1592 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			1592 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | //
 | ||
|  | // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
 | ||
|  | //
 | ||
|  | // This software is provided 'as-is', without any express or implied
 | ||
|  | // warranty.  In no event will the authors be held liable for any damages
 | ||
|  | // arising from the use of this software.
 | ||
|  | // Permission is granted to anyone to use this software for any purpose,
 | ||
|  | // including commercial applications, and to alter it and redistribute it
 | ||
|  | // freely, subject to the following restrictions:
 | ||
|  | // 1. The origin of this software must not be misrepresented; you must not
 | ||
|  | //    claim that you wrote the original software. If you use this software
 | ||
|  | //    in a product, an acknowledgment in the product documentation would be
 | ||
|  | //    appreciated but is not required.
 | ||
|  | // 2. Altered source versions must be plainly marked as such, and must not be
 | ||
|  | //    misrepresented as being the original software.
 | ||
|  | // 3. This notice may not be removed or altered from any source distribution.
 | ||
|  | //
 | ||
|  | 
 | ||
|  | #include <float.h>
 | ||
|  | #include <string.h>
 | ||
|  | #include <stdio.h>
 | ||
|  | #include "DetourNavMesh.h"
 | ||
|  | #include "DetourNode.h"
 | ||
|  | #include "DetourCommon.h"
 | ||
|  | #include "DetourMath.h"
 | ||
|  | #include "DetourAlloc.h"
 | ||
|  | #include "DetourAssert.h"
 | ||
|  | #include <new>
 | ||
|  | 
 | ||
|  | 
 | ||
|  | inline bool overlapSlabs(const float* amin, const float* amax, | ||
|  | 						 const float* bmin, const float* bmax, | ||
|  | 						 const float px, const float py) | ||
|  | { | ||
|  | 	// Check for horizontal overlap.
 | ||
|  | 	// The segment is shrunken a little so that slabs which touch
 | ||
|  | 	// at end points are not connected.
 | ||
|  | 	const float minx = dtMax(amin[0]+px,bmin[0]+px); | ||
|  | 	const float maxx = dtMin(amax[0]-px,bmax[0]-px); | ||
|  | 	if (minx > maxx) | ||
|  | 		return false; | ||
|  | 	 | ||
|  | 	// Check vertical overlap.
 | ||
|  | 	const float ad = (amax[1]-amin[1]) / (amax[0]-amin[0]); | ||
|  | 	const float ak = amin[1] - ad*amin[0]; | ||
|  | 	const float bd = (bmax[1]-bmin[1]) / (bmax[0]-bmin[0]); | ||
|  | 	const float bk = bmin[1] - bd*bmin[0]; | ||
|  | 	const float aminy = ad*minx + ak; | ||
|  | 	const float amaxy = ad*maxx + ak; | ||
|  | 	const float bminy = bd*minx + bk; | ||
|  | 	const float bmaxy = bd*maxx + bk; | ||
|  | 	const float dmin = bminy - aminy; | ||
|  | 	const float dmax = bmaxy - amaxy; | ||
|  | 		 | ||
|  | 	// Crossing segments always overlap.
 | ||
|  | 	if (dmin*dmax < 0) | ||
|  | 		return true; | ||
|  | 		 | ||
|  | 	// Check for overlap at endpoints.
 | ||
|  | 	const float thr = dtSqr(py*2); | ||
|  | 	if (dmin*dmin <= thr || dmax*dmax <= thr) | ||
|  | 		return true; | ||
|  | 		 | ||
|  | 	return false; | ||
|  | } | ||
|  | 
 | ||
|  | static float getSlabCoord(const float* va, const int side) | ||
|  | { | ||
|  | 	if (side == 0 || side == 4) | ||
|  | 		return va[0]; | ||
|  | 	else if (side == 2 || side == 6) | ||
|  | 		return va[2]; | ||
|  | 	return 0; | ||
|  | } | ||
|  | 
 | ||
|  | static void calcSlabEndPoints(const float* va, const float* vb, float* bmin, float* bmax, const int side) | ||
|  | { | ||
|  | 	if (side == 0 || side == 4) | ||
|  | 	{ | ||
|  | 		if (va[2] < vb[2]) | ||
|  | 		{ | ||
|  | 			bmin[0] = va[2]; | ||
|  | 			bmin[1] = va[1]; | ||
|  | 			bmax[0] = vb[2]; | ||
|  | 			bmax[1] = vb[1]; | ||
|  | 		} | ||
|  | 		else | ||
|  | 		{ | ||
|  | 			bmin[0] = vb[2]; | ||
|  | 			bmin[1] = vb[1]; | ||
|  | 			bmax[0] = va[2]; | ||
|  | 			bmax[1] = va[1]; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	else if (side == 2 || side == 6) | ||
|  | 	{ | ||
|  | 		if (va[0] < vb[0]) | ||
|  | 		{ | ||
|  | 			bmin[0] = va[0]; | ||
|  | 			bmin[1] = va[1]; | ||
|  | 			bmax[0] = vb[0]; | ||
|  | 			bmax[1] = vb[1]; | ||
|  | 		} | ||
|  | 		else | ||
|  | 		{ | ||
|  | 			bmin[0] = vb[0]; | ||
|  | 			bmin[1] = vb[1]; | ||
|  | 			bmax[0] = va[0]; | ||
|  | 			bmax[1] = va[1]; | ||
|  | 		} | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | inline int computeTileHash(int x, int y, const int mask) | ||
|  | { | ||
|  | 	const unsigned int h1 = 0x8da6b343; // Large multiplicative constants;
 | ||
|  | 	const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes
 | ||
|  | 	unsigned int n = h1 * x + h2 * y; | ||
|  | 	return (int)(n & mask); | ||
|  | } | ||
|  | 
 | ||
|  | inline unsigned int allocLink(dtMeshTile* tile) | ||
|  | { | ||
|  | 	if (tile->linksFreeList == DT_NULL_LINK) | ||
|  | 		return DT_NULL_LINK; | ||
|  | 	unsigned int link = tile->linksFreeList; | ||
|  | 	tile->linksFreeList = tile->links[link].next; | ||
|  | 	return link; | ||
|  | } | ||
|  | 
 | ||
|  | inline void freeLink(dtMeshTile* tile, unsigned int link) | ||
|  | { | ||
|  | 	tile->links[link].next = tile->linksFreeList; | ||
|  | 	tile->linksFreeList = link; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | dtNavMesh* dtAllocNavMesh() | ||
|  | { | ||
|  | 	void* mem = dtAlloc(sizeof(dtNavMesh), DT_ALLOC_PERM); | ||
|  | 	if (!mem) return 0; | ||
|  | 	return new(mem) dtNavMesh; | ||
|  | } | ||
|  | 
 | ||
|  | /// @par
 | ||
|  | ///
 | ||
|  | /// This function will only free the memory for tiles with the #DT_TILE_FREE_DATA
 | ||
|  | /// flag set.
 | ||
|  | void dtFreeNavMesh(dtNavMesh* navmesh) | ||
|  | { | ||
|  | 	if (!navmesh) return; | ||
|  | 	navmesh->~dtNavMesh(); | ||
|  | 	dtFree(navmesh); | ||
|  | } | ||
|  | 
 | ||
|  | //////////////////////////////////////////////////////////////////////////////////////////
 | ||
|  | 
 | ||
|  | /**
 | ||
|  | @class dtNavMesh | ||
|  | 
 | ||
|  | The navigation mesh consists of one or more tiles defining three primary types of structural data: | ||
|  | 
 | ||
|  | A polygon mesh which defines most of the navigation graph. (See rcPolyMesh for its structure.) | ||
|  | A detail mesh used for determining surface height on the polygon mesh. (See rcPolyMeshDetail for its structure.) | ||
|  | Off-mesh connections, which define custom point-to-point edges within the navigation graph. | ||
|  | 
 | ||
|  | The general build process is as follows: | ||
|  | 
 | ||
|  | -# Create rcPolyMesh and rcPolyMeshDetail data using the Recast build pipeline. | ||
|  | -# Optionally, create off-mesh connection data. | ||
|  | -# Combine the source data into a dtNavMeshCreateParams structure. | ||
|  | -# Create a tile data array using dtCreateNavMeshData(). | ||
|  | -# Allocate at dtNavMesh object and initialize it. (For single tile navigation meshes, | ||
|  |    the tile data is loaded during this step.) | ||
|  | -# For multi-tile navigation meshes, load the tile data using dtNavMesh::addTile(). | ||
|  | 
 | ||
|  | Notes: | ||
|  | 
 | ||
|  | - This class is usually used in conjunction with the dtNavMeshQuery class for pathfinding. | ||
|  | - Technically, all navigation meshes are tiled. A 'solo' mesh is simply a navigation mesh initialized  | ||
|  |   to have only a single tile. | ||
|  | - This class does not implement any asynchronous methods. So the ::dtStatus result of all methods will  | ||
|  |   always contain either a success or failure flag. | ||
|  | 
 | ||
|  | @see dtNavMeshQuery, dtCreateNavMeshData, dtNavMeshCreateParams, #dtAllocNavMesh, #dtFreeNavMesh | ||
|  | */ | ||
|  | 
 | ||
|  | dtNavMesh::dtNavMesh() : | ||
|  | 	m_tileWidth(0), | ||
|  | 	m_tileHeight(0), | ||
|  | 	m_maxTiles(0), | ||
|  | 	m_tileLutSize(0), | ||
|  | 	m_tileLutMask(0), | ||
|  | 	m_posLookup(0), | ||
|  | 	m_nextFree(0), | ||
|  | 	m_tiles(0) | ||
|  | { | ||
|  | #ifndef DT_POLYREF64
 | ||
|  | 	m_saltBits = 0; | ||
|  | 	m_tileBits = 0; | ||
|  | 	m_polyBits = 0; | ||
|  | #endif
 | ||
|  | 	memset(&m_params, 0, sizeof(dtNavMeshParams)); | ||
|  | 	m_orig[0] = 0; | ||
|  | 	m_orig[1] = 0; | ||
|  | 	m_orig[2] = 0; | ||
|  | } | ||
|  | 
 | ||
|  | dtNavMesh::~dtNavMesh() | ||
|  | { | ||
|  | 	for (int i = 0; i < m_maxTiles; ++i) | ||
|  | 	{ | ||
|  | 		if (m_tiles[i].flags & DT_TILE_FREE_DATA) | ||
|  | 		{ | ||
|  | 			dtFree(m_tiles[i].data); | ||
|  | 			m_tiles[i].data = 0; | ||
|  | 			m_tiles[i].dataSize = 0; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	dtFree(m_posLookup); | ||
|  | 	dtFree(m_tiles); | ||
|  | } | ||
|  | 		 | ||
|  | dtStatus dtNavMesh::init(const dtNavMeshParams* params) | ||
|  | { | ||
|  | 	memcpy(&m_params, params, sizeof(dtNavMeshParams)); | ||
|  | 	dtVcopy(m_orig, params->orig); | ||
|  | 	m_tileWidth = params->tileWidth; | ||
|  | 	m_tileHeight = params->tileHeight; | ||
|  | 	 | ||
|  | 	// Init tiles
 | ||
|  | 	m_maxTiles = params->maxTiles; | ||
|  | 	m_tileLutSize = dtNextPow2(params->maxTiles/4); | ||
|  | 	if (!m_tileLutSize) m_tileLutSize = 1; | ||
|  | 	m_tileLutMask = m_tileLutSize-1; | ||
|  | 	 | ||
|  | 	m_tiles = (dtMeshTile*)dtAlloc(sizeof(dtMeshTile)*m_maxTiles, DT_ALLOC_PERM); | ||
|  | 	if (!m_tiles) | ||
|  | 		return DT_FAILURE | DT_OUT_OF_MEMORY; | ||
|  | 	m_posLookup = (dtMeshTile**)dtAlloc(sizeof(dtMeshTile*)*m_tileLutSize, DT_ALLOC_PERM); | ||
|  | 	if (!m_posLookup) | ||
|  | 		return DT_FAILURE | DT_OUT_OF_MEMORY; | ||
|  | 	memset(m_tiles, 0, sizeof(dtMeshTile)*m_maxTiles); | ||
|  | 	memset(m_posLookup, 0, sizeof(dtMeshTile*)*m_tileLutSize); | ||
|  | 	m_nextFree = 0; | ||
|  | 	for (int i = m_maxTiles-1; i >= 0; --i) | ||
|  | 	{ | ||
|  | 		m_tiles[i].salt = 1; | ||
|  | 		m_tiles[i].next = m_nextFree; | ||
|  | 		m_nextFree = &m_tiles[i]; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	// Init ID generator values.
 | ||
|  | #ifndef DT_POLYREF64
 | ||
|  | 	m_tileBits = dtIlog2(dtNextPow2((unsigned int)params->maxTiles)); | ||
|  | 	m_polyBits = dtIlog2(dtNextPow2((unsigned int)params->maxPolys)); | ||
|  | 	// Only allow 31 salt bits, since the salt mask is calculated using 32bit uint and it will overflow.
 | ||
|  | 	m_saltBits = dtMin((unsigned int)31, 32 - m_tileBits - m_polyBits); | ||
|  | 
 | ||
|  | 	if (m_saltBits < 10) | ||
|  | 		return DT_FAILURE | DT_INVALID_PARAM; | ||
|  | #endif
 | ||
|  | 	 | ||
|  | 	return DT_SUCCESS; | ||
|  | } | ||
|  | 
 | ||
|  | dtStatus dtNavMesh::init(unsigned char* data, const int dataSize, const int flags) | ||
|  | { | ||
|  | 	// Make sure the data is in right format.
 | ||
|  | 	dtMeshHeader* header = (dtMeshHeader*)data; | ||
|  | 	if (header->magic != DT_NAVMESH_MAGIC) | ||
|  | 		return DT_FAILURE | DT_WRONG_MAGIC; | ||
|  | 	if (header->version != DT_NAVMESH_VERSION) | ||
|  | 		return DT_FAILURE | DT_WRONG_VERSION; | ||
|  | 
 | ||
|  | 	dtNavMeshParams params; | ||
|  | 	dtVcopy(params.orig, header->bmin); | ||
|  | 	params.tileWidth = header->bmax[0] - header->bmin[0]; | ||
|  | 	params.tileHeight = header->bmax[2] - header->bmin[2]; | ||
|  | 	params.maxTiles = 1; | ||
|  | 	params.maxPolys = header->polyCount; | ||
|  | 	 | ||
|  | 	dtStatus status = init(¶ms); | ||
|  | 	if (dtStatusFailed(status)) | ||
|  | 		return status; | ||
|  | 
 | ||
|  | 	return addTile(data, dataSize, flags, 0, 0); | ||
|  | } | ||
|  | 
 | ||
|  | /// @par
 | ||
|  | ///
 | ||
|  | /// @note The parameters are created automatically when the single tile
 | ||
|  | /// initialization is performed.
 | ||
|  | const dtNavMeshParams* dtNavMesh::getParams() const | ||
|  | { | ||
|  | 	return &m_params; | ||
|  | } | ||
|  | 
 | ||
|  | //////////////////////////////////////////////////////////////////////////////////////////
 | ||
|  | int dtNavMesh::findConnectingPolys(const float* va, const float* vb, | ||
|  | 								   const dtMeshTile* tile, int side, | ||
|  | 								   dtPolyRef* con, float* conarea, int maxcon) const | ||
|  | { | ||
|  | 	if (!tile) return 0; | ||
|  | 	 | ||
|  | 	float amin[2], amax[2]; | ||
|  | 	calcSlabEndPoints(va, vb, amin, amax, side); | ||
|  | 	const float apos = getSlabCoord(va, side); | ||
|  | 
 | ||
|  | 	// Remove links pointing to 'side' and compact the links array. 
 | ||
|  | 	float bmin[2], bmax[2]; | ||
|  | 	unsigned short m = DT_EXT_LINK | (unsigned short)side; | ||
|  | 	int n = 0; | ||
|  | 	 | ||
|  | 	dtPolyRef base = getPolyRefBase(tile); | ||
|  | 	 | ||
|  | 	for (int i = 0; i < tile->header->polyCount; ++i) | ||
|  | 	{ | ||
|  | 		dtPoly* poly = &tile->polys[i]; | ||
|  | 		const int nv = poly->vertCount; | ||
|  | 		for (int j = 0; j < nv; ++j) | ||
|  | 		{ | ||
|  | 			// Skip edges which do not point to the right side.
 | ||
|  | 			if (poly->neis[j] != m) continue; | ||
|  | 			 | ||
|  | 			const float* vc = &tile->verts[poly->verts[j]*3]; | ||
|  | 			const float* vd = &tile->verts[poly->verts[(j+1) % nv]*3]; | ||
|  | 			const float bpos = getSlabCoord(vc, side); | ||
|  | 			 | ||
|  | 			// Segments are not close enough.
 | ||
|  | 			if (dtAbs(apos-bpos) > 0.01f) | ||
|  | 				continue; | ||
|  | 			 | ||
|  | 			// Check if the segments touch.
 | ||
|  | 			calcSlabEndPoints(vc,vd, bmin,bmax, side); | ||
|  | 			 | ||
|  | 			if (!overlapSlabs(amin,amax, bmin,bmax, 0.01f, tile->header->walkableClimb)) continue; | ||
|  | 			 | ||
|  | 			// Add return value.
 | ||
|  | 			if (n < maxcon) | ||
|  | 			{ | ||
|  | 				conarea[n*2+0] = dtMax(amin[0], bmin[0]); | ||
|  | 				conarea[n*2+1] = dtMin(amax[0], bmax[0]); | ||
|  | 				con[n] = base | (dtPolyRef)i; | ||
|  | 				n++; | ||
|  | 			} | ||
|  | 			break; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	return n; | ||
|  | } | ||
|  | 
 | ||
|  | void dtNavMesh::unconnectLinks(dtMeshTile* tile, dtMeshTile* target) | ||
|  | { | ||
|  | 	if (!tile || !target) return; | ||
|  | 
 | ||
|  | 	const unsigned int targetNum = decodePolyIdTile(getTileRef(target)); | ||
|  | 
 | ||
|  | 	for (int i = 0; i < tile->header->polyCount; ++i) | ||
|  | 	{ | ||
|  | 		dtPoly* poly = &tile->polys[i]; | ||
|  | 		unsigned int j = poly->firstLink; | ||
|  | 		unsigned int pj = DT_NULL_LINK; | ||
|  | 		while (j != DT_NULL_LINK) | ||
|  | 		{ | ||
|  | 			if (decodePolyIdTile(tile->links[j].ref) == targetNum) | ||
|  | 			{ | ||
|  | 				// Remove link.
 | ||
|  | 				unsigned int nj = tile->links[j].next; | ||
|  | 				if (pj == DT_NULL_LINK) | ||
|  | 					poly->firstLink = nj; | ||
|  | 				else | ||
|  | 					tile->links[pj].next = nj; | ||
|  | 				freeLink(tile, j); | ||
|  | 				j = nj; | ||
|  | 			} | ||
|  | 			else | ||
|  | 			{ | ||
|  | 				// Advance
 | ||
|  | 				pj = j; | ||
|  | 				j = tile->links[j].next; | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | void dtNavMesh::connectExtLinks(dtMeshTile* tile, dtMeshTile* target, int side) | ||
|  | { | ||
|  | 	if (!tile) return; | ||
|  | 	 | ||
|  | 	// Connect border links.
 | ||
|  | 	for (int i = 0; i < tile->header->polyCount; ++i) | ||
|  | 	{ | ||
|  | 		dtPoly* poly = &tile->polys[i]; | ||
|  | 
 | ||
|  | 		// Create new links.
 | ||
|  | //		unsigned short m = DT_EXT_LINK | (unsigned short)side;
 | ||
|  | 		 | ||
|  | 		const int nv = poly->vertCount; | ||
|  | 		for (int j = 0; j < nv; ++j) | ||
|  | 		{ | ||
|  | 			// Skip non-portal edges.
 | ||
|  | 			if ((poly->neis[j] & DT_EXT_LINK) == 0) | ||
|  | 				continue; | ||
|  | 			 | ||
|  | 			const int dir = (int)(poly->neis[j] & 0xff); | ||
|  | 			if (side != -1 && dir != side) | ||
|  | 				continue; | ||
|  | 			 | ||
|  | 			// Create new links
 | ||
|  | 			const float* va = &tile->verts[poly->verts[j]*3]; | ||
|  | 			const float* vb = &tile->verts[poly->verts[(j+1) % nv]*3]; | ||
|  | 			dtPolyRef nei[4]; | ||
|  | 			float neia[4*2]; | ||
|  | 			int nnei = findConnectingPolys(va,vb, target, dtOppositeTile(dir), nei,neia,4); | ||
|  | 			for (int k = 0; k < nnei; ++k) | ||
|  | 			{ | ||
|  | 				unsigned int idx = allocLink(tile); | ||
|  | 				if (idx != DT_NULL_LINK) | ||
|  | 				{ | ||
|  | 					dtLink* link = &tile->links[idx]; | ||
|  | 					link->ref = nei[k]; | ||
|  | 					link->edge = (unsigned char)j; | ||
|  | 					link->side = (unsigned char)dir; | ||
|  | 					 | ||
|  | 					link->next = poly->firstLink; | ||
|  | 					poly->firstLink = idx; | ||
|  | 
 | ||
|  | 					// Compress portal limits to a byte value.
 | ||
|  | 					if (dir == 0 || dir == 4) | ||
|  | 					{ | ||
|  | 						float tmin = (neia[k*2+0]-va[2]) / (vb[2]-va[2]); | ||
|  | 						float tmax = (neia[k*2+1]-va[2]) / (vb[2]-va[2]); | ||
|  | 						if (tmin > tmax) | ||
|  | 							dtSwap(tmin,tmax); | ||
|  | 						link->bmin = (unsigned char)(dtClamp(tmin, 0.0f, 1.0f)*255.0f); | ||
|  | 						link->bmax = (unsigned char)(dtClamp(tmax, 0.0f, 1.0f)*255.0f); | ||
|  | 					} | ||
|  | 					else if (dir == 2 || dir == 6) | ||
|  | 					{ | ||
|  | 						float tmin = (neia[k*2+0]-va[0]) / (vb[0]-va[0]); | ||
|  | 						float tmax = (neia[k*2+1]-va[0]) / (vb[0]-va[0]); | ||
|  | 						if (tmin > tmax) | ||
|  | 							dtSwap(tmin,tmax); | ||
|  | 						link->bmin = (unsigned char)(dtClamp(tmin, 0.0f, 1.0f)*255.0f); | ||
|  | 						link->bmax = (unsigned char)(dtClamp(tmax, 0.0f, 1.0f)*255.0f); | ||
|  | 					} | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | void dtNavMesh::connectExtOffMeshLinks(dtMeshTile* tile, dtMeshTile* target, int side) | ||
|  | { | ||
|  | 	if (!tile) return; | ||
|  | 	 | ||
|  | 	// Connect off-mesh links.
 | ||
|  | 	// We are interested on links which land from target tile to this tile.
 | ||
|  | 	const unsigned char oppositeSide = (side == -1) ? 0xff : (unsigned char)dtOppositeTile(side); | ||
|  | 	 | ||
|  | 	for (int i = 0; i < target->header->offMeshConCount; ++i) | ||
|  | 	{ | ||
|  | 		dtOffMeshConnection* targetCon = &target->offMeshCons[i]; | ||
|  | 		if (targetCon->side != oppositeSide) | ||
|  | 			continue; | ||
|  | 
 | ||
|  | 		dtPoly* targetPoly = &target->polys[targetCon->poly]; | ||
|  | 		// Skip off-mesh connections which start location could not be connected at all.
 | ||
|  | 		if (targetPoly->firstLink == DT_NULL_LINK) | ||
|  | 			continue; | ||
|  | 		 | ||
|  | 		const float halfExtents[3] = { targetCon->rad, target->header->walkableClimb, targetCon->rad }; | ||
|  | 		 | ||
|  | 		// Find polygon to connect to.
 | ||
|  | 		const float* p = &targetCon->pos[3]; | ||
|  | 		float nearestPt[3]; | ||
|  | 		dtPolyRef ref = findNearestPolyInTile(tile, p, halfExtents, nearestPt); | ||
|  | 		if (!ref) | ||
|  | 			continue; | ||
|  | 		// findNearestPoly may return too optimistic results, further check to make sure. 
 | ||
|  | 		if (dtSqr(nearestPt[0]-p[0])+dtSqr(nearestPt[2]-p[2]) > dtSqr(targetCon->rad)) | ||
|  | 			continue; | ||
|  | 		// Make sure the location is on current mesh.
 | ||
|  | 		float* v = &target->verts[targetPoly->verts[1]*3]; | ||
|  | 		dtVcopy(v, nearestPt); | ||
|  | 				 | ||
|  | 		// Link off-mesh connection to target poly.
 | ||
|  | 		unsigned int idx = allocLink(target); | ||
|  | 		if (idx != DT_NULL_LINK) | ||
|  | 		{ | ||
|  | 			dtLink* link = &target->links[idx]; | ||
|  | 			link->ref = ref; | ||
|  | 			link->edge = (unsigned char)1; | ||
|  | 			link->side = oppositeSide; | ||
|  | 			link->bmin = link->bmax = 0; | ||
|  | 			// Add to linked list.
 | ||
|  | 			link->next = targetPoly->firstLink; | ||
|  | 			targetPoly->firstLink = idx; | ||
|  | 		} | ||
|  | 		 | ||
|  | 		// Link target poly to off-mesh connection.
 | ||
|  | 		if (targetCon->flags & DT_OFFMESH_CON_BIDIR) | ||
|  | 		{ | ||
|  | 			unsigned int tidx = allocLink(tile); | ||
|  | 			if (tidx != DT_NULL_LINK) | ||
|  | 			{ | ||
|  | 				const unsigned short landPolyIdx = (unsigned short)decodePolyIdPoly(ref); | ||
|  | 				dtPoly* landPoly = &tile->polys[landPolyIdx]; | ||
|  | 				dtLink* link = &tile->links[tidx]; | ||
|  | 				link->ref = getPolyRefBase(target) | (dtPolyRef)(targetCon->poly); | ||
|  | 				link->edge = 0xff; | ||
|  | 				link->side = (unsigned char)(side == -1 ? 0xff : side); | ||
|  | 				link->bmin = link->bmax = 0; | ||
|  | 				// Add to linked list.
 | ||
|  | 				link->next = landPoly->firstLink; | ||
|  | 				landPoly->firstLink = tidx; | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | void dtNavMesh::connectIntLinks(dtMeshTile* tile) | ||
|  | { | ||
|  | 	if (!tile) return; | ||
|  | 
 | ||
|  | 	dtPolyRef base = getPolyRefBase(tile); | ||
|  | 
 | ||
|  | 	for (int i = 0; i < tile->header->polyCount; ++i) | ||
|  | 	{ | ||
|  | 		dtPoly* poly = &tile->polys[i]; | ||
|  | 		poly->firstLink = DT_NULL_LINK; | ||
|  | 
 | ||
|  | 		if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) | ||
|  | 			continue; | ||
|  | 			 | ||
|  | 		// Build edge links backwards so that the links will be
 | ||
|  | 		// in the linked list from lowest index to highest.
 | ||
|  | 		for (int j = poly->vertCount-1; j >= 0; --j) | ||
|  | 		{ | ||
|  | 			// Skip hard and non-internal edges.
 | ||
|  | 			if (poly->neis[j] == 0 || (poly->neis[j] & DT_EXT_LINK)) continue; | ||
|  | 
 | ||
|  | 			unsigned int idx = allocLink(tile); | ||
|  | 			if (idx != DT_NULL_LINK) | ||
|  | 			{ | ||
|  | 				dtLink* link = &tile->links[idx]; | ||
|  | 				link->ref = base | (dtPolyRef)(poly->neis[j]-1); | ||
|  | 				link->edge = (unsigned char)j; | ||
|  | 				link->side = 0xff; | ||
|  | 				link->bmin = link->bmax = 0; | ||
|  | 				// Add to linked list.
 | ||
|  | 				link->next = poly->firstLink; | ||
|  | 				poly->firstLink = idx; | ||
|  | 			} | ||
|  | 		}			 | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | void dtNavMesh::baseOffMeshLinks(dtMeshTile* tile) | ||
|  | { | ||
|  | 	if (!tile) return; | ||
|  | 	 | ||
|  | 	dtPolyRef base = getPolyRefBase(tile); | ||
|  | 	 | ||
|  | 	// Base off-mesh connection start points.
 | ||
|  | 	for (int i = 0; i < tile->header->offMeshConCount; ++i) | ||
|  | 	{ | ||
|  | 		dtOffMeshConnection* con = &tile->offMeshCons[i]; | ||
|  | 		dtPoly* poly = &tile->polys[con->poly]; | ||
|  | 	 | ||
|  | 		const float halfExtents[3] = { con->rad, tile->header->walkableClimb, con->rad }; | ||
|  | 		 | ||
|  | 		// Find polygon to connect to.
 | ||
|  | 		const float* p = &con->pos[0]; // First vertex
 | ||
|  | 		float nearestPt[3]; | ||
|  | 		dtPolyRef ref = findNearestPolyInTile(tile, p, halfExtents, nearestPt); | ||
|  | 		if (!ref) continue; | ||
|  | 		// findNearestPoly may return too optimistic results, further check to make sure. 
 | ||
|  | 		if (dtSqr(nearestPt[0]-p[0])+dtSqr(nearestPt[2]-p[2]) > dtSqr(con->rad)) | ||
|  | 			continue; | ||
|  | 		// Make sure the location is on current mesh.
 | ||
|  | 		float* v = &tile->verts[poly->verts[0]*3]; | ||
|  | 		dtVcopy(v, nearestPt); | ||
|  | 
 | ||
|  | 		// Link off-mesh connection to target poly.
 | ||
|  | 		unsigned int idx = allocLink(tile); | ||
|  | 		if (idx != DT_NULL_LINK) | ||
|  | 		{ | ||
|  | 			dtLink* link = &tile->links[idx]; | ||
|  | 			link->ref = ref; | ||
|  | 			link->edge = (unsigned char)0; | ||
|  | 			link->side = 0xff; | ||
|  | 			link->bmin = link->bmax = 0; | ||
|  | 			// Add to linked list.
 | ||
|  | 			link->next = poly->firstLink; | ||
|  | 			poly->firstLink = idx; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		// Start end-point is always connect back to off-mesh connection. 
 | ||
|  | 		unsigned int tidx = allocLink(tile); | ||
|  | 		if (tidx != DT_NULL_LINK) | ||
|  | 		{ | ||
|  | 			const unsigned short landPolyIdx = (unsigned short)decodePolyIdPoly(ref); | ||
|  | 			dtPoly* landPoly = &tile->polys[landPolyIdx]; | ||
|  | 			dtLink* link = &tile->links[tidx]; | ||
|  | 			link->ref = base | (dtPolyRef)(con->poly); | ||
|  | 			link->edge = 0xff; | ||
|  | 			link->side = 0xff; | ||
|  | 			link->bmin = link->bmax = 0; | ||
|  | 			// Add to linked list.
 | ||
|  | 			link->next = landPoly->firstLink; | ||
|  | 			landPoly->firstLink = tidx; | ||
|  | 		} | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | namespace | ||
|  | { | ||
|  | 	template<bool onlyBoundary> | ||
|  | 	void closestPointOnDetailEdges(const dtMeshTile* tile, const dtPoly* poly, const float* pos, float* closest) | ||
|  | 	{ | ||
|  | 		const unsigned int ip = (unsigned int)(poly - tile->polys); | ||
|  | 		const dtPolyDetail* pd = &tile->detailMeshes[ip]; | ||
|  | 
 | ||
|  | 		float dmin = FLT_MAX; | ||
|  | 		float tmin = 0; | ||
|  | 		const float* pmin = 0; | ||
|  | 		const float* pmax = 0; | ||
|  | 
 | ||
|  | 		for (int i = 0; i < pd->triCount; i++) | ||
|  | 		{ | ||
|  | 			const unsigned char* tris = &tile->detailTris[(pd->triBase + i) * 4]; | ||
|  | 			const int ANY_BOUNDARY_EDGE = | ||
|  | 				(DT_DETAIL_EDGE_BOUNDARY << 0) | | ||
|  | 				(DT_DETAIL_EDGE_BOUNDARY << 2) | | ||
|  | 				(DT_DETAIL_EDGE_BOUNDARY << 4); | ||
|  | 			if (onlyBoundary && (tris[3] & ANY_BOUNDARY_EDGE) == 0) | ||
|  | 				continue; | ||
|  | 
 | ||
|  | 			const float* v[3]; | ||
|  | 			for (int j = 0; j < 3; ++j) | ||
|  | 			{ | ||
|  | 				if (tris[j] < poly->vertCount) | ||
|  | 					v[j] = &tile->verts[poly->verts[tris[j]] * 3]; | ||
|  | 				else | ||
|  | 					v[j] = &tile->detailVerts[(pd->vertBase + (tris[j] - poly->vertCount)) * 3]; | ||
|  | 			} | ||
|  | 
 | ||
|  | 			for (int k = 0, j = 2; k < 3; j = k++) | ||
|  | 			{ | ||
|  | 				if ((dtGetDetailTriEdgeFlags(tris[3], j) & DT_DETAIL_EDGE_BOUNDARY) == 0 && | ||
|  | 					(onlyBoundary || tris[j] < tris[k])) | ||
|  | 				{ | ||
|  | 					// Only looking at boundary edges and this is internal, or
 | ||
|  | 					// this is an inner edge that we will see again or have already seen.
 | ||
|  | 					continue; | ||
|  | 				} | ||
|  | 
 | ||
|  | 				float t; | ||
|  | 				float d = dtDistancePtSegSqr2D(pos, v[j], v[k], t); | ||
|  | 				if (d < dmin) | ||
|  | 				{ | ||
|  | 					dmin = d; | ||
|  | 					tmin = t; | ||
|  | 					pmin = v[j]; | ||
|  | 					pmax = v[k]; | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 
 | ||
|  | 		dtVlerp(closest, pmin, pmax, tmin); | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | bool dtNavMesh::getPolyHeight(const dtMeshTile* tile, const dtPoly* poly, const float* pos, float* height) const | ||
|  | { | ||
|  | 	// Off-mesh connections do not have detail polys and getting height
 | ||
|  | 	// over them does not make sense.
 | ||
|  | 	if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) | ||
|  | 		return false; | ||
|  | 
 | ||
|  | 	const unsigned int ip = (unsigned int)(poly - tile->polys); | ||
|  | 	const dtPolyDetail* pd = &tile->detailMeshes[ip]; | ||
|  | 	 | ||
|  | 	float verts[DT_VERTS_PER_POLYGON*3];	 | ||
|  | 	const int nv = poly->vertCount; | ||
|  | 	for (int i = 0; i < nv; ++i) | ||
|  | 		dtVcopy(&verts[i*3], &tile->verts[poly->verts[i]*3]); | ||
|  | 	 | ||
|  | 	if (!dtPointInPolygon(pos, verts, nv)) | ||
|  | 		return false; | ||
|  | 
 | ||
|  | 	if (!height) | ||
|  | 		return true; | ||
|  | 	 | ||
|  | 	// Find height at the location.
 | ||
|  | 	for (int j = 0; j < pd->triCount; ++j) | ||
|  | 	{ | ||
|  | 		const unsigned char* t = &tile->detailTris[(pd->triBase+j)*4]; | ||
|  | 		const float* v[3]; | ||
|  | 		for (int k = 0; k < 3; ++k) | ||
|  | 		{ | ||
|  | 			if (t[k] < poly->vertCount) | ||
|  | 				v[k] = &tile->verts[poly->verts[t[k]]*3]; | ||
|  | 			else | ||
|  | 				v[k] = &tile->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3]; | ||
|  | 		} | ||
|  | 		float h; | ||
|  | 		if (dtClosestHeightPointTriangle(pos, v[0], v[1], v[2], h)) | ||
|  | 		{ | ||
|  | 			*height = h; | ||
|  | 			return true; | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// If all triangle checks failed above (can happen with degenerate triangles
 | ||
|  | 	// or larger floating point values) the point is on an edge, so just select
 | ||
|  | 	// closest. This should almost never happen so the extra iteration here is
 | ||
|  | 	// ok.
 | ||
|  | 	float closest[3]; | ||
|  | 	closestPointOnDetailEdges<false>(tile, poly, pos, closest); | ||
|  | 	*height = closest[1]; | ||
|  | 	return true; | ||
|  | } | ||
|  | 
 | ||
|  | void dtNavMesh::closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest, bool* posOverPoly) const | ||
|  | { | ||
|  | 	const dtMeshTile* tile = 0; | ||
|  | 	const dtPoly* poly = 0; | ||
|  | 	getTileAndPolyByRefUnsafe(ref, &tile, &poly); | ||
|  | 
 | ||
|  | 	dtVcopy(closest, pos); | ||
|  | 	if (getPolyHeight(tile, poly, pos, &closest[1])) | ||
|  | 	{ | ||
|  | 		if (posOverPoly) | ||
|  | 			*posOverPoly = true; | ||
|  | 		return; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (posOverPoly) | ||
|  | 		*posOverPoly = false; | ||
|  | 
 | ||
|  | 	// Off-mesh connections don't have detail polygons.
 | ||
|  | 	if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) | ||
|  | 	{ | ||
|  | 		const float* v0 = &tile->verts[poly->verts[0]*3]; | ||
|  | 		const float* v1 = &tile->verts[poly->verts[1]*3]; | ||
|  | 		float t; | ||
|  | 		dtDistancePtSegSqr2D(pos, v0, v1, t); | ||
|  | 		dtVlerp(closest, v0, v1, t); | ||
|  | 		return; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Outside poly that is not an offmesh connection.
 | ||
|  | 	closestPointOnDetailEdges<true>(tile, poly, pos, closest); | ||
|  | } | ||
|  | 
 | ||
|  | dtPolyRef dtNavMesh::findNearestPolyInTile(const dtMeshTile* tile, | ||
|  | 										   const float* center, const float* halfExtents, | ||
|  | 										   float* nearestPt) const | ||
|  | { | ||
|  | 	float bmin[3], bmax[3]; | ||
|  | 	dtVsub(bmin, center, halfExtents); | ||
|  | 	dtVadd(bmax, center, halfExtents); | ||
|  | 	 | ||
|  | 	// Get nearby polygons from proximity grid.
 | ||
|  | 	dtPolyRef polys[128]; | ||
|  | 	int polyCount = queryPolygonsInTile(tile, bmin, bmax, polys, 128); | ||
|  | 	 | ||
|  | 	// Find nearest polygon amongst the nearby polygons.
 | ||
|  | 	dtPolyRef nearest = 0; | ||
|  | 	float nearestDistanceSqr = FLT_MAX; | ||
|  | 	for (int i = 0; i < polyCount; ++i) | ||
|  | 	{ | ||
|  | 		dtPolyRef ref = polys[i]; | ||
|  | 		float closestPtPoly[3]; | ||
|  | 		float diff[3]; | ||
|  | 		bool posOverPoly = false; | ||
|  | 		float d; | ||
|  | 		closestPointOnPoly(ref, center, closestPtPoly, &posOverPoly); | ||
|  | 
 | ||
|  | 		// If a point is directly over a polygon and closer than
 | ||
|  | 		// climb height, favor that instead of straight line nearest point.
 | ||
|  | 		dtVsub(diff, center, closestPtPoly); | ||
|  | 		if (posOverPoly) | ||
|  | 		{ | ||
|  | 			d = dtAbs(diff[1]) - tile->header->walkableClimb; | ||
|  | 			d = d > 0 ? d*d : 0;			 | ||
|  | 		} | ||
|  | 		else | ||
|  | 		{ | ||
|  | 			d = dtVlenSqr(diff); | ||
|  | 		} | ||
|  | 		 | ||
|  | 		if (d < nearestDistanceSqr) | ||
|  | 		{ | ||
|  | 			dtVcopy(nearestPt, closestPtPoly); | ||
|  | 			nearestDistanceSqr = d; | ||
|  | 			nearest = ref; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	return nearest; | ||
|  | } | ||
|  | 
 | ||
|  | int dtNavMesh::queryPolygonsInTile(const dtMeshTile* tile, const float* qmin, const float* qmax, | ||
|  | 								   dtPolyRef* polys, const int maxPolys) const | ||
|  | { | ||
|  | 	if (tile->bvTree) | ||
|  | 	{ | ||
|  | 		const dtBVNode* node = &tile->bvTree[0]; | ||
|  | 		const dtBVNode* end = &tile->bvTree[tile->header->bvNodeCount]; | ||
|  | 		const float* tbmin = tile->header->bmin; | ||
|  | 		const float* tbmax = tile->header->bmax; | ||
|  | 		const float qfac = tile->header->bvQuantFactor; | ||
|  | 		 | ||
|  | 		// Calculate quantized box
 | ||
|  | 		unsigned short bmin[3], bmax[3]; | ||
|  | 		// dtClamp query box to world box.
 | ||
|  | 		float minx = dtClamp(qmin[0], tbmin[0], tbmax[0]) - tbmin[0]; | ||
|  | 		float miny = dtClamp(qmin[1], tbmin[1], tbmax[1]) - tbmin[1]; | ||
|  | 		float minz = dtClamp(qmin[2], tbmin[2], tbmax[2]) - tbmin[2]; | ||
|  | 		float maxx = dtClamp(qmax[0], tbmin[0], tbmax[0]) - tbmin[0]; | ||
|  | 		float maxy = dtClamp(qmax[1], tbmin[1], tbmax[1]) - tbmin[1]; | ||
|  | 		float maxz = dtClamp(qmax[2], tbmin[2], tbmax[2]) - tbmin[2]; | ||
|  | 		// Quantize
 | ||
|  | 		bmin[0] = (unsigned short)(qfac * minx) & 0xfffe; | ||
|  | 		bmin[1] = (unsigned short)(qfac * miny) & 0xfffe; | ||
|  | 		bmin[2] = (unsigned short)(qfac * minz) & 0xfffe; | ||
|  | 		bmax[0] = (unsigned short)(qfac * maxx + 1) | 1; | ||
|  | 		bmax[1] = (unsigned short)(qfac * maxy + 1) | 1; | ||
|  | 		bmax[2] = (unsigned short)(qfac * maxz + 1) | 1; | ||
|  | 		 | ||
|  | 		// Traverse tree
 | ||
|  | 		dtPolyRef base = getPolyRefBase(tile); | ||
|  | 		int n = 0; | ||
|  | 		while (node < end) | ||
|  | 		{ | ||
|  | 			const bool overlap = dtOverlapQuantBounds(bmin, bmax, node->bmin, node->bmax); | ||
|  | 			const bool isLeafNode = node->i >= 0; | ||
|  | 			 | ||
|  | 			if (isLeafNode && overlap) | ||
|  | 			{ | ||
|  | 				if (n < maxPolys) | ||
|  | 					polys[n++] = base | (dtPolyRef)node->i; | ||
|  | 			} | ||
|  | 			 | ||
|  | 			if (overlap || isLeafNode) | ||
|  | 				node++; | ||
|  | 			else | ||
|  | 			{ | ||
|  | 				const int escapeIndex = -node->i; | ||
|  | 				node += escapeIndex; | ||
|  | 			} | ||
|  | 		} | ||
|  | 		 | ||
|  | 		return n; | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		float bmin[3], bmax[3]; | ||
|  | 		int n = 0; | ||
|  | 		dtPolyRef base = getPolyRefBase(tile); | ||
|  | 		for (int i = 0; i < tile->header->polyCount; ++i) | ||
|  | 		{ | ||
|  | 			dtPoly* p = &tile->polys[i]; | ||
|  | 			// Do not return off-mesh connection polygons.
 | ||
|  | 			if (p->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) | ||
|  | 				continue; | ||
|  | 			// Calc polygon bounds.
 | ||
|  | 			const float* v = &tile->verts[p->verts[0]*3]; | ||
|  | 			dtVcopy(bmin, v); | ||
|  | 			dtVcopy(bmax, v); | ||
|  | 			for (int j = 1; j < p->vertCount; ++j) | ||
|  | 			{ | ||
|  | 				v = &tile->verts[p->verts[j]*3]; | ||
|  | 				dtVmin(bmin, v); | ||
|  | 				dtVmax(bmax, v); | ||
|  | 			} | ||
|  | 			if (dtOverlapBounds(qmin,qmax, bmin,bmax)) | ||
|  | 			{ | ||
|  | 				if (n < maxPolys) | ||
|  | 					polys[n++] = base | (dtPolyRef)i; | ||
|  | 			} | ||
|  | 		} | ||
|  | 		return n; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | /// @par
 | ||
|  | ///
 | ||
|  | /// The add operation will fail if the data is in the wrong format, the allocated tile
 | ||
|  | /// space is full, or there is a tile already at the specified reference.
 | ||
|  | ///
 | ||
|  | /// The lastRef parameter is used to restore a tile with the same tile
 | ||
|  | /// reference it had previously used.  In this case the #dtPolyRef's for the
 | ||
|  | /// tile will be restored to the same values they were before the tile was 
 | ||
|  | /// removed.
 | ||
|  | ///
 | ||
|  | /// The nav mesh assumes exclusive access to the data passed and will make
 | ||
|  | /// changes to the dynamic portion of the data. For that reason the data
 | ||
|  | /// should not be reused in other nav meshes until the tile has been successfully
 | ||
|  | /// removed from this nav mesh.
 | ||
|  | ///
 | ||
|  | /// @see dtCreateNavMeshData, #removeTile
 | ||
|  | dtStatus dtNavMesh::addTile(unsigned char* data, int dataSize, int flags, | ||
|  | 							dtTileRef lastRef, dtTileRef* result) | ||
|  | { | ||
|  | 	// Make sure the data is in right format.
 | ||
|  | 	dtMeshHeader* header = (dtMeshHeader*)data; | ||
|  | 	if (header->magic != DT_NAVMESH_MAGIC) | ||
|  | 		return DT_FAILURE | DT_WRONG_MAGIC; | ||
|  | 	if (header->version != DT_NAVMESH_VERSION) | ||
|  | 		return DT_FAILURE | DT_WRONG_VERSION; | ||
|  | 
 | ||
|  | #ifndef DT_POLYREF64
 | ||
|  | 	// Do not allow adding more polygons than specified in the NavMesh's maxPolys constraint.
 | ||
|  | 	// Otherwise, the poly ID cannot be represented with the given number of bits.
 | ||
|  | 	if (m_polyBits < dtIlog2(dtNextPow2((unsigned int)header->polyCount))) | ||
|  | 		return DT_FAILURE | DT_INVALID_PARAM; | ||
|  | #endif
 | ||
|  | 		 | ||
|  | 	// Make sure the location is free.
 | ||
|  | 	if (getTileAt(header->x, header->y, header->layer)) | ||
|  | 		return DT_FAILURE | DT_ALREADY_OCCUPIED; | ||
|  | 		 | ||
|  | 	// Allocate a tile.
 | ||
|  | 	dtMeshTile* tile = 0; | ||
|  | 	if (!lastRef) | ||
|  | 	{ | ||
|  | 		if (m_nextFree) | ||
|  | 		{ | ||
|  | 			tile = m_nextFree; | ||
|  | 			m_nextFree = tile->next; | ||
|  | 			tile->next = 0; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		// Try to relocate the tile to specific index with same salt.
 | ||
|  | 		int tileIndex = (int)decodePolyIdTile((dtPolyRef)lastRef); | ||
|  | 		if (tileIndex >= m_maxTiles) | ||
|  | 			return DT_FAILURE | DT_OUT_OF_MEMORY; | ||
|  | 		// Try to find the specific tile id from the free list.
 | ||
|  | 		dtMeshTile* target = &m_tiles[tileIndex]; | ||
|  | 		dtMeshTile* prev = 0; | ||
|  | 		tile = m_nextFree; | ||
|  | 		while (tile && tile != target) | ||
|  | 		{ | ||
|  | 			prev = tile; | ||
|  | 			tile = tile->next; | ||
|  | 		} | ||
|  | 		// Could not find the correct location.
 | ||
|  | 		if (tile != target) | ||
|  | 			return DT_FAILURE | DT_OUT_OF_MEMORY; | ||
|  | 		// Remove from freelist
 | ||
|  | 		if (!prev) | ||
|  | 			m_nextFree = tile->next; | ||
|  | 		else | ||
|  | 			prev->next = tile->next; | ||
|  | 
 | ||
|  | 		// Restore salt.
 | ||
|  | 		tile->salt = decodePolyIdSalt((dtPolyRef)lastRef); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Make sure we could allocate a tile.
 | ||
|  | 	if (!tile) | ||
|  | 		return DT_FAILURE | DT_OUT_OF_MEMORY; | ||
|  | 	 | ||
|  | 	// Insert tile into the position lut.
 | ||
|  | 	int h = computeTileHash(header->x, header->y, m_tileLutMask); | ||
|  | 	tile->next = m_posLookup[h]; | ||
|  | 	m_posLookup[h] = tile; | ||
|  | 	 | ||
|  | 	// Patch header pointers.
 | ||
|  | 	const int headerSize = dtAlign4(sizeof(dtMeshHeader)); | ||
|  | 	const int vertsSize = dtAlign4(sizeof(float)*3*header->vertCount); | ||
|  | 	const int polysSize = dtAlign4(sizeof(dtPoly)*header->polyCount); | ||
|  | 	const int linksSize = dtAlign4(sizeof(dtLink)*(header->maxLinkCount)); | ||
|  | 	const int detailMeshesSize = dtAlign4(sizeof(dtPolyDetail)*header->detailMeshCount); | ||
|  | 	const int detailVertsSize = dtAlign4(sizeof(float)*3*header->detailVertCount); | ||
|  | 	const int detailTrisSize = dtAlign4(sizeof(unsigned char)*4*header->detailTriCount); | ||
|  | 	const int bvtreeSize = dtAlign4(sizeof(dtBVNode)*header->bvNodeCount); | ||
|  | 	const int offMeshLinksSize = dtAlign4(sizeof(dtOffMeshConnection)*header->offMeshConCount); | ||
|  | 	 | ||
|  | 	unsigned char* d = data + headerSize; | ||
|  | 	tile->verts = dtGetThenAdvanceBufferPointer<float>(d, vertsSize); | ||
|  | 	tile->polys = dtGetThenAdvanceBufferPointer<dtPoly>(d, polysSize); | ||
|  | 	tile->links = dtGetThenAdvanceBufferPointer<dtLink>(d, linksSize); | ||
|  | 	tile->detailMeshes = dtGetThenAdvanceBufferPointer<dtPolyDetail>(d, detailMeshesSize); | ||
|  | 	tile->detailVerts = dtGetThenAdvanceBufferPointer<float>(d, detailVertsSize); | ||
|  | 	tile->detailTris = dtGetThenAdvanceBufferPointer<unsigned char>(d, detailTrisSize); | ||
|  | 	tile->bvTree = dtGetThenAdvanceBufferPointer<dtBVNode>(d, bvtreeSize); | ||
|  | 	tile->offMeshCons = dtGetThenAdvanceBufferPointer<dtOffMeshConnection>(d, offMeshLinksSize); | ||
|  | 
 | ||
|  | 	// If there are no items in the bvtree, reset the tree pointer.
 | ||
|  | 	if (!bvtreeSize) | ||
|  | 		tile->bvTree = 0; | ||
|  | 
 | ||
|  | 	// Build links freelist
 | ||
|  | 	tile->linksFreeList = 0; | ||
|  | 	tile->links[header->maxLinkCount-1].next = DT_NULL_LINK; | ||
|  | 	for (int i = 0; i < header->maxLinkCount-1; ++i) | ||
|  | 		tile->links[i].next = i+1; | ||
|  | 
 | ||
|  | 	// Init tile.
 | ||
|  | 	tile->header = header; | ||
|  | 	tile->data = data; | ||
|  | 	tile->dataSize = dataSize; | ||
|  | 	tile->flags = flags; | ||
|  | 
 | ||
|  | 	connectIntLinks(tile); | ||
|  | 
 | ||
|  | 	// Base off-mesh connections to their starting polygons and connect connections inside the tile.
 | ||
|  | 	baseOffMeshLinks(tile); | ||
|  | 	connectExtOffMeshLinks(tile, tile, -1); | ||
|  | 
 | ||
|  | 	// Create connections with neighbour tiles.
 | ||
|  | 	static const int MAX_NEIS = 32; | ||
|  | 	dtMeshTile* neis[MAX_NEIS]; | ||
|  | 	int nneis; | ||
|  | 	 | ||
|  | 	// Connect with layers in current tile.
 | ||
|  | 	nneis = getTilesAt(header->x, header->y, neis, MAX_NEIS); | ||
|  | 	for (int j = 0; j < nneis; ++j) | ||
|  | 	{ | ||
|  | 		if (neis[j] == tile) | ||
|  | 			continue; | ||
|  | 	 | ||
|  | 		connectExtLinks(tile, neis[j], -1); | ||
|  | 		connectExtLinks(neis[j], tile, -1); | ||
|  | 		connectExtOffMeshLinks(tile, neis[j], -1); | ||
|  | 		connectExtOffMeshLinks(neis[j], tile, -1); | ||
|  | 	} | ||
|  | 	 | ||
|  | 	// Connect with neighbour tiles.
 | ||
|  | 	for (int i = 0; i < 8; ++i) | ||
|  | 	{ | ||
|  | 		nneis = getNeighbourTilesAt(header->x, header->y, i, neis, MAX_NEIS); | ||
|  | 		for (int j = 0; j < nneis; ++j) | ||
|  | 		{ | ||
|  | 			connectExtLinks(tile, neis[j], i); | ||
|  | 			connectExtLinks(neis[j], tile, dtOppositeTile(i)); | ||
|  | 			connectExtOffMeshLinks(tile, neis[j], i); | ||
|  | 			connectExtOffMeshLinks(neis[j], tile, dtOppositeTile(i)); | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	if (result) | ||
|  | 		*result = getTileRef(tile); | ||
|  | 	 | ||
|  | 	return DT_SUCCESS; | ||
|  | } | ||
|  | 
 | ||
|  | const dtMeshTile* dtNavMesh::getTileAt(const int x, const int y, const int layer) const | ||
|  | { | ||
|  | 	// Find tile based on hash.
 | ||
|  | 	int h = computeTileHash(x,y,m_tileLutMask); | ||
|  | 	dtMeshTile* tile = m_posLookup[h]; | ||
|  | 	while (tile) | ||
|  | 	{ | ||
|  | 		if (tile->header && | ||
|  | 			tile->header->x == x && | ||
|  | 			tile->header->y == y && | ||
|  | 			tile->header->layer == layer) | ||
|  | 		{ | ||
|  | 			return tile; | ||
|  | 		} | ||
|  | 		tile = tile->next; | ||
|  | 	} | ||
|  | 	return 0; | ||
|  | } | ||
|  | 
 | ||
|  | int dtNavMesh::getNeighbourTilesAt(const int x, const int y, const int side, dtMeshTile** tiles, const int maxTiles) const | ||
|  | { | ||
|  | 	int nx = x, ny = y; | ||
|  | 	switch (side) | ||
|  | 	{ | ||
|  | 		case 0: nx++; break; | ||
|  | 		case 1: nx++; ny++; break; | ||
|  | 		case 2: ny++; break; | ||
|  | 		case 3: nx--; ny++; break; | ||
|  | 		case 4: nx--; break; | ||
|  | 		case 5: nx--; ny--; break; | ||
|  | 		case 6: ny--; break; | ||
|  | 		case 7: nx++; ny--; break; | ||
|  | 	}; | ||
|  | 
 | ||
|  | 	return getTilesAt(nx, ny, tiles, maxTiles); | ||
|  | } | ||
|  | 
 | ||
|  | int dtNavMesh::getTilesAt(const int x, const int y, dtMeshTile** tiles, const int maxTiles) const | ||
|  | { | ||
|  | 	int n = 0; | ||
|  | 	 | ||
|  | 	// Find tile based on hash.
 | ||
|  | 	int h = computeTileHash(x,y,m_tileLutMask); | ||
|  | 	dtMeshTile* tile = m_posLookup[h]; | ||
|  | 	while (tile) | ||
|  | 	{ | ||
|  | 		if (tile->header && | ||
|  | 			tile->header->x == x && | ||
|  | 			tile->header->y == y) | ||
|  | 		{ | ||
|  | 			if (n < maxTiles) | ||
|  | 				tiles[n++] = tile; | ||
|  | 		} | ||
|  | 		tile = tile->next; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	return n; | ||
|  | } | ||
|  | 
 | ||
|  | /// @par
 | ||
|  | ///
 | ||
|  | /// This function will not fail if the tiles array is too small to hold the
 | ||
|  | /// entire result set.  It will simply fill the array to capacity.
 | ||
|  | int dtNavMesh::getTilesAt(const int x, const int y, dtMeshTile const** tiles, const int maxTiles) const | ||
|  | { | ||
|  | 	int n = 0; | ||
|  | 	 | ||
|  | 	// Find tile based on hash.
 | ||
|  | 	int h = computeTileHash(x,y,m_tileLutMask); | ||
|  | 	dtMeshTile* tile = m_posLookup[h]; | ||
|  | 	while (tile) | ||
|  | 	{ | ||
|  | 		if (tile->header && | ||
|  | 			tile->header->x == x && | ||
|  | 			tile->header->y == y) | ||
|  | 		{ | ||
|  | 			if (n < maxTiles) | ||
|  | 				tiles[n++] = tile; | ||
|  | 		} | ||
|  | 		tile = tile->next; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	return n; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | dtTileRef dtNavMesh::getTileRefAt(const int x, const int y, const int layer) const | ||
|  | { | ||
|  | 	// Find tile based on hash.
 | ||
|  | 	int h = computeTileHash(x,y,m_tileLutMask); | ||
|  | 	dtMeshTile* tile = m_posLookup[h]; | ||
|  | 	while (tile) | ||
|  | 	{ | ||
|  | 		if (tile->header && | ||
|  | 			tile->header->x == x && | ||
|  | 			tile->header->y == y && | ||
|  | 			tile->header->layer == layer) | ||
|  | 		{ | ||
|  | 			return getTileRef(tile); | ||
|  | 		} | ||
|  | 		tile = tile->next; | ||
|  | 	} | ||
|  | 	return 0; | ||
|  | } | ||
|  | 
 | ||
|  | const dtMeshTile* dtNavMesh::getTileByRef(dtTileRef ref) const | ||
|  | { | ||
|  | 	if (!ref) | ||
|  | 		return 0; | ||
|  | 	unsigned int tileIndex = decodePolyIdTile((dtPolyRef)ref); | ||
|  | 	unsigned int tileSalt = decodePolyIdSalt((dtPolyRef)ref); | ||
|  | 	if ((int)tileIndex >= m_maxTiles) | ||
|  | 		return 0; | ||
|  | 	const dtMeshTile* tile = &m_tiles[tileIndex]; | ||
|  | 	if (tile->salt != tileSalt) | ||
|  | 		return 0; | ||
|  | 	return tile; | ||
|  | } | ||
|  | 
 | ||
|  | int dtNavMesh::getMaxTiles() const | ||
|  | { | ||
|  | 	return m_maxTiles; | ||
|  | } | ||
|  | 
 | ||
|  | dtMeshTile* dtNavMesh::getTile(int i) | ||
|  | { | ||
|  | 	return &m_tiles[i]; | ||
|  | } | ||
|  | 
 | ||
|  | const dtMeshTile* dtNavMesh::getTile(int i) const | ||
|  | { | ||
|  | 	return &m_tiles[i]; | ||
|  | } | ||
|  | 
 | ||
|  | void dtNavMesh::calcTileLoc(const float* pos, int* tx, int* ty) const | ||
|  | { | ||
|  | 	*tx = (int)floorf((pos[0]-m_orig[0]) / m_tileWidth); | ||
|  | 	*ty = (int)floorf((pos[2]-m_orig[2]) / m_tileHeight); | ||
|  | } | ||
|  | 
 | ||
|  | dtStatus dtNavMesh::getTileAndPolyByRef(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const | ||
|  | { | ||
|  | 	if (!ref) return DT_FAILURE; | ||
|  | 	unsigned int salt, it, ip; | ||
|  | 	decodePolyId(ref, salt, it, ip); | ||
|  | 	if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM; | ||
|  | 	if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM; | ||
|  | 	if (ip >= (unsigned int)m_tiles[it].header->polyCount) return DT_FAILURE | DT_INVALID_PARAM; | ||
|  | 	*tile = &m_tiles[it]; | ||
|  | 	*poly = &m_tiles[it].polys[ip]; | ||
|  | 	return DT_SUCCESS; | ||
|  | } | ||
|  | 
 | ||
|  | /// @par
 | ||
|  | ///
 | ||
|  | /// @warning Only use this function if it is known that the provided polygon
 | ||
|  | /// reference is valid. This function is faster than #getTileAndPolyByRef, but
 | ||
|  | /// it does not validate the reference.
 | ||
|  | void dtNavMesh::getTileAndPolyByRefUnsafe(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const | ||
|  | { | ||
|  | 	unsigned int salt, it, ip; | ||
|  | 	decodePolyId(ref, salt, it, ip); | ||
|  | 	*tile = &m_tiles[it]; | ||
|  | 	*poly = &m_tiles[it].polys[ip]; | ||
|  | } | ||
|  | 
 | ||
|  | bool dtNavMesh::isValidPolyRef(dtPolyRef ref) const | ||
|  | { | ||
|  | 	if (!ref) return false; | ||
|  | 	unsigned int salt, it, ip; | ||
|  | 	decodePolyId(ref, salt, it, ip); | ||
|  | 	if (it >= (unsigned int)m_maxTiles) return false; | ||
|  | 	if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false; | ||
|  | 	if (ip >= (unsigned int)m_tiles[it].header->polyCount) return false; | ||
|  | 	return true; | ||
|  | } | ||
|  | 
 | ||
|  | /// @par
 | ||
|  | ///
 | ||
|  | /// This function returns the data for the tile so that, if desired,
 | ||
|  | /// it can be added back to the navigation mesh at a later point.
 | ||
|  | ///
 | ||
|  | /// @see #addTile
 | ||
|  | dtStatus dtNavMesh::removeTile(dtTileRef ref, unsigned char** data, int* dataSize) | ||
|  | { | ||
|  | 	if (!ref) | ||
|  | 		return DT_FAILURE | DT_INVALID_PARAM; | ||
|  | 	unsigned int tileIndex = decodePolyIdTile((dtPolyRef)ref); | ||
|  | 	unsigned int tileSalt = decodePolyIdSalt((dtPolyRef)ref); | ||
|  | 	if ((int)tileIndex >= m_maxTiles) | ||
|  | 		return DT_FAILURE | DT_INVALID_PARAM; | ||
|  | 	dtMeshTile* tile = &m_tiles[tileIndex]; | ||
|  | 	if (tile->salt != tileSalt) | ||
|  | 		return DT_FAILURE | DT_INVALID_PARAM; | ||
|  | 	 | ||
|  | 	// Remove tile from hash lookup.
 | ||
|  | 	int h = computeTileHash(tile->header->x,tile->header->y,m_tileLutMask); | ||
|  | 	dtMeshTile* prev = 0; | ||
|  | 	dtMeshTile* cur = m_posLookup[h]; | ||
|  | 	while (cur) | ||
|  | 	{ | ||
|  | 		if (cur == tile) | ||
|  | 		{ | ||
|  | 			if (prev) | ||
|  | 				prev->next = cur->next; | ||
|  | 			else | ||
|  | 				m_posLookup[h] = cur->next; | ||
|  | 			break; | ||
|  | 		} | ||
|  | 		prev = cur; | ||
|  | 		cur = cur->next; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	// Remove connections to neighbour tiles.
 | ||
|  | 	static const int MAX_NEIS = 32; | ||
|  | 	dtMeshTile* neis[MAX_NEIS]; | ||
|  | 	int nneis; | ||
|  | 	 | ||
|  | 	// Disconnect from other layers in current tile.
 | ||
|  | 	nneis = getTilesAt(tile->header->x, tile->header->y, neis, MAX_NEIS); | ||
|  | 	for (int j = 0; j < nneis; ++j) | ||
|  | 	{ | ||
|  | 		if (neis[j] == tile) continue; | ||
|  | 		unconnectLinks(neis[j], tile); | ||
|  | 	} | ||
|  | 	 | ||
|  | 	// Disconnect from neighbour tiles.
 | ||
|  | 	for (int i = 0; i < 8; ++i) | ||
|  | 	{ | ||
|  | 		nneis = getNeighbourTilesAt(tile->header->x, tile->header->y, i, neis, MAX_NEIS); | ||
|  | 		for (int j = 0; j < nneis; ++j) | ||
|  | 			unconnectLinks(neis[j], tile); | ||
|  | 	} | ||
|  | 		 | ||
|  | 	// Reset tile.
 | ||
|  | 	if (tile->flags & DT_TILE_FREE_DATA) | ||
|  | 	{ | ||
|  | 		// Owns data
 | ||
|  | 		dtFree(tile->data); | ||
|  | 		tile->data = 0; | ||
|  | 		tile->dataSize = 0; | ||
|  | 		if (data) *data = 0; | ||
|  | 		if (dataSize) *dataSize = 0; | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		if (data) *data = tile->data; | ||
|  | 		if (dataSize) *dataSize = tile->dataSize; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	tile->header = 0; | ||
|  | 	tile->flags = 0; | ||
|  | 	tile->linksFreeList = 0; | ||
|  | 	tile->polys = 0; | ||
|  | 	tile->verts = 0; | ||
|  | 	tile->links = 0; | ||
|  | 	tile->detailMeshes = 0; | ||
|  | 	tile->detailVerts = 0; | ||
|  | 	tile->detailTris = 0; | ||
|  | 	tile->bvTree = 0; | ||
|  | 	tile->offMeshCons = 0; | ||
|  | 
 | ||
|  | 	// Update salt, salt should never be zero.
 | ||
|  | #ifdef DT_POLYREF64
 | ||
|  | 	tile->salt = (tile->salt+1) & ((1<<DT_SALT_BITS)-1); | ||
|  | #else
 | ||
|  | 	tile->salt = (tile->salt+1) & ((1<<m_saltBits)-1); | ||
|  | #endif
 | ||
|  | 	if (tile->salt == 0) | ||
|  | 		tile->salt++; | ||
|  | 
 | ||
|  | 	// Add to free list.
 | ||
|  | 	tile->next = m_nextFree; | ||
|  | 	m_nextFree = tile; | ||
|  | 
 | ||
|  | 	return DT_SUCCESS; | ||
|  | } | ||
|  | 
 | ||
|  | dtTileRef dtNavMesh::getTileRef(const dtMeshTile* tile) const | ||
|  | { | ||
|  | 	if (!tile) return 0; | ||
|  | 	const unsigned int it = (unsigned int)(tile - m_tiles); | ||
|  | 	return (dtTileRef)encodePolyId(tile->salt, it, 0); | ||
|  | } | ||
|  | 
 | ||
|  | /// @par
 | ||
|  | ///
 | ||
|  | /// Example use case:
 | ||
|  | /// @code
 | ||
|  | ///
 | ||
|  | /// const dtPolyRef base = navmesh->getPolyRefBase(tile);
 | ||
|  | /// for (int i = 0; i < tile->header->polyCount; ++i)
 | ||
|  | /// {
 | ||
|  | ///     const dtPoly* p = &tile->polys[i];
 | ||
|  | ///     const dtPolyRef ref = base | (dtPolyRef)i;
 | ||
|  | ///     
 | ||
|  | ///     // Use the reference to access the polygon data.
 | ||
|  | /// }
 | ||
|  | /// @endcode
 | ||
|  | dtPolyRef dtNavMesh::getPolyRefBase(const dtMeshTile* tile) const | ||
|  | { | ||
|  | 	if (!tile) return 0; | ||
|  | 	const unsigned int it = (unsigned int)(tile - m_tiles); | ||
|  | 	return encodePolyId(tile->salt, it, 0); | ||
|  | } | ||
|  | 
 | ||
|  | struct dtTileState | ||
|  | { | ||
|  | 	int magic;								// Magic number, used to identify the data.
 | ||
|  | 	int version;							// Data version number.
 | ||
|  | 	dtTileRef ref;							// Tile ref at the time of storing the data.
 | ||
|  | }; | ||
|  | 
 | ||
|  | struct dtPolyState | ||
|  | { | ||
|  | 	unsigned short flags;						// Flags (see dtPolyFlags).
 | ||
|  | 	unsigned char area;							// Area ID of the polygon.
 | ||
|  | }; | ||
|  | 
 | ||
|  | ///  @see #storeTileState
 | ||
|  | int dtNavMesh::getTileStateSize(const dtMeshTile* tile) const | ||
|  | { | ||
|  | 	if (!tile) return 0; | ||
|  | 	const int headerSize = dtAlign4(sizeof(dtTileState)); | ||
|  | 	const int polyStateSize = dtAlign4(sizeof(dtPolyState) * tile->header->polyCount); | ||
|  | 	return headerSize + polyStateSize; | ||
|  | } | ||
|  | 
 | ||
|  | /// @par
 | ||
|  | ///
 | ||
|  | /// Tile state includes non-structural data such as polygon flags, area ids, etc.
 | ||
|  | /// @note The state data is only valid until the tile reference changes.
 | ||
|  | /// @see #getTileStateSize, #restoreTileState
 | ||
|  | dtStatus dtNavMesh::storeTileState(const dtMeshTile* tile, unsigned char* data, const int maxDataSize) const | ||
|  | { | ||
|  | 	// Make sure there is enough space to store the state.
 | ||
|  | 	const int sizeReq = getTileStateSize(tile); | ||
|  | 	if (maxDataSize < sizeReq) | ||
|  | 		return DT_FAILURE | DT_BUFFER_TOO_SMALL; | ||
|  | 		 | ||
|  | 	dtTileState* tileState = dtGetThenAdvanceBufferPointer<dtTileState>(data, dtAlign4(sizeof(dtTileState))); | ||
|  | 	dtPolyState* polyStates = dtGetThenAdvanceBufferPointer<dtPolyState>(data, dtAlign4(sizeof(dtPolyState) * tile->header->polyCount)); | ||
|  | 	 | ||
|  | 	// Store tile state.
 | ||
|  | 	tileState->magic = DT_NAVMESH_STATE_MAGIC; | ||
|  | 	tileState->version = DT_NAVMESH_STATE_VERSION; | ||
|  | 	tileState->ref = getTileRef(tile); | ||
|  | 	 | ||
|  | 	// Store per poly state.
 | ||
|  | 	for (int i = 0; i < tile->header->polyCount; ++i) | ||
|  | 	{ | ||
|  | 		const dtPoly* p = &tile->polys[i]; | ||
|  | 		dtPolyState* s = &polyStates[i]; | ||
|  | 		s->flags = p->flags; | ||
|  | 		s->area = p->getArea(); | ||
|  | 	} | ||
|  | 	 | ||
|  | 	return DT_SUCCESS; | ||
|  | } | ||
|  | 
 | ||
|  | /// @par
 | ||
|  | ///
 | ||
|  | /// Tile state includes non-structural data such as polygon flags, area ids, etc.
 | ||
|  | /// @note This function does not impact the tile's #dtTileRef and #dtPolyRef's.
 | ||
|  | /// @see #storeTileState
 | ||
|  | dtStatus dtNavMesh::restoreTileState(dtMeshTile* tile, const unsigned char* data, const int maxDataSize) | ||
|  | { | ||
|  | 	// Make sure there is enough space to store the state.
 | ||
|  | 	const int sizeReq = getTileStateSize(tile); | ||
|  | 	if (maxDataSize < sizeReq) | ||
|  | 		return DT_FAILURE | DT_INVALID_PARAM; | ||
|  | 	 | ||
|  | 	const dtTileState* tileState = dtGetThenAdvanceBufferPointer<const dtTileState>(data, dtAlign4(sizeof(dtTileState))); | ||
|  | 	const dtPolyState* polyStates = dtGetThenAdvanceBufferPointer<const dtPolyState>(data, dtAlign4(sizeof(dtPolyState) * tile->header->polyCount)); | ||
|  | 	 | ||
|  | 	// Check that the restore is possible.
 | ||
|  | 	if (tileState->magic != DT_NAVMESH_STATE_MAGIC) | ||
|  | 		return DT_FAILURE | DT_WRONG_MAGIC; | ||
|  | 	if (tileState->version != DT_NAVMESH_STATE_VERSION) | ||
|  | 		return DT_FAILURE | DT_WRONG_VERSION; | ||
|  | 	if (tileState->ref != getTileRef(tile)) | ||
|  | 		return DT_FAILURE | DT_INVALID_PARAM; | ||
|  | 	 | ||
|  | 	// Restore per poly state.
 | ||
|  | 	for (int i = 0; i < tile->header->polyCount; ++i) | ||
|  | 	{ | ||
|  | 		dtPoly* p = &tile->polys[i]; | ||
|  | 		const dtPolyState* s = &polyStates[i]; | ||
|  | 		p->flags = s->flags; | ||
|  | 		p->setArea(s->area); | ||
|  | 	} | ||
|  | 	 | ||
|  | 	return DT_SUCCESS; | ||
|  | } | ||
|  | 
 | ||
|  | /// @par
 | ||
|  | ///
 | ||
|  | /// Off-mesh connections are stored in the navigation mesh as special 2-vertex 
 | ||
|  | /// polygons with a single edge. At least one of the vertices is expected to be 
 | ||
|  | /// inside a normal polygon. So an off-mesh connection is "entered" from a 
 | ||
|  | /// normal polygon at one of its endpoints. This is the polygon identified by 
 | ||
|  | /// the prevRef parameter.
 | ||
|  | dtStatus dtNavMesh::getOffMeshConnectionPolyEndPoints(dtPolyRef prevRef, dtPolyRef polyRef, float* startPos, float* endPos) const | ||
|  | { | ||
|  | 	unsigned int salt, it, ip; | ||
|  | 
 | ||
|  | 	if (!polyRef) | ||
|  | 		return DT_FAILURE; | ||
|  | 	 | ||
|  | 	// Get current polygon
 | ||
|  | 	decodePolyId(polyRef, salt, it, ip); | ||
|  | 	if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM; | ||
|  | 	if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM; | ||
|  | 	const dtMeshTile* tile = &m_tiles[it]; | ||
|  | 	if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM; | ||
|  | 	const dtPoly* poly = &tile->polys[ip]; | ||
|  | 
 | ||
|  | 	// Make sure that the current poly is indeed off-mesh link.
 | ||
|  | 	if (poly->getType() != DT_POLYTYPE_OFFMESH_CONNECTION) | ||
|  | 		return DT_FAILURE; | ||
|  | 
 | ||
|  | 	// Figure out which way to hand out the vertices.
 | ||
|  | 	int idx0 = 0, idx1 = 1; | ||
|  | 	 | ||
|  | 	// Find link that points to first vertex.
 | ||
|  | 	for (unsigned int i = poly->firstLink; i != DT_NULL_LINK; i = tile->links[i].next) | ||
|  | 	{ | ||
|  | 		if (tile->links[i].edge == 0) | ||
|  | 		{ | ||
|  | 			if (tile->links[i].ref != prevRef) | ||
|  | 			{ | ||
|  | 				idx0 = 1; | ||
|  | 				idx1 = 0; | ||
|  | 			} | ||
|  | 			break; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	dtVcopy(startPos, &tile->verts[poly->verts[idx0]*3]); | ||
|  | 	dtVcopy(endPos, &tile->verts[poly->verts[idx1]*3]); | ||
|  | 
 | ||
|  | 	return DT_SUCCESS; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | const dtOffMeshConnection* dtNavMesh::getOffMeshConnectionByRef(dtPolyRef ref) const | ||
|  | { | ||
|  | 	unsigned int salt, it, ip; | ||
|  | 	 | ||
|  | 	if (!ref) | ||
|  | 		return 0; | ||
|  | 	 | ||
|  | 	// Get current polygon
 | ||
|  | 	decodePolyId(ref, salt, it, ip); | ||
|  | 	if (it >= (unsigned int)m_maxTiles) return 0; | ||
|  | 	if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0; | ||
|  | 	const dtMeshTile* tile = &m_tiles[it]; | ||
|  | 	if (ip >= (unsigned int)tile->header->polyCount) return 0; | ||
|  | 	const dtPoly* poly = &tile->polys[ip]; | ||
|  | 	 | ||
|  | 	// Make sure that the current poly is indeed off-mesh link.
 | ||
|  | 	if (poly->getType() != DT_POLYTYPE_OFFMESH_CONNECTION) | ||
|  | 		return 0; | ||
|  | 
 | ||
|  | 	const unsigned int idx =  ip - tile->header->offMeshBase; | ||
|  | 	dtAssert(idx < (unsigned int)tile->header->offMeshConCount); | ||
|  | 	return &tile->offMeshCons[idx]; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | dtStatus dtNavMesh::setPolyFlags(dtPolyRef ref, unsigned short flags) | ||
|  | { | ||
|  | 	if (!ref) return DT_FAILURE; | ||
|  | 	unsigned int salt, it, ip; | ||
|  | 	decodePolyId(ref, salt, it, ip); | ||
|  | 	if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM; | ||
|  | 	if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM; | ||
|  | 	dtMeshTile* tile = &m_tiles[it]; | ||
|  | 	if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM; | ||
|  | 	dtPoly* poly = &tile->polys[ip]; | ||
|  | 	 | ||
|  | 	// Change flags.
 | ||
|  | 	poly->flags = flags; | ||
|  | 	 | ||
|  | 	return DT_SUCCESS; | ||
|  | } | ||
|  | 
 | ||
|  | dtStatus dtNavMesh::getPolyFlags(dtPolyRef ref, unsigned short* resultFlags) const | ||
|  | { | ||
|  | 	if (!ref) return DT_FAILURE; | ||
|  | 	unsigned int salt, it, ip; | ||
|  | 	decodePolyId(ref, salt, it, ip); | ||
|  | 	if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM; | ||
|  | 	if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM; | ||
|  | 	const dtMeshTile* tile = &m_tiles[it]; | ||
|  | 	if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM; | ||
|  | 	const dtPoly* poly = &tile->polys[ip]; | ||
|  | 
 | ||
|  | 	*resultFlags = poly->flags; | ||
|  | 	 | ||
|  | 	return DT_SUCCESS; | ||
|  | } | ||
|  | 
 | ||
|  | dtStatus dtNavMesh::setPolyArea(dtPolyRef ref, unsigned char area) | ||
|  | { | ||
|  | 	if (!ref) return DT_FAILURE; | ||
|  | 	unsigned int salt, it, ip; | ||
|  | 	decodePolyId(ref, salt, it, ip); | ||
|  | 	if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM; | ||
|  | 	if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM; | ||
|  | 	dtMeshTile* tile = &m_tiles[it]; | ||
|  | 	if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM; | ||
|  | 	dtPoly* poly = &tile->polys[ip]; | ||
|  | 	 | ||
|  | 	poly->setArea(area); | ||
|  | 	 | ||
|  | 	return DT_SUCCESS; | ||
|  | } | ||
|  | 
 | ||
|  | dtStatus dtNavMesh::getPolyArea(dtPolyRef ref, unsigned char* resultArea) const | ||
|  | { | ||
|  | 	if (!ref) return DT_FAILURE; | ||
|  | 	unsigned int salt, it, ip; | ||
|  | 	decodePolyId(ref, salt, it, ip); | ||
|  | 	if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM; | ||
|  | 	if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM; | ||
|  | 	const dtMeshTile* tile = &m_tiles[it]; | ||
|  | 	if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM; | ||
|  | 	const dtPoly* poly = &tile->polys[ip]; | ||
|  | 	 | ||
|  | 	*resultArea = poly->getArea(); | ||
|  | 	 | ||
|  | 	return DT_SUCCESS; | ||
|  | } | ||
|  | 
 |