ||
|  | local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, | ||
|  |                               int blcodes)); | ||
|  | local void compress_block OF((deflate_state *s, const ct_data *ltree, | ||
|  |                               const ct_data *dtree)); | ||
|  | local int  detect_data_type OF((deflate_state *s)); | ||
|  | local unsigned bi_reverse OF((unsigned value, int length)); | ||
|  | local void bi_windup      OF((deflate_state *s)); | ||
|  | local void bi_flush       OF((deflate_state *s)); | ||
|  | local void copy_block     OF((deflate_state *s, charf *buf, unsigned len, | ||
|  |                               int header)); | ||
|  | 
 | ||
|  | #ifdef GEN_TREES_H
 | ||
|  | local void gen_trees_header OF((void)); | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifndef DEBUG
 | ||
|  | #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
 | ||
|  |    /* Send a code of the given tree. c and tree must not have side effects */ | ||
|  | 
 | ||
|  | #else /* DEBUG */
 | ||
|  | #  define send_code(s, c, tree) \
 | ||
|  |      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ | ||
|  |        send_bits(s, tree[c].Code, tree[c].Len); } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Output a short LSB first on the stream. | ||
|  |  * IN assertion: there is enough room in pendingBuf. | ||
|  |  */ | ||
|  | #define put_short(s, w) { \
 | ||
|  |     put_byte(s, (uch)((w) & 0xff)); \ | ||
|  |     put_byte(s, (uch)((ush)(w) >> 8)); \ | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Send a value on a given number of bits. | ||
|  |  * IN assertion: length <= 16 and value fits in length bits. | ||
|  |  */ | ||
|  | #ifdef DEBUG
 | ||
|  | local void send_bits      OF((deflate_state *s, int value, int length)); | ||
|  | 
 | ||
|  | local void send_bits(s, value, length) | ||
|  |     deflate_state *s; | ||
|  |     int value;  /* value to send */ | ||
|  |     int length; /* number of bits */ | ||
|  | { | ||
|  |     Tracevv((stderr," l %2d v %4x ", length, value)); | ||
|  |     Assert(length > 0 && length <= 15, "invalid length"); | ||
|  |     s->bits_sent += (ulg)length; | ||
|  | 
 | ||
|  |     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
 | ||
|  |      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) | ||
|  |      * unused bits in value. | ||
|  |      */ | ||
|  |     if (s->bi_valid > (int)Buf_size - length) { | ||
|  |         s->bi_buf |= (ush)value << s->bi_valid; | ||
|  |         put_short(s, s->bi_buf); | ||
|  |         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); | ||
|  |         s->bi_valid += length - Buf_size; | ||
|  |     } else { | ||
|  |         s->bi_buf |= (ush)value << s->bi_valid; | ||
|  |         s->bi_valid += length; | ||
|  |     } | ||
|  | } | ||
|  | #else /* !DEBUG */
 | ||
|  | 
 | ||
|  | #define send_bits(s, value, length) \
 | ||
|  | { int len = length;\ | ||
|  |   if (s->bi_valid > (int)Buf_size - len) {\ | ||
|  |     int val = value;\ | ||
|  |     s->bi_buf |= (ush)val << s->bi_valid;\ | ||
|  |     put_short(s, s->bi_buf);\ | ||
|  |     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ | ||
|  |     s->bi_valid += len - Buf_size;\ | ||
|  |   } else {\ | ||
|  |     s->bi_buf |= (ush)(value) << s->bi_valid;\ | ||
|  |     s->bi_valid += len;\ | ||
|  |   }\ | ||
|  | } | ||
|  | #endif /* DEBUG */
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* the arguments must not have side effects */ | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Initialize the various 'constant' tables. | ||
|  |  */ | ||
|  | local void tr_static_init() | ||
|  | { | ||
|  | #if defined(GEN_TREES_H) || !defined(STDC)
 | ||
|  |     static int static_init_done = 0; | ||
|  |     int n;        /* iterates over tree elements */ | ||
|  |     int bits;     /* bit counter */ | ||
|  |     int length;   /* length value */ | ||
|  |     int code;     /* code value */ | ||
|  |     int dist;     /* distance index */ | ||
|  |     ush bl_count[MAX_BITS+1]; | ||
|  |     /* number of codes at each bit length for an optimal tree */ | ||
|  | 
 | ||
|  |     if (static_init_done) return; | ||
|  | 
 | ||
|  |     /* For some embedded targets, global variables are not initialized: */ | ||
|  | #ifdef NO_INIT_GLOBAL_POINTERS
 | ||
|  |     static_l_desc.static_tree = static_ltree; | ||
|  |     static_l_desc.extra_bits = extra_lbits; | ||
|  |     static_d_desc.static_tree = static_dtree; | ||
|  |     static_d_desc.extra_bits = extra_dbits; | ||
|  |     static_bl_desc.extra_bits = extra_blbits; | ||
|  | #endif
 | ||
|  | 
 | ||
|  |     /* Initialize the mapping length (0..255) -> length code (0..28) */ | ||
|  |     length = 0; | ||
|  |     for (code = 0; code < LENGTH_CODES-1; code++) { | ||
|  |         base_length[code] = length; | ||
|  |         for (n = 0; n < (1<<extra_lbits[code]); n++) { | ||
|  |             _length_code[length++] = (uch)code; | ||
|  |         } | ||
|  |     } | ||
|  |     Assert (length == 256, "tr_static_init: length != 256"); | ||
|  |     /* Note that the length 255 (match length 258) can be represented
 | ||
|  |      * in two different ways: code 284 + 5 bits or code 285, so we | ||
|  |      * overwrite length_code[255] to use the best encoding: | ||
|  |      */ | ||
|  |     _length_code[length-1] = (uch)code; | ||
|  | 
 | ||
|  |     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ | ||
|  |     dist = 0; | ||
|  |     for (code = 0 ; code < 16; code++) { | ||
|  |         base_dist[code] = dist; | ||
|  |         for (n = 0; n < (1<<extra_dbits[code]); n++) { | ||
|  |             _dist_code[dist++] = (uch)code; | ||
|  |         } | ||
|  |     } | ||
|  |     Assert (dist == 256, "tr_static_init: dist != 256"); | ||
|  |     dist >>= 7; /* from now on, all distances are divided by 128 */ | ||
|  |     for ( ; code < D_CODES; code++) { | ||
|  |         base_dist[code] = dist << 7; | ||
|  |         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { | ||
|  |             _dist_code[256 + dist++] = (uch)code; | ||
|  |         } | ||
|  |     } | ||
|  |     Assert (dist == 256, "tr_static_init: 256+dist != 512"); | ||
|  | 
 | ||
|  |     /* Construct the codes of the static literal tree */ | ||
|  |     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; | ||
|  |     n = 0; | ||
|  |     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; | ||
|  |     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; | ||
|  |     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; | ||
|  |     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; | ||
|  |     /* Codes 286 and 287 do not exist, but we must include them in the
 | ||
|  |      * tree construction to get a canonical Huffman tree (longest code | ||
|  |      * all ones) | ||
|  |      */ | ||
|  |     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); | ||
|  | 
 | ||
|  |     /* The static distance tree is trivial: */ | ||
|  |     for (n = 0; n < D_CODES; n++) { | ||
|  |         static_dtree[n].Len = 5; | ||
|  |         static_dtree[n].Code = bi_reverse((unsigned)n, 5); | ||
|  |     } | ||
|  |     static_init_done = 1; | ||
|  | 
 | ||
|  | #  ifdef GEN_TREES_H
 | ||
|  |     gen_trees_header(); | ||
|  | #  endif
 | ||
|  | #endif /* defined(GEN_TREES_H) || !defined(STDC) */
 | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Genererate the file trees.h describing the static trees. | ||
|  |  */ | ||
|  | #ifdef GEN_TREES_H
 | ||
|  | #  ifndef DEBUG
 | ||
|  | #    include <stdio.h>
 | ||
|  | #  endif
 | ||
|  | 
 | ||
|  | #  define SEPARATOR(i, last, width) \
 | ||
|  |       ((i) == (last)? "\n};\n\n" :    \ | ||
|  |        ((i) % (width) == (width)-1 ? ",\n" : ", ")) | ||
|  | 
 | ||
|  | void gen_trees_header() | ||
|  | { | ||
|  |     FILE *header = fopen("trees.h", "w"); | ||
|  |     int i; | ||
|  | 
 | ||
|  |     Assert (header != NULL, "Can't open trees.h"); | ||
|  |     fprintf(header, | ||
|  |             "/* header created automatically with -DGEN_TREES_H */\n\n"); | ||
|  | 
 | ||
|  |     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); | ||
|  |     for (i = 0; i < L_CODES+2; i++) { | ||
|  |         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, | ||
|  |                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); | ||
|  |     } | ||
|  | 
 | ||
|  |     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); | ||
|  |     for (i = 0; i < D_CODES; i++) { | ||
|  |         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, | ||
|  |                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); | ||
|  |     } | ||
|  | 
 | ||
|  |     fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n"); | ||
|  |     for (i = 0; i < DIST_CODE_LEN; i++) { | ||
|  |         fprintf(header, "%2u%s", _dist_code[i], | ||
|  |                 SEPARATOR(i, DIST_CODE_LEN-1, 20)); | ||
|  |     } | ||
|  | 
 | ||
|  |     fprintf(header, | ||
|  |         "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); | ||
|  |     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { | ||
|  |         fprintf(header, "%2u%s", _length_code[i], | ||
|  |                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); | ||
|  |     } | ||
|  | 
 | ||
|  |     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); | ||
|  |     for (i = 0; i < LENGTH_CODES; i++) { | ||
|  |         fprintf(header, "%1u%s", base_length[i], | ||
|  |                 SEPARATOR(i, LENGTH_CODES-1, 20)); | ||
|  |     } | ||
|  | 
 | ||
|  |     fprintf(header, "local const int base_dist[D_CODES] = {\n"); | ||
|  |     for (i = 0; i < D_CODES; i++) { | ||
|  |         fprintf(header, "%5u%s", base_dist[i], | ||
|  |                 SEPARATOR(i, D_CODES-1, 10)); | ||
|  |     } | ||
|  | 
 | ||
|  |     fclose(header); | ||
|  | } | ||
|  | #endif /* GEN_TREES_H */
 | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Initialize the tree data structures for a new zlib stream. | ||
|  |  */ | ||
|  | void ZLIB_INTERNAL _tr_init(s) | ||
|  |     deflate_state *s; | ||
|  | { | ||
|  |     tr_static_init(); | ||
|  | 
 | ||
|  |     s->l_desc.dyn_tree = s->dyn_ltree; | ||
|  |     s->l_desc.stat_desc = &static_l_desc; | ||
|  | 
 | ||
|  |     s->d_desc.dyn_tree = s->dyn_dtree; | ||
|  |     s->d_desc.stat_desc = &static_d_desc; | ||
|  | 
 | ||
|  |     s->bl_desc.dyn_tree = s->bl_tree; | ||
|  |     s->bl_desc.stat_desc = &static_bl_desc; | ||
|  | 
 | ||
|  |     s->bi_buf = 0; | ||
|  |     s->bi_valid = 0; | ||
|  | #ifdef DEBUG
 | ||
|  |     s->compressed_len = 0L; | ||
|  |     s->bits_sent = 0L; | ||
|  | #endif
 | ||
|  | 
 | ||
|  |     /* Initialize the first block of the first file: */ | ||
|  |     init_block(s); | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Initialize a new block. | ||
|  |  */ | ||
|  | local void init_block(s) | ||
|  |     deflate_state *s; | ||
|  | { | ||
|  |     int n; /* iterates over tree elements */ | ||
|  | 
 | ||
|  |     /* Initialize the trees. */ | ||
|  |     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0; | ||
|  |     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0; | ||
|  |     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; | ||
|  | 
 | ||
|  |     s->dyn_ltree[END_BLOCK].Freq = 1; | ||
|  |     s->opt_len = s->static_len = 0L; | ||
|  |     s->last_lit = s->matches = 0; | ||
|  | } | ||
|  | 
 | ||
|  | #define SMALLEST 1
 | ||
|  | /* Index within the heap array of least frequent node in the Huffman tree */ | ||
|  | 
 | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Remove the smallest element from the heap and recreate the heap with | ||
|  |  * one less element. Updates heap and heap_len. | ||
|  |  */ | ||
|  | #define pqremove(s, tree, top) \
 | ||
|  | {\ | ||
|  |     top = s->heap[SMALLEST]; \ | ||
|  |     s->heap[SMALLEST] = s->heap[s->heap_len--]; \ | ||
|  |     pqdownheap(s, tree, SMALLEST); \ | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Compares to subtrees, using the tree depth as tie breaker when | ||
|  |  * the subtrees have equal frequency. This minimizes the worst case length. | ||
|  |  */ | ||
|  | #define smaller(tree, n, m, depth) \
 | ||
|  |    (tree[n].Freq < tree[m].Freq || \ | ||
|  |    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Restore the heap property by moving down the tree starting at node k, | ||
|  |  * exchanging a node with the smallest of its two sons if necessary, stopping | ||
|  |  * when the heap property is re-established (each father smaller than its | ||
|  |  * two sons). | ||
|  |  */ | ||
|  | local void pqdownheap(s, tree, k) | ||
|  |     deflate_state *s; | ||
|  |     ct_data *tree;  /* the tree to restore */ | ||
|  |     int k;               /* node to move down */ | ||
|  | { | ||
|  |     int v = s->heap[k]; | ||
|  |     int j = k << 1;  /* left son of k */ | ||
|  |     while (j <= s->heap_len) { | ||
|  |         /* Set j to the smallest of the two sons: */ | ||
|  |         if (j < s->heap_len && | ||
|  |             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { | ||
|  |             j++; | ||
|  |         } | ||
|  |         /* Exit if v is smaller than both sons */ | ||
|  |         if (smaller(tree, v, s->heap[j], s->depth)) break; | ||
|  | 
 | ||
|  |         /* Exchange v with the smallest son */ | ||
|  |         s->heap[k] = s->heap[j];  k = j; | ||
|  | 
 | ||
|  |         /* And continue down the tree, setting j to the left son of k */ | ||
|  |         j <<= 1; | ||
|  |     } | ||
|  |     s->heap[k] = v; | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Compute the optimal bit lengths for a tree and update the total bit length | ||
|  |  * for the current block. | ||
|  |  * IN assertion: the fields freq and dad are set, heap[heap_max] and | ||
|  |  *    above are the tree nodes sorted by increasing frequency. | ||
|  |  * OUT assertions: the field len is set to the optimal bit length, the | ||
|  |  *     array bl_count contains the frequencies for each bit length. | ||
|  |  *     The length opt_len is updated; static_len is also updated if stree is | ||
|  |  *     not null. | ||
|  |  */ | ||
|  | local void gen_bitlen(s, desc) | ||
|  |     deflate_state *s; | ||
|  |     tree_desc *desc;    /* the tree descriptor */ | ||
|  | { | ||
|  |     ct_data *tree        = desc->dyn_tree; | ||
|  |     int max_code         = desc->max_code; | ||
|  |     const ct_data *stree = desc->stat_desc->static_tree; | ||
|  |     const intf *extra    = desc->stat_desc->extra_bits; | ||
|  |     int base             = desc->stat_desc->extra_base; | ||
|  |     int max_length       = desc->stat_desc->max_length; | ||
|  |     int h;              /* heap index */ | ||
|  |     int n, m;           /* iterate over the tree elements */ | ||
|  |     int bits;           /* bit length */ | ||
|  |     int xbits;          /* extra bits */ | ||
|  |     ush f;              /* frequency */ | ||
|  |     int overflow = 0;   /* number of elements with bit length too large */ | ||
|  | 
 | ||
|  |     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; | ||
|  | 
 | ||
|  |     /* In a first pass, compute the optimal bit lengths (which may
 | ||
|  |      * overflow in the case of the bit length tree). | ||
|  |      */ | ||
|  |     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ | ||
|  | 
 | ||
|  |     for (h = s->heap_max+1; h < HEAP_SIZE; h++) { | ||
|  |         n = s->heap[h]; | ||
|  |         bits = tree[tree[n].Dad].Len + 1; | ||
|  |         if (bits > max_length) bits = max_length, overflow++; | ||
|  |         tree[n].Len = (ush)bits; | ||
|  |         /* We overwrite tree[n].Dad which is no longer needed */ | ||
|  | 
 | ||
|  |         if (n > max_code) continue; /* not a leaf node */ | ||
|  | 
 | ||
|  |         s->bl_count[bits]++; | ||
|  |         xbits = 0; | ||
|  |         if (n >= base) xbits = extra[n-base]; | ||
|  |         f = tree[n].Freq; | ||
|  |         s->opt_len += (ulg)f * (bits + xbits); | ||
|  |         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); | ||
|  |     } | ||
|  |     if (overflow == 0) return; | ||
|  | 
 | ||
|  |     Trace((stderr,"\nbit length overflow\n")); | ||
|  |     /* This happens for example on obj2 and pic of the Calgary corpus */ | ||
|  | 
 | ||
|  |     /* Find the first bit length which could increase: */ | ||
|  |     do { | ||
|  |         bits = max_length-1; | ||
|  |         while (s->bl_count[bits] == 0) bits--; | ||
|  |         s->bl_count[bits]--;      /* move one leaf down the tree */ | ||
|  |         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ | ||
|  |         s->bl_count[max_length]--; | ||
|  |         /* The brother of the overflow item also moves one step up,
 | ||
|  |          * but this does not affect bl_count[max_length] | ||
|  |          */ | ||
|  |         overflow -= 2; | ||
|  |     } while (overflow > 0); | ||
|  | 
 | ||
|  |     /* Now recompute all bit lengths, scanning in increasing frequency.
 | ||
|  |      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all | ||
|  |      * lengths instead of fixing only the wrong ones. This idea is taken | ||
|  |      * from 'ar' written by Haruhiko Okumura.) | ||
|  |      */ | ||
|  |     for (bits = max_length; bits != 0; bits--) { | ||
|  |         n = s->bl_count[bits]; | ||
|  |         while (n != 0) { | ||
|  |             m = s->heap[--h]; | ||
|  |             if (m > max_code) continue; | ||
|  |             if ((unsigned) tree[m].Len != (unsigned) bits) { | ||
|  |                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); | ||
|  |                 s->opt_len += ((long)bits - (long)tree[m].Len) | ||
|  |                               *(long)tree[m].Freq; | ||
|  |                 tree[m].Len = (ush)bits; | ||
|  |             } | ||
|  |             n--; | ||
|  |         } | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Generate the codes for a given tree and bit counts (which need not be | ||
|  |  * optimal). | ||
|  |  * IN assertion: the array bl_count contains the bit length statistics for | ||
|  |  * the given tree and the field len is set for all tree elements. | ||
|  |  * OUT assertion: the field code is set for all tree elements of non | ||
|  |  *     zero code length. | ||
|  |  */ | ||
|  | local void gen_codes (tree, max_code, bl_count) | ||
|  |     ct_data *tree;             /* the tree to decorate */ | ||
|  |     int max_code;              /* largest code with non zero frequency */ | ||
|  |     ushf *bl_count;            /* number of codes at each bit length */ | ||
|  | { | ||
|  |     ush next_code[MAX_BITS+1]; /* next code value for each bit length */ | ||
|  |     ush code = 0;              /* running code value */ | ||
|  |     int bits;                  /* bit index */ | ||
|  |     int n;                     /* code index */ | ||
|  | 
 | ||
|  |     /* The distribution counts are first used to generate the code values
 | ||
|  |      * without bit reversal. | ||
|  |      */ | ||
|  |     for (bits = 1; bits <= MAX_BITS; bits++) { | ||
|  |         next_code[bits] = code = (code + bl_count[bits-1]) << 1; | ||
|  |     } | ||
|  |     /* Check that the bit counts in bl_count are consistent. The last code
 | ||
|  |      * must be all ones. | ||
|  |      */ | ||
|  |     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, | ||
|  |             "inconsistent bit counts"); | ||
|  |     Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); | ||
|  | 
 | ||
|  |     for (n = 0;  n <= max_code; n++) { | ||
|  |         int len = tree[n].Len; | ||
|  |         if (len == 0) continue; | ||
|  |         /* Now reverse the bits */ | ||
|  |         tree[n].Code = bi_reverse(next_code[len]++, len); | ||
|  | 
 | ||
|  |         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", | ||
|  |              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Construct one Huffman tree and assigns the code bit strings and lengths. | ||
|  |  * Update the total bit length for the current block. | ||
|  |  * IN assertion: the field freq is set for all tree elements. | ||
|  |  * OUT assertions: the fields len and code are set to the optimal bit length | ||
|  |  *     and corresponding code. The length opt_len is updated; static_len is | ||
|  |  *     also updated if stree is not null. The field max_code is set. | ||
|  |  */ | ||
|  | local void build_tree(s, desc) | ||
|  |     deflate_state *s; | ||
|  |     tree_desc *desc; /* the tree descriptor */ | ||
|  | { | ||
|  |     ct_data *tree         = desc->dyn_tree; | ||
|  |     const ct_data *stree  = desc->stat_desc->static_tree; | ||
|  |     int elems             = desc->stat_desc->elems; | ||
|  |     int n, m;          /* iterate over heap elements */ | ||
|  |     int max_code = -1; /* largest code with non zero frequency */ | ||
|  |     int node;          /* new node being created */ | ||
|  | 
 | ||
|  |     /* Construct the initial heap, with least frequent element in
 | ||
|  |      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. | ||
|  |      * heap[0] is not used. | ||
|  |      */ | ||
|  |     s->heap_len = 0, s->heap_max = HEAP_SIZE; | ||
|  | 
 | ||
|  |     for (n = 0; n < elems; n++) { | ||
|  |         if (tree[n].Freq != 0) { | ||
|  |             s->heap[++(s->heap_len)] = max_code = n; | ||
|  |             s->depth[n] = 0; | ||
|  |         } else { | ||
|  |             tree[n].Len = 0; | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     /* The pkzip format requires that at least one distance code exists,
 | ||
|  |      * and that at least one bit should be sent even if there is only one | ||
|  |      * possible code. So to avoid special checks later on we force at least | ||
|  |      * two codes of non zero frequency. | ||
|  |      */ | ||
|  |     while (s->heap_len < 2) { | ||
|  |         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); | ||
|  |         tree[node].Freq = 1; | ||
|  |         s->depth[node] = 0; | ||
|  |         s->opt_len--; if (stree) s->static_len -= stree[node].Len; | ||
|  |         /* node is 0 or 1 so it does not have extra bits */ | ||
|  |     } | ||
|  |     desc->max_code = max_code; | ||
|  | 
 | ||
|  |     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
 | ||
|  |      * establish sub-heaps of increasing lengths: | ||
|  |      */ | ||
|  |     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); | ||
|  | 
 | ||
|  |     /* Construct the Huffman tree by repeatedly combining the least two
 | ||
|  |      * frequent nodes. | ||
|  |      */ | ||
|  |     node = elems;              /* next internal node of the tree */ | ||
|  |     do { | ||
|  |         pqremove(s, tree, n);  /* n = node of least frequency */ | ||
|  |         m = s->heap[SMALLEST]; /* m = node of next least frequency */ | ||
|  | 
 | ||
|  |         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ | ||
|  |         s->heap[--(s->heap_max)] = m; | ||
|  | 
 | ||
|  |         /* Create a new node father of n and m */ | ||
|  |         tree[node].Freq = tree[n].Freq + tree[m].Freq; | ||
|  |         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? | ||
|  |                                 s->depth[n] : s->depth[m]) + 1); | ||
|  |         tree[n].Dad = tree[m].Dad = (ush)node; | ||
|  | #ifdef DUMP_BL_TREE
 | ||
|  |         if (tree == s->bl_tree) { | ||
|  |             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", | ||
|  |                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); | ||
|  |         } | ||
|  | #endif
 | ||
|  |         /* and insert the new node in the heap */ | ||
|  |         s->heap[SMALLEST] = node++; | ||
|  |         pqdownheap(s, tree, SMALLEST); | ||
|  | 
 | ||
|  |     } while (s->heap_len >= 2); | ||
|  | 
 | ||
|  |     s->heap[--(s->heap_max)] = s->heap[SMALLEST]; | ||
|  | 
 | ||
|  |     /* At this point, the fields freq and dad are set. We can now
 | ||
|  |      * generate the bit lengths. | ||
|  |      */ | ||
|  |     gen_bitlen(s, (tree_desc *)desc); | ||
|  | 
 | ||
|  |     /* The field len is now set, we can generate the bit codes */ | ||
|  |     gen_codes ((ct_data *)tree, max_code, s->bl_count); | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Scan a literal or distance tree to determine the frequencies of the codes | ||
|  |  * in the bit length tree. | ||
|  |  */ | ||
|  | local void scan_tree (s, tree, max_code) | ||
|  |     deflate_state *s; | ||
|  |     ct_data *tree;   /* the tree to be scanned */ | ||
|  |     int max_code;    /* and its largest code of non zero frequency */ | ||
|  | { | ||
|  |     int n;                     /* iterates over all tree elements */ | ||
|  |     int prevlen = -1;          /* last emitted length */ | ||
|  |     int curlen;                /* length of current code */ | ||
|  |     int nextlen = tree[0].Len; /* length of next code */ | ||
|  |     int count = 0;             /* repeat count of the current code */ | ||
|  |     int max_count = 7;         /* max repeat count */ | ||
|  |     int min_count = 4;         /* min repeat count */ | ||
|  | 
 | ||
|  |     if (nextlen == 0) max_count = 138, min_count = 3; | ||
|  |     tree[max_code+1].Len = (ush)0xffff; /* guard */ | ||
|  | 
 | ||
|  |     for (n = 0; n <= max_code; n++) { | ||
|  |         curlen = nextlen; nextlen = tree[n+1].Len; | ||
|  |         if (++count < max_count && curlen == nextlen) { | ||
|  |             continue; | ||
|  |         } else if (count < min_count) { | ||
|  |             s->bl_tree[curlen].Freq += count; | ||
|  |         } else if (curlen != 0) { | ||
|  |             if (curlen != prevlen) s->bl_tree[curlen].Freq++; | ||
|  |             s->bl_tree[REP_3_6].Freq++; | ||
|  |         } else if (count <= 10) { | ||
|  |             s->bl_tree[REPZ_3_10].Freq++; | ||
|  |         } else { | ||
|  |             s->bl_tree[REPZ_11_138].Freq++; | ||
|  |         } | ||
|  |         count = 0; prevlen = curlen; | ||
|  |         if (nextlen == 0) { | ||
|  |             max_count = 138, min_count = 3; | ||
|  |         } else if (curlen == nextlen) { | ||
|  |             max_count = 6, min_count = 3; | ||
|  |         } else { | ||
|  |             max_count = 7, min_count = 4; | ||
|  |         } | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Send a literal or distance tree in compressed form, using the codes in | ||
|  |  * bl_tree. | ||
|  |  */ | ||
|  | local void send_tree (s, tree, max_code) | ||
|  |     deflate_state *s; | ||
|  |     ct_data *tree; /* the tree to be scanned */ | ||
|  |     int max_code;       /* and its largest code of non zero frequency */ | ||
|  | { | ||
|  |     int n;                     /* iterates over all tree elements */ | ||
|  |     int prevlen = -1;          /* last emitted length */ | ||
|  |     int curlen;                /* length of current code */ | ||
|  |     int nextlen = tree[0].Len; /* length of next code */ | ||
|  |     int count = 0;             /* repeat count of the current code */ | ||
|  |     int max_count = 7;         /* max repeat count */ | ||
|  |     int min_count = 4;         /* min repeat count */ | ||
|  | 
 | ||
|  |     /* tree[max_code+1].Len = -1; */  /* guard already set */ | ||
|  |     if (nextlen == 0) max_count = 138, min_count = 3; | ||
|  | 
 | ||
|  |     for (n = 0; n <= max_code; n++) { | ||
|  |         curlen = nextlen; nextlen = tree[n+1].Len; | ||
|  |         if (++count < max_count && curlen == nextlen) { | ||
|  |             continue; | ||
|  |         } else if (count < min_count) { | ||
|  |             do { send_code(s, curlen, s->bl_tree); } while (--count != 0); | ||
|  | 
 | ||
|  |         } else if (curlen != 0) { | ||
|  |             if (curlen != prevlen) { | ||
|  |                 send_code(s, curlen, s->bl_tree); count--; | ||
|  |             } | ||
|  |             Assert(count >= 3 && count <= 6, " 3_6?"); | ||
|  |             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); | ||
|  | 
 | ||
|  |         } else if (count <= 10) { | ||
|  |             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); | ||
|  | 
 | ||
|  |         } else { | ||
|  |             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); | ||
|  |         } | ||
|  |         count = 0; prevlen = curlen; | ||
|  |         if (nextlen == 0) { | ||
|  |             max_count = 138, min_count = 3; | ||
|  |         } else if (curlen == nextlen) { | ||
|  |             max_count = 6, min_count = 3; | ||
|  |         } else { | ||
|  |             max_count = 7, min_count = 4; | ||
|  |         } | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Construct the Huffman tree for the bit lengths and return the index in | ||
|  |  * bl_order of the last bit length code to send. | ||
|  |  */ | ||
|  | local int build_bl_tree(s) | ||
|  |     deflate_state *s; | ||
|  | { | ||
|  |     int max_blindex;  /* index of last bit length code of non zero freq */ | ||
|  | 
 | ||
|  |     /* Determine the bit length frequencies for literal and distance trees */ | ||
|  |     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); | ||
|  |     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); | ||
|  | 
 | ||
|  |     /* Build the bit length tree: */ | ||
|  |     build_tree(s, (tree_desc *)(&(s->bl_desc))); | ||
|  |     /* opt_len now includes the length of the tree representations, except
 | ||
|  |      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. | ||
|  |      */ | ||
|  | 
 | ||
|  |     /* Determine the number of bit length codes to send. The pkzip format
 | ||
|  |      * requires that at least 4 bit length codes be sent. (appnote.txt says | ||
|  |      * 3 but the actual value used is 4.) | ||
|  |      */ | ||
|  |     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { | ||
|  |         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; | ||
|  |     } | ||
|  |     /* Update opt_len to include the bit length tree and counts */ | ||
|  |     s->opt_len += 3*(max_blindex+1) + 5+5+4; | ||
|  |     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", | ||
|  |             s->opt_len, s->static_len)); | ||
|  | 
 | ||
|  |     return max_blindex; | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Send the header for a block using dynamic Huffman trees: the counts, the | ||
|  |  * lengths of the bit length codes, the literal tree and the distance tree. | ||
|  |  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. | ||
|  |  */ | ||
|  | local void send_all_trees(s, lcodes, dcodes, blcodes) | ||
|  |     deflate_state *s; | ||
|  |     int lcodes, dcodes, blcodes; /* number of codes for each tree */ | ||
|  | { | ||
|  |     int rank;                    /* index in bl_order */ | ||
|  | 
 | ||
|  |     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); | ||
|  |     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, | ||
|  |             "too many codes"); | ||
|  |     Tracev((stderr, "\nbl counts: ")); | ||
|  |     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ | ||
|  |     send_bits(s, dcodes-1,   5); | ||
|  |     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */ | ||
|  |     for (rank = 0; rank < blcodes; rank++) { | ||
|  |         Tracev((stderr, "\nbl code %2d ", bl_order[rank])); | ||
|  |         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); | ||
|  |     } | ||
|  |     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); | ||
|  | 
 | ||
|  |     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ | ||
|  |     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); | ||
|  | 
 | ||
|  |     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ | ||
|  |     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Send a stored block | ||
|  |  */ | ||
|  | void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last) | ||
|  |     deflate_state *s; | ||
|  |     charf *buf;       /* input block */ | ||
|  |     ulg stored_len;   /* length of input block */ | ||
|  |     int last;         /* one if this is the last block for a file */ | ||
|  | { | ||
|  |     send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */ | ||
|  | #ifdef DEBUG
 | ||
|  |     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; | ||
|  |     s->compressed_len += (stored_len + 4) << 3; | ||
|  | #endif
 | ||
|  |     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Flush the bits in the bit buffer to pending output (leaves at most 7 bits) | ||
|  |  */ | ||
|  | void ZLIB_INTERNAL _tr_flush_bits(s) | ||
|  |     deflate_state *s; | ||
|  | { | ||
|  |     bi_flush(s); | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Send one empty static block to give enough lookahead for inflate. | ||
|  |  * This takes 10 bits, of which 7 may remain in the bit buffer. | ||
|  |  */ | ||
|  | void ZLIB_INTERNAL _tr_align(s) | ||
|  |     deflate_state *s; | ||
|  | { | ||
|  |     send_bits(s, STATIC_TREES<<1, 3); | ||
|  |     send_code(s, END_BLOCK, static_ltree); | ||
|  | #ifdef DEBUG
 | ||
|  |     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ | ||
|  | #endif
 | ||
|  |     bi_flush(s); | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Determine the best encoding for the current block: dynamic trees, static | ||
|  |  * trees or store, and output the encoded block to the zip file. | ||
|  |  */ | ||
|  | void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last) | ||
|  |     deflate_state *s; | ||
|  |     charf *buf;       /* input block, or NULL if too old */ | ||
|  |     ulg stored_len;   /* length of input block */ | ||
|  |     int last;         /* one if this is the last block for a file */ | ||
|  | { | ||
|  |     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ | ||
|  |     int max_blindex = 0;  /* index of last bit length code of non zero freq */ | ||
|  | 
 | ||
|  |     /* Build the Huffman trees unless a stored block is forced */ | ||
|  |     if (s->level > 0) { | ||
|  | 
 | ||
|  |         /* Check if the file is binary or text */ | ||
|  |         if (s->strm->data_type == Z_UNKNOWN) | ||
|  |             s->strm->data_type = detect_data_type(s); | ||
|  | 
 | ||
|  |         /* Construct the literal and distance trees */ | ||
|  |         build_tree(s, (tree_desc *)(&(s->l_desc))); | ||
|  |         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, | ||
|  |                 s->static_len)); | ||
|  | 
 | ||
|  |         build_tree(s, (tree_desc *)(&(s->d_desc))); | ||
|  |         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, | ||
|  |                 s->static_len)); | ||
|  |         /* At this point, opt_len and static_len are the total bit lengths of
 | ||
|  |          * the compressed block data, excluding the tree representations. | ||
|  |          */ | ||
|  | 
 | ||
|  |         /* Build the bit length tree for the above two trees, and get the index
 | ||
|  |          * in bl_order of the last bit length code to send. | ||
|  |          */ | ||
|  |         max_blindex = build_bl_tree(s); | ||
|  | 
 | ||
|  |         /* Determine the best encoding. Compute the block lengths in bytes. */ | ||
|  |         opt_lenb = (s->opt_len+3+7)>>3; | ||
|  |         static_lenb = (s->static_len+3+7)>>3; | ||
|  | 
 | ||
|  |         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", | ||
|  |                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, | ||
|  |                 s->last_lit)); | ||
|  | 
 | ||
|  |         if (static_lenb <= opt_lenb) opt_lenb = static_lenb; | ||
|  | 
 | ||
|  |     } else { | ||
|  |         Assert(buf != (char*)0, "lost buf"); | ||
|  |         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ | ||
|  |     } | ||
|  | 
 | ||
|  | #ifdef FORCE_STORED
 | ||
|  |     if (buf != (char*)0) { /* force stored block */ | ||
|  | #else
 | ||
|  |     if (stored_len+4 <= opt_lenb && buf != (char*)0) { | ||
|  |                        /* 4: two words for the lengths */ | ||
|  | #endif
 | ||
|  |         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
 | ||
|  |          * Otherwise we can't have processed more than WSIZE input bytes since | ||
|  |          * the last block flush, because compression would have been | ||
|  |          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to | ||
|  |          * transform a block into a stored block. | ||
|  |          */ | ||
|  |         _tr_stored_block(s, buf, stored_len, last); | ||
|  | 
 | ||
|  | #ifdef FORCE_STATIC
 | ||
|  |     } else if (static_lenb >= 0) { /* force static trees */ | ||
|  | #else
 | ||
|  |     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { | ||
|  | #endif
 | ||
|  |         send_bits(s, (STATIC_TREES<<1)+last, 3); | ||
|  |         compress_block(s, (const ct_data *)static_ltree, | ||
|  |                        (const ct_data *)static_dtree); | ||
|  | #ifdef DEBUG
 | ||
|  |         s->compressed_len += 3 + s->static_len; | ||
|  | #endif
 | ||
|  |     } else { | ||
|  |         send_bits(s, (DYN_TREES<<1)+last, 3); | ||
|  |         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, | ||
|  |                        max_blindex+1); | ||
|  |         compress_block(s, (const ct_data *)s->dyn_ltree, | ||
|  |                        (const ct_data *)s->dyn_dtree); | ||
|  | #ifdef DEBUG
 | ||
|  |         s->compressed_len += 3 + s->opt_len; | ||
|  | #endif
 | ||
|  |     } | ||
|  |     Assert (s->compressed_len == s->bits_sent, "bad compressed size"); | ||
|  |     /* The above check is made mod 2^32, for files larger than 512 MB
 | ||
|  |      * and uLong implemented on 32 bits. | ||
|  |      */ | ||
|  |     init_block(s); | ||
|  | 
 | ||
|  |     if (last) { | ||
|  |         bi_windup(s); | ||
|  | #ifdef DEBUG
 | ||
|  |         s->compressed_len += 7;  /* align on byte boundary */ | ||
|  | #endif
 | ||
|  |     } | ||
|  |     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, | ||
|  |            s->compressed_len-7*last)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Save the match info and tally the frequency counts. Return true if | ||
|  |  * the current block must be flushed. | ||
|  |  */ | ||
|  | int ZLIB_INTERNAL _tr_tally (s, dist, lc) | ||
|  |     deflate_state *s; | ||
|  |     unsigned dist;  /* distance of matched string */ | ||
|  |     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */ | ||
|  | { | ||
|  |     s->d_buf[s->last_lit] = (ush)dist; | ||
|  |     s->l_buf[s->last_lit++] = (uch)lc; | ||
|  |     if (dist == 0) { | ||
|  |         /* lc is the unmatched char */ | ||
|  |         s->dyn_ltree[lc].Freq++; | ||
|  |     } else { | ||
|  |         s->matches++; | ||
|  |         /* Here, lc is the match length - MIN_MATCH */ | ||
|  |         dist--;             /* dist = match distance - 1 */ | ||
|  |         Assert((ush)dist < (ush)MAX_DIST(s) && | ||
|  |                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && | ||
|  |                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match"); | ||
|  | 
 | ||
|  |         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++; | ||
|  |         s->dyn_dtree[d_code(dist)].Freq++; | ||
|  |     } | ||
|  | 
 | ||
|  | #ifdef TRUNCATE_BLOCK
 | ||
|  |     /* Try to guess if it is profitable to stop the current block here */ | ||
|  |     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) { | ||
|  |         /* Compute an upper bound for the compressed length */ | ||
|  |         ulg out_length = (ulg)s->last_lit*8L; | ||
|  |         ulg in_length = (ulg)((long)s->strstart - s->block_start); | ||
|  |         int dcode; | ||
|  |         for (dcode = 0; dcode < D_CODES; dcode++) { | ||
|  |             out_length += (ulg)s->dyn_dtree[dcode].Freq * | ||
|  |                 (5L+extra_dbits[dcode]); | ||
|  |         } | ||
|  |         out_length >>= 3; | ||
|  |         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", | ||
|  |                s->last_lit, in_length, out_length, | ||
|  |                100L - out_length*100L/in_length)); | ||
|  |         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; | ||
|  |     } | ||
|  | #endif
 | ||
|  |     return (s->last_lit == s->lit_bufsize-1); | ||
|  |     /* We avoid equality with lit_bufsize because of wraparound at 64K
 | ||
|  |      * on 16 bit machines and because stored blocks are restricted to | ||
|  |      * 64K-1 bytes. | ||
|  |      */ | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Send the block data compressed using the given Huffman trees | ||
|  |  */ | ||
|  | local void compress_block(s, ltree, dtree) | ||
|  |     deflate_state *s; | ||
|  |     const ct_data *ltree; /* literal tree */ | ||
|  |     const ct_data *dtree; /* distance tree */ | ||
|  | { | ||
|  |     unsigned dist;      /* distance of matched string */ | ||
|  |     int lc;             /* match length or unmatched char (if dist == 0) */ | ||
|  |     unsigned lx = 0;    /* running index in l_buf */ | ||
|  |     unsigned code;      /* the code to send */ | ||
|  |     int extra;          /* number of extra bits to send */ | ||
|  | 
 | ||
|  |     if (s->last_lit != 0) do { | ||
|  |         dist = s->d_buf[lx]; | ||
|  |         lc = s->l_buf[lx++]; | ||
|  |         if (dist == 0) { | ||
|  |             send_code(s, lc, ltree); /* send a literal byte */ | ||
|  |             Tracecv(isgraph(lc), (stderr," '%c' ", lc)); | ||
|  |         } else { | ||
|  |             /* Here, lc is the match length - MIN_MATCH */ | ||
|  |             code = _length_code[lc]; | ||
|  |             send_code(s, code+LITERALS+1, ltree); /* send the length code */ | ||
|  |             extra = extra_lbits[code]; | ||
|  |             if (extra != 0) { | ||
|  |                 lc -= base_length[code]; | ||
|  |                 send_bits(s, lc, extra);       /* send the extra length bits */ | ||
|  |             } | ||
|  |             dist--; /* dist is now the match distance - 1 */ | ||
|  |             code = d_code(dist); | ||
|  |             Assert (code < D_CODES, "bad d_code"); | ||
|  | 
 | ||
|  |             send_code(s, code, dtree);       /* send the distance code */ | ||
|  |             extra = extra_dbits[code]; | ||
|  |             if (extra != 0) { | ||
|  |                 dist -= base_dist[code]; | ||
|  |                 send_bits(s, dist, extra);   /* send the extra distance bits */ | ||
|  |             } | ||
|  |         } /* literal or match pair ? */ | ||
|  | 
 | ||
|  |         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ | ||
|  |         Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, | ||
|  |                "pendingBuf overflow"); | ||
|  | 
 | ||
|  |     } while (lx < s->last_lit); | ||
|  | 
 | ||
|  |     send_code(s, END_BLOCK, ltree); | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Check if the data type is TEXT or BINARY, using the following algorithm: | ||
|  |  * - TEXT if the two conditions below are satisfied: | ||
|  |  *    a) There are no non-portable control characters belonging to the | ||
|  |  *       "black list" (0..6, 14..25, 28..31). | ||
|  |  *    b) There is at least one printable character belonging to the | ||
|  |  *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). | ||
|  |  * - BINARY otherwise. | ||
|  |  * - The following partially-portable control characters form a | ||
|  |  *   "gray list" that is ignored in this detection algorithm: | ||
|  |  *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). | ||
|  |  * IN assertion: the fields Freq of dyn_ltree are set. | ||
|  |  */ | ||
|  | local int detect_data_type(s) | ||
|  |     deflate_state *s; | ||
|  | { | ||
|  |     /* black_mask is the bit mask of black-listed bytes
 | ||
|  |      * set bits 0..6, 14..25, and 28..31 | ||
|  |      * 0xf3ffc07f = binary 11110011111111111100000001111111 | ||
|  |      */ | ||
|  |     unsigned long black_mask = 0xf3ffc07fUL; | ||
|  |     int n; | ||
|  | 
 | ||
|  |     /* Check for non-textual ("black-listed") bytes. */ | ||
|  |     for (n = 0; n <= 31; n++, black_mask >>= 1) | ||
|  |         if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0)) | ||
|  |             return Z_BINARY; | ||
|  | 
 | ||
|  |     /* Check for textual ("white-listed") bytes. */ | ||
|  |     if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 | ||
|  |             || s->dyn_ltree[13].Freq != 0) | ||
|  |         return Z_TEXT; | ||
|  |     for (n = 32; n < LITERALS; n++) | ||
|  |         if (s->dyn_ltree[n].Freq != 0) | ||
|  |             return Z_TEXT; | ||
|  | 
 | ||
|  |     /* There are no "black-listed" or "white-listed" bytes:
 | ||
|  |      * this stream either is empty or has tolerated ("gray-listed") bytes only. | ||
|  |      */ | ||
|  |     return Z_BINARY; | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Reverse the first len bits of a code, using straightforward code (a faster | ||
|  |  * method would use a table) | ||
|  |  * IN assertion: 1 <= len <= 15 | ||
|  |  */ | ||
|  | local unsigned bi_reverse(code, len) | ||
|  |     unsigned code; /* the value to invert */ | ||
|  |     int len;       /* its bit length */ | ||
|  | { | ||
|  |     register unsigned res = 0; | ||
|  |     do { | ||
|  |         res |= code & 1; | ||
|  |         code >>= 1, res <<= 1; | ||
|  |     } while (--len > 0); | ||
|  |     return res >> 1; | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Flush the bit buffer, keeping at most 7 bits in it. | ||
|  |  */ | ||
|  | local void bi_flush(s) | ||
|  |     deflate_state *s; | ||
|  | { | ||
|  |     if (s->bi_valid == 16) { | ||
|  |         put_short(s, s->bi_buf); | ||
|  |         s->bi_buf = 0; | ||
|  |         s->bi_valid = 0; | ||
|  |     } else if (s->bi_valid >= 8) { | ||
|  |         put_byte(s, (Byte)s->bi_buf); | ||
|  |         s->bi_buf >>= 8; | ||
|  |         s->bi_valid -= 8; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Flush the bit buffer and align the output on a byte boundary | ||
|  |  */ | ||
|  | local void bi_windup(s) | ||
|  |     deflate_state *s; | ||
|  | { | ||
|  |     if (s->bi_valid > 8) { | ||
|  |         put_short(s, s->bi_buf); | ||
|  |     } else if (s->bi_valid > 0) { | ||
|  |         put_byte(s, (Byte)s->bi_buf); | ||
|  |     } | ||
|  |     s->bi_buf = 0; | ||
|  |     s->bi_valid = 0; | ||
|  | #ifdef DEBUG
 | ||
|  |     s->bits_sent = (s->bits_sent+7) & ~7; | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | /* ===========================================================================
 | ||
|  |  * Copy a stored block, storing first the length and its | ||
|  |  * one's complement if requested. | ||
|  |  */ | ||
|  | local void copy_block(s, buf, len, header) | ||
|  |     deflate_state *s; | ||
|  |     charf    *buf;    /* the input data */ | ||
|  |     unsigned len;     /* its length */ | ||
|  |     int      header;  /* true if block header must be written */ | ||
|  | { | ||
|  |     bi_windup(s);        /* align on byte boundary */ | ||
|  | 
 | ||
|  |     if (header) { | ||
|  |         put_short(s, (ush)len); | ||
|  |         put_short(s, (ush)~len); | ||
|  | #ifdef DEBUG
 | ||
|  |         s->bits_sent += 2*16; | ||
|  | #endif
 | ||
|  |     } | ||
|  | #ifdef DEBUG
 | ||
|  |     s->bits_sent += (ulg)len<<3; | ||
|  | #endif
 | ||
|  |     while (len--) { | ||
|  |         put_byte(s, *buf++); | ||
|  |     } | ||
|  | } |