1106 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			1106 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// This software is provided 'as-is', without any express or implied
							 | 
						||
| 
								 | 
							
								// warranty.  In no event will the authors be held liable for any damages
							 | 
						||
| 
								 | 
							
								// arising from the use of this software.
							 | 
						||
| 
								 | 
							
								// Permission is granted to anyone to use this software for any purpose,
							 | 
						||
| 
								 | 
							
								// including commercial applications, and to alter it and redistribute it
							 | 
						||
| 
								 | 
							
								// freely, subject to the following restrictions:
							 | 
						||
| 
								 | 
							
								// 1. The origin of this software must not be misrepresented; you must not
							 | 
						||
| 
								 | 
							
								//    claim that you wrote the original software. If you use this software
							 | 
						||
| 
								 | 
							
								//    in a product, an acknowledgment in the product documentation would be
							 | 
						||
| 
								 | 
							
								//    appreciated but is not required.
							 | 
						||
| 
								 | 
							
								// 2. Altered source versions must be plainly marked as such, and must not be
							 | 
						||
| 
								 | 
							
								//    misrepresented as being the original software.
							 | 
						||
| 
								 | 
							
								// 3. This notice may not be removed or altered from any source distribution.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define _USE_MATH_DEFINES
							 | 
						||
| 
								 | 
							
								#include <math.h>
							 | 
						||
| 
								 | 
							
								#include <string.h>
							 | 
						||
| 
								 | 
							
								#include <stdio.h>
							 | 
						||
| 
								 | 
							
								#include <stdlib.h>
							 | 
						||
| 
								 | 
							
								#include "Recast.h"
							 | 
						||
| 
								 | 
							
								#include "RecastAlloc.h"
							 | 
						||
| 
								 | 
							
								#include "RecastAssert.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int getCornerHeight(int x, int y, int i, int dir,
							 | 
						||
| 
								 | 
							
														   const rcCompactHeightfield& chf,
							 | 
						||
| 
								 | 
							
														   bool& isBorderVertex)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const rcCompactSpan& s = chf.spans[i];
							 | 
						||
| 
								 | 
							
									int ch = (int)s.y;
							 | 
						||
| 
								 | 
							
									int dirp = (dir+1) & 0x3;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									unsigned int regs[4] = {0,0,0,0};
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Combine region and area codes in order to prevent
							 | 
						||
| 
								 | 
							
									// border vertices which are in between two areas to be removed.
							 | 
						||
| 
								 | 
							
									regs[0] = chf.spans[i].reg | (chf.areas[i] << 16);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const int ax = x + rcGetDirOffsetX(dir);
							 | 
						||
| 
								 | 
							
										const int ay = y + rcGetDirOffsetY(dir);
							 | 
						||
| 
								 | 
							
										const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
							 | 
						||
| 
								 | 
							
										const rcCompactSpan& as = chf.spans[ai];
							 | 
						||
| 
								 | 
							
										ch = rcMax(ch, (int)as.y);
							 | 
						||
| 
								 | 
							
										regs[1] = chf.spans[ai].reg | (chf.areas[ai] << 16);
							 | 
						||
| 
								 | 
							
										if (rcGetCon(as, dirp) != RC_NOT_CONNECTED)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											const int ax2 = ax + rcGetDirOffsetX(dirp);
							 | 
						||
| 
								 | 
							
											const int ay2 = ay + rcGetDirOffsetY(dirp);
							 | 
						||
| 
								 | 
							
											const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dirp);
							 | 
						||
| 
								 | 
							
											const rcCompactSpan& as2 = chf.spans[ai2];
							 | 
						||
| 
								 | 
							
											ch = rcMax(ch, (int)as2.y);
							 | 
						||
| 
								 | 
							
											regs[2] = chf.spans[ai2].reg | (chf.areas[ai2] << 16);
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									if (rcGetCon(s, dirp) != RC_NOT_CONNECTED)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const int ax = x + rcGetDirOffsetX(dirp);
							 | 
						||
| 
								 | 
							
										const int ay = y + rcGetDirOffsetY(dirp);
							 | 
						||
| 
								 | 
							
										const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dirp);
							 | 
						||
| 
								 | 
							
										const rcCompactSpan& as = chf.spans[ai];
							 | 
						||
| 
								 | 
							
										ch = rcMax(ch, (int)as.y);
							 | 
						||
| 
								 | 
							
										regs[3] = chf.spans[ai].reg | (chf.areas[ai] << 16);
							 | 
						||
| 
								 | 
							
										if (rcGetCon(as, dir) != RC_NOT_CONNECTED)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											const int ax2 = ax + rcGetDirOffsetX(dir);
							 | 
						||
| 
								 | 
							
											const int ay2 = ay + rcGetDirOffsetY(dir);
							 | 
						||
| 
								 | 
							
											const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dir);
							 | 
						||
| 
								 | 
							
											const rcCompactSpan& as2 = chf.spans[ai2];
							 | 
						||
| 
								 | 
							
											ch = rcMax(ch, (int)as2.y);
							 | 
						||
| 
								 | 
							
											regs[2] = chf.spans[ai2].reg | (chf.areas[ai2] << 16);
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									// Check if the vertex is special edge vertex, these vertices will be removed later.
							 | 
						||
| 
								 | 
							
									for (int j = 0; j < 4; ++j)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const int a = j;
							 | 
						||
| 
								 | 
							
										const int b = (j+1) & 0x3;
							 | 
						||
| 
								 | 
							
										const int c = (j+2) & 0x3;
							 | 
						||
| 
								 | 
							
										const int d = (j+3) & 0x3;
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// The vertex is a border vertex there are two same exterior cells in a row,
							 | 
						||
| 
								 | 
							
										// followed by two interior cells and none of the regions are out of bounds.
							 | 
						||
| 
								 | 
							
										const bool twoSameExts = (regs[a] & regs[b] & RC_BORDER_REG) != 0 && regs[a] == regs[b];
							 | 
						||
| 
								 | 
							
										const bool twoInts = ((regs[c] | regs[d]) & RC_BORDER_REG) == 0;
							 | 
						||
| 
								 | 
							
										const bool intsSameArea = (regs[c]>>16) == (regs[d]>>16);
							 | 
						||
| 
								 | 
							
										const bool noZeros = regs[a] != 0 && regs[b] != 0 && regs[c] != 0 && regs[d] != 0;
							 | 
						||
| 
								 | 
							
										if (twoSameExts && twoInts && intsSameArea && noZeros)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											isBorderVertex = true;
							 | 
						||
| 
								 | 
							
											break;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return ch;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void walkContour(int x, int y, int i,
							 | 
						||
| 
								 | 
							
														rcCompactHeightfield& chf,
							 | 
						||
| 
								 | 
							
														unsigned char* flags, rcIntArray& points)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									// Choose the first non-connected edge
							 | 
						||
| 
								 | 
							
									unsigned char dir = 0;
							 | 
						||
| 
								 | 
							
									while ((flags[i] & (1 << dir)) == 0)
							 | 
						||
| 
								 | 
							
										dir++;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									unsigned char startDir = dir;
							 | 
						||
| 
								 | 
							
									int starti = i;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									const unsigned char area = chf.areas[i];
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									int iter = 0;
							 | 
						||
| 
								 | 
							
									while (++iter < 40000)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										if (flags[i] & (1 << dir))
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											// Choose the edge corner
							 | 
						||
| 
								 | 
							
											bool isBorderVertex = false;
							 | 
						||
| 
								 | 
							
											bool isAreaBorder = false;
							 | 
						||
| 
								 | 
							
											int px = x;
							 | 
						||
| 
								 | 
							
											int py = getCornerHeight(x, y, i, dir, chf, isBorderVertex);
							 | 
						||
| 
								 | 
							
											int pz = y;
							 | 
						||
| 
								 | 
							
											switch(dir)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												case 0: pz++; break;
							 | 
						||
| 
								 | 
							
												case 1: px++; pz++; break;
							 | 
						||
| 
								 | 
							
												case 2: px++; break;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											int r = 0;
							 | 
						||
| 
								 | 
							
											const rcCompactSpan& s = chf.spans[i];
							 | 
						||
| 
								 | 
							
											if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												const int ax = x + rcGetDirOffsetX(dir);
							 | 
						||
| 
								 | 
							
												const int ay = y + rcGetDirOffsetY(dir);
							 | 
						||
| 
								 | 
							
												const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
							 | 
						||
| 
								 | 
							
												r = (int)chf.spans[ai].reg;
							 | 
						||
| 
								 | 
							
												if (area != chf.areas[ai])
							 | 
						||
| 
								 | 
							
													isAreaBorder = true;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											if (isBorderVertex)
							 | 
						||
| 
								 | 
							
												r |= RC_BORDER_VERTEX;
							 | 
						||
| 
								 | 
							
											if (isAreaBorder)
							 | 
						||
| 
								 | 
							
												r |= RC_AREA_BORDER;
							 | 
						||
| 
								 | 
							
											points.push(px);
							 | 
						||
| 
								 | 
							
											points.push(py);
							 | 
						||
| 
								 | 
							
											points.push(pz);
							 | 
						||
| 
								 | 
							
											points.push(r);
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											flags[i] &= ~(1 << dir); // Remove visited edges
							 | 
						||
| 
								 | 
							
											dir = (dir+1) & 0x3;  // Rotate CW
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										else
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											int ni = -1;
							 | 
						||
| 
								 | 
							
											const int nx = x + rcGetDirOffsetX(dir);
							 | 
						||
| 
								 | 
							
											const int ny = y + rcGetDirOffsetY(dir);
							 | 
						||
| 
								 | 
							
											const rcCompactSpan& s = chf.spans[i];
							 | 
						||
| 
								 | 
							
											if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												const rcCompactCell& nc = chf.cells[nx+ny*chf.width];
							 | 
						||
| 
								 | 
							
												ni = (int)nc.index + rcGetCon(s, dir);
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											if (ni == -1)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// Should not happen.
							 | 
						||
| 
								 | 
							
												return;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											x = nx;
							 | 
						||
| 
								 | 
							
											y = ny;
							 | 
						||
| 
								 | 
							
											i = ni;
							 | 
						||
| 
								 | 
							
											dir = (dir+3) & 0x3;	// Rotate CCW
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										if (starti == i && startDir == dir)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											break;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static float distancePtSeg(const int x, const int z,
							 | 
						||
| 
								 | 
							
														   const int px, const int pz,
							 | 
						||
| 
								 | 
							
														   const int qx, const int qz)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									float pqx = (float)(qx - px);
							 | 
						||
| 
								 | 
							
									float pqz = (float)(qz - pz);
							 | 
						||
| 
								 | 
							
									float dx = (float)(x - px);
							 | 
						||
| 
								 | 
							
									float dz = (float)(z - pz);
							 | 
						||
| 
								 | 
							
									float d = pqx*pqx + pqz*pqz;
							 | 
						||
| 
								 | 
							
									float t = pqx*dx + pqz*dz;
							 | 
						||
| 
								 | 
							
									if (d > 0)
							 | 
						||
| 
								 | 
							
										t /= d;
							 | 
						||
| 
								 | 
							
									if (t < 0)
							 | 
						||
| 
								 | 
							
										t = 0;
							 | 
						||
| 
								 | 
							
									else if (t > 1)
							 | 
						||
| 
								 | 
							
										t = 1;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									dx = px + t*pqx - x;
							 | 
						||
| 
								 | 
							
									dz = pz + t*pqz - z;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return dx*dx + dz*dz;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
							 | 
						||
| 
								 | 
							
															const float maxError, const int maxEdgeLen, const int buildFlags)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									// Add initial points.
							 | 
						||
| 
								 | 
							
									bool hasConnections = false;
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < points.size(); i += 4)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										if ((points[i+3] & RC_CONTOUR_REG_MASK) != 0)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											hasConnections = true;
							 | 
						||
| 
								 | 
							
											break;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									if (hasConnections)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										// The contour has some portals to other regions.
							 | 
						||
| 
								 | 
							
										// Add a new point to every location where the region changes.
							 | 
						||
| 
								 | 
							
										for (int i = 0, ni = points.size()/4; i < ni; ++i)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											int ii = (i+1) % ni;
							 | 
						||
| 
								 | 
							
											const bool differentRegs = (points[i*4+3] & RC_CONTOUR_REG_MASK) != (points[ii*4+3] & RC_CONTOUR_REG_MASK);
							 | 
						||
| 
								 | 
							
											const bool areaBorders = (points[i*4+3] & RC_AREA_BORDER) != (points[ii*4+3] & RC_AREA_BORDER);
							 | 
						||
| 
								 | 
							
											if (differentRegs || areaBorders)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												simplified.push(points[i*4+0]);
							 | 
						||
| 
								 | 
							
												simplified.push(points[i*4+1]);
							 | 
						||
| 
								 | 
							
												simplified.push(points[i*4+2]);
							 | 
						||
| 
								 | 
							
												simplified.push(i);
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									if (simplified.size() == 0)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										// If there is no connections at all,
							 | 
						||
| 
								 | 
							
										// create some initial points for the simplification process.
							 | 
						||
| 
								 | 
							
										// Find lower-left and upper-right vertices of the contour.
							 | 
						||
| 
								 | 
							
										int llx = points[0];
							 | 
						||
| 
								 | 
							
										int lly = points[1];
							 | 
						||
| 
								 | 
							
										int llz = points[2];
							 | 
						||
| 
								 | 
							
										int lli = 0;
							 | 
						||
| 
								 | 
							
										int urx = points[0];
							 | 
						||
| 
								 | 
							
										int ury = points[1];
							 | 
						||
| 
								 | 
							
										int urz = points[2];
							 | 
						||
| 
								 | 
							
										int uri = 0;
							 | 
						||
| 
								 | 
							
										for (int i = 0; i < points.size(); i += 4)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											int x = points[i+0];
							 | 
						||
| 
								 | 
							
											int y = points[i+1];
							 | 
						||
| 
								 | 
							
											int z = points[i+2];
							 | 
						||
| 
								 | 
							
											if (x < llx || (x == llx && z < llz))
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												llx = x;
							 | 
						||
| 
								 | 
							
												lly = y;
							 | 
						||
| 
								 | 
							
												llz = z;
							 | 
						||
| 
								 | 
							
												lli = i/4;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											if (x > urx || (x == urx && z > urz))
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												urx = x;
							 | 
						||
| 
								 | 
							
												ury = y;
							 | 
						||
| 
								 | 
							
												urz = z;
							 | 
						||
| 
								 | 
							
												uri = i/4;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										simplified.push(llx);
							 | 
						||
| 
								 | 
							
										simplified.push(lly);
							 | 
						||
| 
								 | 
							
										simplified.push(llz);
							 | 
						||
| 
								 | 
							
										simplified.push(lli);
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										simplified.push(urx);
							 | 
						||
| 
								 | 
							
										simplified.push(ury);
							 | 
						||
| 
								 | 
							
										simplified.push(urz);
							 | 
						||
| 
								 | 
							
										simplified.push(uri);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Add points until all raw points are within
							 | 
						||
| 
								 | 
							
									// error tolerance to the simplified shape.
							 | 
						||
| 
								 | 
							
									const int pn = points.size()/4;
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < simplified.size()/4; )
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										int ii = (i+1) % (simplified.size()/4);
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										int ax = simplified[i*4+0];
							 | 
						||
| 
								 | 
							
										int az = simplified[i*4+2];
							 | 
						||
| 
								 | 
							
										int ai = simplified[i*4+3];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										int bx = simplified[ii*4+0];
							 | 
						||
| 
								 | 
							
										int bz = simplified[ii*4+2];
							 | 
						||
| 
								 | 
							
										int bi = simplified[ii*4+3];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										// Find maximum deviation from the segment.
							 | 
						||
| 
								 | 
							
										float maxd = 0;
							 | 
						||
| 
								 | 
							
										int maxi = -1;
							 | 
						||
| 
								 | 
							
										int ci, cinc, endi;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										// Traverse the segment in lexilogical order so that the
							 | 
						||
| 
								 | 
							
										// max deviation is calculated similarly when traversing
							 | 
						||
| 
								 | 
							
										// opposite segments.
							 | 
						||
| 
								 | 
							
										if (bx > ax || (bx == ax && bz > az))
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											cinc = 1;
							 | 
						||
| 
								 | 
							
											ci = (ai+cinc) % pn;
							 | 
						||
| 
								 | 
							
											endi = bi;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										else
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											cinc = pn-1;
							 | 
						||
| 
								 | 
							
											ci = (bi+cinc) % pn;
							 | 
						||
| 
								 | 
							
											endi = ai;
							 | 
						||
| 
								 | 
							
											rcSwap(ax, bx);
							 | 
						||
| 
								 | 
							
											rcSwap(az, bz);
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Tessellate only outer edges or edges between areas.
							 | 
						||
| 
								 | 
							
										if ((points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0 ||
							 | 
						||
| 
								 | 
							
											(points[ci*4+3] & RC_AREA_BORDER))
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											while (ci != endi)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												float d = distancePtSeg(points[ci*4+0], points[ci*4+2], ax, az, bx, bz);
							 | 
						||
| 
								 | 
							
												if (d > maxd)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													maxd = d;
							 | 
						||
| 
								 | 
							
													maxi = ci;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
												ci = (ci+cinc) % pn;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// If the max deviation is larger than accepted error,
							 | 
						||
| 
								 | 
							
										// add new point, else continue to next segment.
							 | 
						||
| 
								 | 
							
										if (maxi != -1 && maxd > (maxError*maxError))
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											// Add space for the new point.
							 | 
						||
| 
								 | 
							
											simplified.resize(simplified.size()+4);
							 | 
						||
| 
								 | 
							
											const int n = simplified.size()/4;
							 | 
						||
| 
								 | 
							
											for (int j = n-1; j > i; --j)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												simplified[j*4+0] = simplified[(j-1)*4+0];
							 | 
						||
| 
								 | 
							
												simplified[j*4+1] = simplified[(j-1)*4+1];
							 | 
						||
| 
								 | 
							
												simplified[j*4+2] = simplified[(j-1)*4+2];
							 | 
						||
| 
								 | 
							
												simplified[j*4+3] = simplified[(j-1)*4+3];
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											// Add the point.
							 | 
						||
| 
								 | 
							
											simplified[(i+1)*4+0] = points[maxi*4+0];
							 | 
						||
| 
								 | 
							
											simplified[(i+1)*4+1] = points[maxi*4+1];
							 | 
						||
| 
								 | 
							
											simplified[(i+1)*4+2] = points[maxi*4+2];
							 | 
						||
| 
								 | 
							
											simplified[(i+1)*4+3] = maxi;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										else
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											++i;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Split too long edges.
							 | 
						||
| 
								 | 
							
									if (maxEdgeLen > 0 && (buildFlags & (RC_CONTOUR_TESS_WALL_EDGES|RC_CONTOUR_TESS_AREA_EDGES)) != 0)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										for (int i = 0; i < simplified.size()/4; )
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											const int ii = (i+1) % (simplified.size()/4);
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											const int ax = simplified[i*4+0];
							 | 
						||
| 
								 | 
							
											const int az = simplified[i*4+2];
							 | 
						||
| 
								 | 
							
											const int ai = simplified[i*4+3];
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											const int bx = simplified[ii*4+0];
							 | 
						||
| 
								 | 
							
											const int bz = simplified[ii*4+2];
							 | 
						||
| 
								 | 
							
											const int bi = simplified[ii*4+3];
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											// Find maximum deviation from the segment.
							 | 
						||
| 
								 | 
							
											int maxi = -1;
							 | 
						||
| 
								 | 
							
											int ci = (ai+1) % pn;
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											// Tessellate only outer edges or edges between areas.
							 | 
						||
| 
								 | 
							
											bool tess = false;
							 | 
						||
| 
								 | 
							
											// Wall edges.
							 | 
						||
| 
								 | 
							
											if ((buildFlags & RC_CONTOUR_TESS_WALL_EDGES) && (points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0)
							 | 
						||
| 
								 | 
							
												tess = true;
							 | 
						||
| 
								 | 
							
											// Edges between areas.
							 | 
						||
| 
								 | 
							
											if ((buildFlags & RC_CONTOUR_TESS_AREA_EDGES) && (points[ci*4+3] & RC_AREA_BORDER))
							 | 
						||
| 
								 | 
							
												tess = true;
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											if (tess)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												int dx = bx - ax;
							 | 
						||
| 
								 | 
							
												int dz = bz - az;
							 | 
						||
| 
								 | 
							
												if (dx*dx + dz*dz > maxEdgeLen*maxEdgeLen)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													// Round based on the segments in lexilogical order so that the
							 | 
						||
| 
								 | 
							
													// max tesselation is consistent regardles in which direction
							 | 
						||
| 
								 | 
							
													// segments are traversed.
							 | 
						||
| 
								 | 
							
													const int n = bi < ai ? (bi+pn - ai) : (bi - ai);
							 | 
						||
| 
								 | 
							
													if (n > 1)
							 | 
						||
| 
								 | 
							
													{
							 | 
						||
| 
								 | 
							
														if (bx > ax || (bx == ax && bz > az))
							 | 
						||
| 
								 | 
							
															maxi = (ai + n/2) % pn;
							 | 
						||
| 
								 | 
							
														else
							 | 
						||
| 
								 | 
							
															maxi = (ai + (n+1)/2) % pn;
							 | 
						||
| 
								 | 
							
													}
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											// If the max deviation is larger than accepted error,
							 | 
						||
| 
								 | 
							
											// add new point, else continue to next segment.
							 | 
						||
| 
								 | 
							
											if (maxi != -1)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// Add space for the new point.
							 | 
						||
| 
								 | 
							
												simplified.resize(simplified.size()+4);
							 | 
						||
| 
								 | 
							
												const int n = simplified.size()/4;
							 | 
						||
| 
								 | 
							
												for (int j = n-1; j > i; --j)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													simplified[j*4+0] = simplified[(j-1)*4+0];
							 | 
						||
| 
								 | 
							
													simplified[j*4+1] = simplified[(j-1)*4+1];
							 | 
						||
| 
								 | 
							
													simplified[j*4+2] = simplified[(j-1)*4+2];
							 | 
						||
| 
								 | 
							
													simplified[j*4+3] = simplified[(j-1)*4+3];
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
												// Add the point.
							 | 
						||
| 
								 | 
							
												simplified[(i+1)*4+0] = points[maxi*4+0];
							 | 
						||
| 
								 | 
							
												simplified[(i+1)*4+1] = points[maxi*4+1];
							 | 
						||
| 
								 | 
							
												simplified[(i+1)*4+2] = points[maxi*4+2];
							 | 
						||
| 
								 | 
							
												simplified[(i+1)*4+3] = maxi;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											else
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												++i;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < simplified.size()/4; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										// The edge vertex flag is take from the current raw point,
							 | 
						||
| 
								 | 
							
										// and the neighbour region is take from the next raw point.
							 | 
						||
| 
								 | 
							
										const int ai = (simplified[i*4+3]+1) % pn;
							 | 
						||
| 
								 | 
							
										const int bi = simplified[i*4+3];
							 | 
						||
| 
								 | 
							
										simplified[i*4+3] = (points[ai*4+3] & (RC_CONTOUR_REG_MASK|RC_AREA_BORDER)) | (points[bi*4+3] & RC_BORDER_VERTEX);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int calcAreaOfPolygon2D(const int* verts, const int nverts)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									int area = 0;
							 | 
						||
| 
								 | 
							
									for (int i = 0, j = nverts-1; i < nverts; j=i++)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const int* vi = &verts[i*4];
							 | 
						||
| 
								 | 
							
										const int* vj = &verts[j*4];
							 | 
						||
| 
								 | 
							
										area += vi[0] * vj[2] - vj[0] * vi[2];
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									return (area+1) / 2;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// TODO: these are the same as in RecastMesh.cpp, consider using the same.
							 | 
						||
| 
								 | 
							
								// Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv).
							 | 
						||
| 
								 | 
							
								inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
							 | 
						||
| 
								 | 
							
								inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline int area2(const int* a, const int* b, const int* c)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//	Exclusive or: true iff exactly one argument is true.
							 | 
						||
| 
								 | 
							
								//	The arguments are negated to ensure that they are 0/1
							 | 
						||
| 
								 | 
							
								//	values.  Then the bitwise Xor operator may apply.
							 | 
						||
| 
								 | 
							
								//	(This idea is due to Michael Baldwin.)
							 | 
						||
| 
								 | 
							
								inline bool xorb(bool x, bool y)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return !x ^ !y;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Returns true iff c is strictly to the left of the directed
							 | 
						||
| 
								 | 
							
								// line through a to b.
							 | 
						||
| 
								 | 
							
								inline bool left(const int* a, const int* b, const int* c)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return area2(a, b, c) < 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline bool leftOn(const int* a, const int* b, const int* c)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return area2(a, b, c) <= 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline bool collinear(const int* a, const int* b, const int* c)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return area2(a, b, c) == 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//	Returns true iff ab properly intersects cd: they share
							 | 
						||
| 
								 | 
							
								//	a point interior to both segments.  The properness of the
							 | 
						||
| 
								 | 
							
								//	intersection is ensured by using strict leftness.
							 | 
						||
| 
								 | 
							
								static bool intersectProp(const int* a, const int* b, const int* c, const int* d)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									// Eliminate improper cases.
							 | 
						||
| 
								 | 
							
									if (collinear(a,b,c) || collinear(a,b,d) ||
							 | 
						||
| 
								 | 
							
										collinear(c,d,a) || collinear(c,d,b))
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Returns T iff (a,b,c) are collinear and point c lies
							 | 
						||
| 
								 | 
							
								// on the closed segement ab.
							 | 
						||
| 
								 | 
							
								static bool between(const int* a, const int* b, const int* c)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									if (!collinear(a, b, c))
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									// If ab not vertical, check betweenness on x; else on y.
							 | 
						||
| 
								 | 
							
									if (a[0] != b[0])
							 | 
						||
| 
								 | 
							
										return	((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0]));
							 | 
						||
| 
								 | 
							
									else
							 | 
						||
| 
								 | 
							
										return	((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2]));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Returns true iff segments ab and cd intersect, properly or improperly.
							 | 
						||
| 
								 | 
							
								static bool intersect(const int* a, const int* b, const int* c, const int* d)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									if (intersectProp(a, b, c, d))
							 | 
						||
| 
								 | 
							
										return true;
							 | 
						||
| 
								 | 
							
									else if (between(a, b, c) || between(a, b, d) ||
							 | 
						||
| 
								 | 
							
											 between(c, d, a) || between(c, d, b))
							 | 
						||
| 
								 | 
							
										return true;
							 | 
						||
| 
								 | 
							
									else
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static bool vequal(const int* a, const int* b)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return a[0] == b[0] && a[2] == b[2];
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static bool intersectSegCountour(const int* d0, const int* d1, int i, int n, const int* verts)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									// For each edge (k,k+1) of P
							 | 
						||
| 
								 | 
							
									for (int k = 0; k < n; k++)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										int k1 = next(k, n);
							 | 
						||
| 
								 | 
							
										// Skip edges incident to i.
							 | 
						||
| 
								 | 
							
										if (i == k || i == k1)
							 | 
						||
| 
								 | 
							
											continue;
							 | 
						||
| 
								 | 
							
										const int* p0 = &verts[k * 4];
							 | 
						||
| 
								 | 
							
										const int* p1 = &verts[k1 * 4];
							 | 
						||
| 
								 | 
							
										if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1))
							 | 
						||
| 
								 | 
							
											continue;
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										if (intersect(d0, d1, p0, p1))
							 | 
						||
| 
								 | 
							
											return true;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									return false;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static bool	inCone(int i, int n, const int* verts, const int* pj)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const int* pi = &verts[i * 4];
							 | 
						||
| 
								 | 
							
									const int* pi1 = &verts[next(i, n) * 4];
							 | 
						||
| 
								 | 
							
									const int* pin1 = &verts[prev(i, n) * 4];
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// If P[i] is a convex vertex [ i+1 left or on (i-1,i) ].
							 | 
						||
| 
								 | 
							
									if (leftOn(pin1, pi, pi1))
							 | 
						||
| 
								 | 
							
										return left(pi, pj, pin1) && left(pj, pi, pi1);
							 | 
						||
| 
								 | 
							
									// Assume (i-1,i,i+1) not collinear.
							 | 
						||
| 
								 | 
							
									// else P[i] is reflex.
							 | 
						||
| 
								 | 
							
									return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void removeDegenerateSegments(rcIntArray& simplified)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									// Remove adjacent vertices which are equal on xz-plane,
							 | 
						||
| 
								 | 
							
									// or else the triangulator will get confused.
							 | 
						||
| 
								 | 
							
									int npts = simplified.size()/4;
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < npts; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										int ni = next(i, npts);
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										if (vequal(&simplified[i*4], &simplified[ni*4]))
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											// Degenerate segment, remove.
							 | 
						||
| 
								 | 
							
											for (int j = i; j < simplified.size()/4-1; ++j)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												simplified[j*4+0] = simplified[(j+1)*4+0];
							 | 
						||
| 
								 | 
							
												simplified[j*4+1] = simplified[(j+1)*4+1];
							 | 
						||
| 
								 | 
							
												simplified[j*4+2] = simplified[(j+1)*4+2];
							 | 
						||
| 
								 | 
							
												simplified[j*4+3] = simplified[(j+1)*4+3];
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											simplified.resize(simplified.size()-4);
							 | 
						||
| 
								 | 
							
											npts--;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const int maxVerts = ca.nverts + cb.nverts + 2;
							 | 
						||
| 
								 | 
							
									int* verts = (int*)rcAlloc(sizeof(int)*maxVerts*4, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
									if (!verts)
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									int nv = 0;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Copy contour A.
							 | 
						||
| 
								 | 
							
									for (int i = 0; i <= ca.nverts; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										int* dst = &verts[nv*4];
							 | 
						||
| 
								 | 
							
										const int* src = &ca.verts[((ia+i)%ca.nverts)*4];
							 | 
						||
| 
								 | 
							
										dst[0] = src[0];
							 | 
						||
| 
								 | 
							
										dst[1] = src[1];
							 | 
						||
| 
								 | 
							
										dst[2] = src[2];
							 | 
						||
| 
								 | 
							
										dst[3] = src[3];
							 | 
						||
| 
								 | 
							
										nv++;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									// Copy contour B
							 | 
						||
| 
								 | 
							
									for (int i = 0; i <= cb.nverts; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										int* dst = &verts[nv*4];
							 | 
						||
| 
								 | 
							
										const int* src = &cb.verts[((ib+i)%cb.nverts)*4];
							 | 
						||
| 
								 | 
							
										dst[0] = src[0];
							 | 
						||
| 
								 | 
							
										dst[1] = src[1];
							 | 
						||
| 
								 | 
							
										dst[2] = src[2];
							 | 
						||
| 
								 | 
							
										dst[3] = src[3];
							 | 
						||
| 
								 | 
							
										nv++;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									rcFree(ca.verts);
							 | 
						||
| 
								 | 
							
									ca.verts = verts;
							 | 
						||
| 
								 | 
							
									ca.nverts = nv;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									rcFree(cb.verts);
							 | 
						||
| 
								 | 
							
									cb.verts = 0;
							 | 
						||
| 
								 | 
							
									cb.nverts = 0;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return true;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								struct rcContourHole
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									rcContour* contour;
							 | 
						||
| 
								 | 
							
									int minx, minz, leftmost;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								struct rcContourRegion
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									rcContour* outline;
							 | 
						||
| 
								 | 
							
									rcContourHole* holes;
							 | 
						||
| 
								 | 
							
									int nholes;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								struct rcPotentialDiagonal
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									int vert;
							 | 
						||
| 
								 | 
							
									int dist;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Finds the lowest leftmost vertex of a contour.
							 | 
						||
| 
								 | 
							
								static void findLeftMostVertex(rcContour* contour, int* minx, int* minz, int* leftmost)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									*minx = contour->verts[0];
							 | 
						||
| 
								 | 
							
									*minz = contour->verts[2];
							 | 
						||
| 
								 | 
							
									*leftmost = 0;
							 | 
						||
| 
								 | 
							
									for (int i = 1; i < contour->nverts; i++)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const int x = contour->verts[i*4+0];
							 | 
						||
| 
								 | 
							
										const int z = contour->verts[i*4+2];
							 | 
						||
| 
								 | 
							
										if (x < *minx || (x == *minx && z < *minz))
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											*minx = x;
							 | 
						||
| 
								 | 
							
											*minz = z;
							 | 
						||
| 
								 | 
							
											*leftmost = i;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int compareHoles(const void* va, const void* vb)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const rcContourHole* a = (const rcContourHole*)va;
							 | 
						||
| 
								 | 
							
									const rcContourHole* b = (const rcContourHole*)vb;
							 | 
						||
| 
								 | 
							
									if (a->minx == b->minx)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										if (a->minz < b->minz)
							 | 
						||
| 
								 | 
							
											return -1;
							 | 
						||
| 
								 | 
							
										if (a->minz > b->minz)
							 | 
						||
| 
								 | 
							
											return 1;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									else
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										if (a->minx < b->minx)
							 | 
						||
| 
								 | 
							
											return -1;
							 | 
						||
| 
								 | 
							
										if (a->minx > b->minx)
							 | 
						||
| 
								 | 
							
											return 1;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									return 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int compareDiagDist(const void* va, const void* vb)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const rcPotentialDiagonal* a = (const rcPotentialDiagonal*)va;
							 | 
						||
| 
								 | 
							
									const rcPotentialDiagonal* b = (const rcPotentialDiagonal*)vb;
							 | 
						||
| 
								 | 
							
									if (a->dist < b->dist)
							 | 
						||
| 
								 | 
							
										return -1;
							 | 
						||
| 
								 | 
							
									if (a->dist > b->dist)
							 | 
						||
| 
								 | 
							
										return 1;
							 | 
						||
| 
								 | 
							
									return 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void mergeRegionHoles(rcContext* ctx, rcContourRegion& region)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									// Sort holes from left to right.
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < region.nholes; i++)
							 | 
						||
| 
								 | 
							
										findLeftMostVertex(region.holes[i].contour, ®ion.holes[i].minx, ®ion.holes[i].minz, ®ion.holes[i].leftmost);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									qsort(region.holes, region.nholes, sizeof(rcContourHole), compareHoles);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									int maxVerts = region.outline->nverts;
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < region.nholes; i++)
							 | 
						||
| 
								 | 
							
										maxVerts += region.holes[i].contour->nverts;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									rcScopedDelete<rcPotentialDiagonal> diags((rcPotentialDiagonal*)rcAlloc(sizeof(rcPotentialDiagonal)*maxVerts, RC_ALLOC_TEMP));
							 | 
						||
| 
								 | 
							
									if (!diags)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_WARNING, "mergeRegionHoles: Failed to allocated diags %d.", maxVerts);
							 | 
						||
| 
								 | 
							
										return;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									rcContour* outline = region.outline;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Merge holes into the outline one by one.
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < region.nholes; i++)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										rcContour* hole = region.holes[i].contour;
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										int index = -1;
							 | 
						||
| 
								 | 
							
										int bestVertex = region.holes[i].leftmost;
							 | 
						||
| 
								 | 
							
										for (int iter = 0; iter < hole->nverts; iter++)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											// Find potential diagonals.
							 | 
						||
| 
								 | 
							
											// The 'best' vertex must be in the cone described by 3 cosequtive vertices of the outline.
							 | 
						||
| 
								 | 
							
											// ..o j-1
							 | 
						||
| 
								 | 
							
											//   |
							 | 
						||
| 
								 | 
							
											//   |   * best
							 | 
						||
| 
								 | 
							
											//   |
							 | 
						||
| 
								 | 
							
											// j o-----o j+1
							 | 
						||
| 
								 | 
							
											//         :
							 | 
						||
| 
								 | 
							
											int ndiags = 0;
							 | 
						||
| 
								 | 
							
											const int* corner = &hole->verts[bestVertex*4];
							 | 
						||
| 
								 | 
							
											for (int j = 0; j < outline->nverts; j++)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												if (inCone(j, outline->nverts, outline->verts, corner))
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													int dx = outline->verts[j*4+0] - corner[0];
							 | 
						||
| 
								 | 
							
													int dz = outline->verts[j*4+2] - corner[2];
							 | 
						||
| 
								 | 
							
													diags[ndiags].vert = j;
							 | 
						||
| 
								 | 
							
													diags[ndiags].dist = dx*dx + dz*dz;
							 | 
						||
| 
								 | 
							
													ndiags++;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											// Sort potential diagonals by distance, we want to make the connection as short as possible.
							 | 
						||
| 
								 | 
							
											qsort(diags, ndiags, sizeof(rcPotentialDiagonal), compareDiagDist);
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											// Find a diagonal that is not intersecting the outline not the remaining holes.
							 | 
						||
| 
								 | 
							
											index = -1;
							 | 
						||
| 
								 | 
							
											for (int j = 0; j < ndiags; j++)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												const int* pt = &outline->verts[diags[j].vert*4];
							 | 
						||
| 
								 | 
							
												bool intersect = intersectSegCountour(pt, corner, diags[i].vert, outline->nverts, outline->verts);
							 | 
						||
| 
								 | 
							
												for (int k = i; k < region.nholes && !intersect; k++)
							 | 
						||
| 
								 | 
							
													intersect |= intersectSegCountour(pt, corner, -1, region.holes[k].contour->nverts, region.holes[k].contour->verts);
							 | 
						||
| 
								 | 
							
												if (!intersect)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													index = diags[j].vert;
							 | 
						||
| 
								 | 
							
													break;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											// If found non-intersecting diagonal, stop looking.
							 | 
						||
| 
								 | 
							
											if (index != -1)
							 | 
						||
| 
								 | 
							
												break;
							 | 
						||
| 
								 | 
							
											// All the potential diagonals for the current vertex were intersecting, try next vertex.
							 | 
						||
| 
								 | 
							
											bestVertex = (bestVertex + 1) % hole->nverts;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										if (index == -1)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to find merge points for %p and %p.", region.outline, hole);
							 | 
						||
| 
								 | 
							
											continue;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										if (!mergeContours(*region.outline, *hole, index, bestVertex))
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to merge contours %p and %p.", region.outline, hole);
							 | 
						||
| 
								 | 
							
											continue;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/// @par
							 | 
						||
| 
								 | 
							
								///
							 | 
						||
| 
								 | 
							
								/// The raw contours will match the region outlines exactly. The @p maxError and @p maxEdgeLen
							 | 
						||
| 
								 | 
							
								/// parameters control how closely the simplified contours will match the raw contours.
							 | 
						||
| 
								 | 
							
								///
							 | 
						||
| 
								 | 
							
								/// Simplified contours are generated such that the vertices for portals between areas match up.
							 | 
						||
| 
								 | 
							
								/// (They are considered mandatory vertices.)
							 | 
						||
| 
								 | 
							
								///
							 | 
						||
| 
								 | 
							
								/// Setting @p maxEdgeLength to zero will disabled the edge length feature.
							 | 
						||
| 
								 | 
							
								///
							 | 
						||
| 
								 | 
							
								/// See the #rcConfig documentation for more information on the configuration parameters.
							 | 
						||
| 
								 | 
							
								///
							 | 
						||
| 
								 | 
							
								/// @see rcAllocContourSet, rcCompactHeightfield, rcContourSet, rcConfig
							 | 
						||
| 
								 | 
							
								bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
							 | 
						||
| 
								 | 
							
													 const float maxError, const int maxEdgeLen,
							 | 
						||
| 
								 | 
							
													 rcContourSet& cset, const int buildFlags)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									rcAssert(ctx);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									const int w = chf.width;
							 | 
						||
| 
								 | 
							
									const int h = chf.height;
							 | 
						||
| 
								 | 
							
									const int borderSize = chf.borderSize;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									rcScopedTimer timer(ctx, RC_TIMER_BUILD_CONTOURS);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									rcVcopy(cset.bmin, chf.bmin);
							 | 
						||
| 
								 | 
							
									rcVcopy(cset.bmax, chf.bmax);
							 | 
						||
| 
								 | 
							
									if (borderSize > 0)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										// If the heightfield was build with bordersize, remove the offset.
							 | 
						||
| 
								 | 
							
										const float pad = borderSize*chf.cs;
							 | 
						||
| 
								 | 
							
										cset.bmin[0] += pad;
							 | 
						||
| 
								 | 
							
										cset.bmin[2] += pad;
							 | 
						||
| 
								 | 
							
										cset.bmax[0] -= pad;
							 | 
						||
| 
								 | 
							
										cset.bmax[2] -= pad;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									cset.cs = chf.cs;
							 | 
						||
| 
								 | 
							
									cset.ch = chf.ch;
							 | 
						||
| 
								 | 
							
									cset.width = chf.width - chf.borderSize*2;
							 | 
						||
| 
								 | 
							
									cset.height = chf.height - chf.borderSize*2;
							 | 
						||
| 
								 | 
							
									cset.borderSize = chf.borderSize;
							 | 
						||
| 
								 | 
							
									cset.maxError = maxError;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									int maxContours = rcMax((int)chf.maxRegions, 8);
							 | 
						||
| 
								 | 
							
									cset.conts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
									if (!cset.conts)
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									cset.nconts = 0;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									rcScopedDelete<unsigned char> flags((unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP));
							 | 
						||
| 
								 | 
							
									if (!flags)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'flags' (%d).", chf.spanCount);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Mark boundaries.
							 | 
						||
| 
								 | 
							
									for (int y = 0; y < h; ++y)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										for (int x = 0; x < w; ++x)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											const rcCompactCell& c = chf.cells[x+y*w];
							 | 
						||
| 
								 | 
							
											for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												unsigned char res = 0;
							 | 
						||
| 
								 | 
							
												const rcCompactSpan& s = chf.spans[i];
							 | 
						||
| 
								 | 
							
												if (!chf.spans[i].reg || (chf.spans[i].reg & RC_BORDER_REG))
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													flags[i] = 0;
							 | 
						||
| 
								 | 
							
													continue;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
												for (int dir = 0; dir < 4; ++dir)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													unsigned short r = 0;
							 | 
						||
| 
								 | 
							
													if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
							 | 
						||
| 
								 | 
							
													{
							 | 
						||
| 
								 | 
							
														const int ax = x + rcGetDirOffsetX(dir);
							 | 
						||
| 
								 | 
							
														const int ay = y + rcGetDirOffsetY(dir);
							 | 
						||
| 
								 | 
							
														const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
							 | 
						||
| 
								 | 
							
														r = chf.spans[ai].reg;
							 | 
						||
| 
								 | 
							
													}
							 | 
						||
| 
								 | 
							
													if (r == chf.spans[i].reg)
							 | 
						||
| 
								 | 
							
														res |= (1 << dir);
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
												flags[i] = res ^ 0xf; // Inverse, mark non connected edges.
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									rcIntArray verts(256);
							 | 
						||
| 
								 | 
							
									rcIntArray simplified(64);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int y = 0; y < h; ++y)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										for (int x = 0; x < w; ++x)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											const rcCompactCell& c = chf.cells[x+y*w];
							 | 
						||
| 
								 | 
							
											for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												if (flags[i] == 0 || flags[i] == 0xf)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													flags[i] = 0;
							 | 
						||
| 
								 | 
							
													continue;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
												const unsigned short reg = chf.spans[i].reg;
							 | 
						||
| 
								 | 
							
												if (!reg || (reg & RC_BORDER_REG))
							 | 
						||
| 
								 | 
							
													continue;
							 | 
						||
| 
								 | 
							
												const unsigned char area = chf.areas[i];
							 | 
						||
| 
								 | 
							
												
							 | 
						||
| 
								 | 
							
												verts.clear();
							 | 
						||
| 
								 | 
							
												simplified.clear();
							 | 
						||
| 
								 | 
							
												
							 | 
						||
| 
								 | 
							
												ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
							 | 
						||
| 
								 | 
							
												walkContour(x, y, i, chf, flags, verts);
							 | 
						||
| 
								 | 
							
												ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
							 | 
						||
| 
								 | 
							
												
							 | 
						||
| 
								 | 
							
												ctx->startTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
							 | 
						||
| 
								 | 
							
												simplifyContour(verts, simplified, maxError, maxEdgeLen, buildFlags);
							 | 
						||
| 
								 | 
							
												removeDegenerateSegments(simplified);
							 | 
						||
| 
								 | 
							
												ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
							 | 
						||
| 
								 | 
							
												
							 | 
						||
| 
								 | 
							
												
							 | 
						||
| 
								 | 
							
												// Store region->contour remap info.
							 | 
						||
| 
								 | 
							
												// Create contour.
							 | 
						||
| 
								 | 
							
												if (simplified.size()/4 >= 3)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													if (cset.nconts >= maxContours)
							 | 
						||
| 
								 | 
							
													{
							 | 
						||
| 
								 | 
							
														// Allocate more contours.
							 | 
						||
| 
								 | 
							
														// This happens when a region has holes.
							 | 
						||
| 
								 | 
							
														const int oldMax = maxContours;
							 | 
						||
| 
								 | 
							
														maxContours *= 2;
							 | 
						||
| 
								 | 
							
														rcContour* newConts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
														for (int j = 0; j < cset.nconts; ++j)
							 | 
						||
| 
								 | 
							
														{
							 | 
						||
| 
								 | 
							
															newConts[j] = cset.conts[j];
							 | 
						||
| 
								 | 
							
															// Reset source pointers to prevent data deletion.
							 | 
						||
| 
								 | 
							
															cset.conts[j].verts = 0;
							 | 
						||
| 
								 | 
							
															cset.conts[j].rverts = 0;
							 | 
						||
| 
								 | 
							
														}
							 | 
						||
| 
								 | 
							
														rcFree(cset.conts);
							 | 
						||
| 
								 | 
							
														cset.conts = newConts;
							 | 
						||
| 
								 | 
							
														
							 | 
						||
| 
								 | 
							
														ctx->log(RC_LOG_WARNING, "rcBuildContours: Expanding max contours from %d to %d.", oldMax, maxContours);
							 | 
						||
| 
								 | 
							
													}
							 | 
						||
| 
								 | 
							
													
							 | 
						||
| 
								 | 
							
													rcContour* cont = &cset.conts[cset.nconts++];
							 | 
						||
| 
								 | 
							
													
							 | 
						||
| 
								 | 
							
													cont->nverts = simplified.size()/4;
							 | 
						||
| 
								 | 
							
													cont->verts = (int*)rcAlloc(sizeof(int)*cont->nverts*4, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
													if (!cont->verts)
							 | 
						||
| 
								 | 
							
													{
							 | 
						||
| 
								 | 
							
														ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'verts' (%d).", cont->nverts);
							 | 
						||
| 
								 | 
							
														return false;
							 | 
						||
| 
								 | 
							
													}
							 | 
						||
| 
								 | 
							
													memcpy(cont->verts, &simplified[0], sizeof(int)*cont->nverts*4);
							 | 
						||
| 
								 | 
							
													if (borderSize > 0)
							 | 
						||
| 
								 | 
							
													{
							 | 
						||
| 
								 | 
							
														// If the heightfield was build with bordersize, remove the offset.
							 | 
						||
| 
								 | 
							
														for (int j = 0; j < cont->nverts; ++j)
							 | 
						||
| 
								 | 
							
														{
							 | 
						||
| 
								 | 
							
															int* v = &cont->verts[j*4];
							 | 
						||
| 
								 | 
							
															v[0] -= borderSize;
							 | 
						||
| 
								 | 
							
															v[2] -= borderSize;
							 | 
						||
| 
								 | 
							
														}
							 | 
						||
| 
								 | 
							
													}
							 | 
						||
| 
								 | 
							
													
							 | 
						||
| 
								 | 
							
													cont->nrverts = verts.size()/4;
							 | 
						||
| 
								 | 
							
													cont->rverts = (int*)rcAlloc(sizeof(int)*cont->nrverts*4, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
													if (!cont->rverts)
							 | 
						||
| 
								 | 
							
													{
							 | 
						||
| 
								 | 
							
														ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'rverts' (%d).", cont->nrverts);
							 | 
						||
| 
								 | 
							
														return false;
							 | 
						||
| 
								 | 
							
													}
							 | 
						||
| 
								 | 
							
													memcpy(cont->rverts, &verts[0], sizeof(int)*cont->nrverts*4);
							 | 
						||
| 
								 | 
							
													if (borderSize > 0)
							 | 
						||
| 
								 | 
							
													{
							 | 
						||
| 
								 | 
							
														// If the heightfield was build with bordersize, remove the offset.
							 | 
						||
| 
								 | 
							
														for (int j = 0; j < cont->nrverts; ++j)
							 | 
						||
| 
								 | 
							
														{
							 | 
						||
| 
								 | 
							
															int* v = &cont->rverts[j*4];
							 | 
						||
| 
								 | 
							
															v[0] -= borderSize;
							 | 
						||
| 
								 | 
							
															v[2] -= borderSize;
							 | 
						||
| 
								 | 
							
														}
							 | 
						||
| 
								 | 
							
													}
							 | 
						||
| 
								 | 
							
													
							 | 
						||
| 
								 | 
							
													cont->reg = reg;
							 | 
						||
| 
								 | 
							
													cont->area = area;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Merge holes if needed.
							 | 
						||
| 
								 | 
							
									if (cset.nconts > 0)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										// Calculate winding of all polygons.
							 | 
						||
| 
								 | 
							
										rcScopedDelete<signed char> winding((signed char*)rcAlloc(sizeof(signed char)*cset.nconts, RC_ALLOC_TEMP));
							 | 
						||
| 
								 | 
							
										if (!winding)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'hole' (%d).", cset.nconts);
							 | 
						||
| 
								 | 
							
											return false;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										int nholes = 0;
							 | 
						||
| 
								 | 
							
										for (int i = 0; i < cset.nconts; ++i)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											rcContour& cont = cset.conts[i];
							 | 
						||
| 
								 | 
							
											// If the contour is wound backwards, it is a hole.
							 | 
						||
| 
								 | 
							
											winding[i] = calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0 ? -1 : 1;
							 | 
						||
| 
								 | 
							
											if (winding[i] < 0)
							 | 
						||
| 
								 | 
							
												nholes++;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										if (nholes > 0)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											// Collect outline contour and holes contours per region.
							 | 
						||
| 
								 | 
							
											// We assume that there is one outline and multiple holes.
							 | 
						||
| 
								 | 
							
											const int nregions = chf.maxRegions+1;
							 | 
						||
| 
								 | 
							
											rcScopedDelete<rcContourRegion> regions((rcContourRegion*)rcAlloc(sizeof(rcContourRegion)*nregions, RC_ALLOC_TEMP));
							 | 
						||
| 
								 | 
							
											if (!regions)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'regions' (%d).", nregions);
							 | 
						||
| 
								 | 
							
												return false;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											memset(regions, 0, sizeof(rcContourRegion)*nregions);
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											rcScopedDelete<rcContourHole> holes((rcContourHole*)rcAlloc(sizeof(rcContourHole)*cset.nconts, RC_ALLOC_TEMP));
							 | 
						||
| 
								 | 
							
											if (!holes)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'holes' (%d).", cset.nconts);
							 | 
						||
| 
								 | 
							
												return false;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											memset(holes, 0, sizeof(rcContourHole)*cset.nconts);
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											for (int i = 0; i < cset.nconts; ++i)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												rcContour& cont = cset.conts[i];
							 | 
						||
| 
								 | 
							
												// Positively would contours are outlines, negative holes.
							 | 
						||
| 
								 | 
							
												if (winding[i] > 0)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													if (regions[cont.reg].outline)
							 | 
						||
| 
								 | 
							
														ctx->log(RC_LOG_ERROR, "rcBuildContours: Multiple outlines for region %d.", cont.reg);
							 | 
						||
| 
								 | 
							
													regions[cont.reg].outline = &cont;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
												else
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													regions[cont.reg].nholes++;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											int index = 0;
							 | 
						||
| 
								 | 
							
											for (int i = 0; i < nregions; i++)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												if (regions[i].nholes > 0)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													regions[i].holes = &holes[index];
							 | 
						||
| 
								 | 
							
													index += regions[i].nholes;
							 | 
						||
| 
								 | 
							
													regions[i].nholes = 0;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											for (int i = 0; i < cset.nconts; ++i)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												rcContour& cont = cset.conts[i];
							 | 
						||
| 
								 | 
							
												rcContourRegion& reg = regions[cont.reg];
							 | 
						||
| 
								 | 
							
												if (winding[i] < 0)
							 | 
						||
| 
								 | 
							
													reg.holes[reg.nholes++].contour = &cont;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											// Finally merge each regions holes into the outline.
							 | 
						||
| 
								 | 
							
											for (int i = 0; i < nregions; i++)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												rcContourRegion& reg = regions[i];
							 | 
						||
| 
								 | 
							
												if (!reg.nholes) continue;
							 | 
						||
| 
								 | 
							
												
							 | 
						||
| 
								 | 
							
												if (reg.outline)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													mergeRegionHoles(ctx, reg);
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
												else
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													// The region does not have an outline.
							 | 
						||
| 
								 | 
							
													// This can happen if the contour becaomes selfoverlapping because of
							 | 
						||
| 
								 | 
							
													// too aggressive simplification settings.
							 | 
						||
| 
								 | 
							
													ctx->log(RC_LOG_ERROR, "rcBuildContours: Bad outline for region %d, contour simplification is likely too aggressive.", i);
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return true;
							 | 
						||
| 
								 | 
							
								}
							 |