111 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			111 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|  | /*
 | ||
|  | Bullet Continuous Collision Detection and Physics Library | ||
|  | Copyright (c) 2003-2013 Erwin Coumans  http://bulletphysics.org
 | ||
|  | 
 | ||
|  | This software is provided 'as-is', without any express or implied warranty. | ||
|  | In no event will the authors be held liable for any damages arising from the use of this software. | ||
|  | Permission is granted to anyone to use this software for any purpose,  | ||
|  | including commercial applications, and to alter it and redistribute it freely,  | ||
|  | subject to the following restrictions: | ||
|  | 
 | ||
|  | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | ||
|  | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | ||
|  | 3. This notice may not be removed or altered from any source distribution. | ||
|  | */ | ||
|  | ///original version written by Erwin Coumans, October 2013
 | ||
|  | 
 | ||
|  | #ifndef BT_SOLVE_PROJECTED_GAUSS_SEIDEL_H
 | ||
|  | #define BT_SOLVE_PROJECTED_GAUSS_SEIDEL_H
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #include "btMLCPSolverInterface.h"
 | ||
|  | 
 | ||
|  | ///This solver is mainly for debug/learning purposes: it is functionally equivalent to the btSequentialImpulseConstraintSolver solver, but much slower (it builds the full LCP matrix)
 | ||
|  | class btSolveProjectedGaussSeidel : public btMLCPSolverInterface | ||
|  | { | ||
|  | 
 | ||
|  | public: | ||
|  | 
 | ||
|  | 	btScalar m_leastSquaresResidualThreshold; | ||
|  | 	btScalar m_leastSquaresResidual; | ||
|  | 
 | ||
|  | 	btSolveProjectedGaussSeidel() | ||
|  | 		:m_leastSquaresResidualThreshold(0), | ||
|  | 		m_leastSquaresResidual(0) | ||
|  | 	{ | ||
|  | 	} | ||
|  | 
 | ||
|  | 	virtual bool solveMLCP(const btMatrixXu & A, const btVectorXu & b, btVectorXu& x, const btVectorXu & lo,const btVectorXu & hi,const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true) | ||
|  | 	{ | ||
|  | 		if (!A.rows()) | ||
|  | 			return true; | ||
|  | 		//the A matrix is sparse, so compute the non-zero elements
 | ||
|  | 		A.rowComputeNonZeroElements(); | ||
|  | 
 | ||
|  | 		//A is a m-n matrix, m rows, n columns
 | ||
|  | 		btAssert(A.rows() == b.rows()); | ||
|  | 
 | ||
|  | 		int i, j, numRows = A.rows(); | ||
|  | 	 | ||
|  | 		btScalar delta; | ||
|  | 
 | ||
|  | 		for (int k = 0; k <numIterations; k++) | ||
|  | 		{ | ||
|  | 			m_leastSquaresResidual = 0.f; | ||
|  | 			for (i = 0; i <numRows; i++) | ||
|  | 			{ | ||
|  | 				delta = 0.0f; | ||
|  | 				if (useSparsity) | ||
|  | 				{ | ||
|  | 					for (int h=0;h<A.m_rowNonZeroElements1[i].size();h++) | ||
|  | 					{ | ||
|  | 						int j = A.m_rowNonZeroElements1[i][h]; | ||
|  | 						if (j != i)//skip main diagonal
 | ||
|  | 						{ | ||
|  | 							delta += A(i,j) * x[j]; | ||
|  | 						} | ||
|  | 					} | ||
|  | 				} else | ||
|  | 				{ | ||
|  | 					for (j = 0; j <i; j++)  | ||
|  | 						delta += A(i,j) * x[j]; | ||
|  | 					for (j = i+1; j<numRows; j++)  | ||
|  | 						delta += A(i,j) * x[j]; | ||
|  | 				} | ||
|  | 
 | ||
|  | 				btScalar aDiag = A(i,i); | ||
|  | 				btScalar xOld = x[i]; | ||
|  | 				x [i] = (b [i] - delta) / aDiag; | ||
|  | 				btScalar s = 1.f; | ||
|  | 
 | ||
|  | 				if (limitDependency[i]>=0) | ||
|  | 				{ | ||
|  | 					s = x[limitDependency[i]]; | ||
|  | 					if (s<0) | ||
|  | 						s=1; | ||
|  | 				} | ||
|  | 			 | ||
|  | 				if (x[i]<lo[i]*s) | ||
|  | 					x[i]=lo[i]*s; | ||
|  | 				if (x[i]>hi[i]*s) | ||
|  | 					x[i]=hi[i]*s; | ||
|  | 				btScalar diff = x[i] - xOld; | ||
|  | 				m_leastSquaresResidual += diff*diff; | ||
|  | 			} | ||
|  | 
 | ||
|  | 			btScalar eps  = m_leastSquaresResidualThreshold; | ||
|  | 			if ((m_leastSquaresResidual < eps) || (k >=(numIterations-1))) | ||
|  | 			{ | ||
|  | #ifdef VERBOSE_PRINTF_RESIDUAL
 | ||
|  | 				printf("totalLenSqr = %f at iteration #%d\n", m_leastSquaresResidual,k); | ||
|  | #endif
 | ||
|  | 				break; | ||
|  | 			} | ||
|  | 		} | ||
|  | 		return true; | ||
|  | 	} | ||
|  | 
 | ||
|  | }; | ||
|  | 
 | ||
|  | #endif //BT_SOLVE_PROJECTED_GAUSS_SEIDEL_H
 |