1553 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			1553 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// This software is provided 'as-is', without any express or implied
							 | 
						||
| 
								 | 
							
								// warranty.  In no event will the authors be held liable for any damages
							 | 
						||
| 
								 | 
							
								// arising from the use of this software.
							 | 
						||
| 
								 | 
							
								// Permission is granted to anyone to use this software for any purpose,
							 | 
						||
| 
								 | 
							
								// including commercial applications, and to alter it and redistribute it
							 | 
						||
| 
								 | 
							
								// freely, subject to the following restrictions:
							 | 
						||
| 
								 | 
							
								// 1. The origin of this software must not be misrepresented; you must not
							 | 
						||
| 
								 | 
							
								//    claim that you wrote the original software. If you use this software
							 | 
						||
| 
								 | 
							
								//    in a product, an acknowledgment in the product documentation would be
							 | 
						||
| 
								 | 
							
								//    appreciated but is not required.
							 | 
						||
| 
								 | 
							
								// 2. Altered source versions must be plainly marked as such, and must not be
							 | 
						||
| 
								 | 
							
								//    misrepresented as being the original software.
							 | 
						||
| 
								 | 
							
								// 3. This notice may not be removed or altered from any source distribution.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define _USE_MATH_DEFINES
							 | 
						||
| 
								 | 
							
								#include <math.h>
							 | 
						||
| 
								 | 
							
								#include <string.h>
							 | 
						||
| 
								 | 
							
								#include <stdio.h>
							 | 
						||
| 
								 | 
							
								#include "Recast.h"
							 | 
						||
| 
								 | 
							
								#include "RecastAlloc.h"
							 | 
						||
| 
								 | 
							
								#include "RecastAssert.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								struct rcEdge
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									unsigned short vert[2];
							 | 
						||
| 
								 | 
							
									unsigned short polyEdge[2];
							 | 
						||
| 
								 | 
							
									unsigned short poly[2];
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static bool buildMeshAdjacency(unsigned short* polys, const int npolys,
							 | 
						||
| 
								 | 
							
															   const int nverts, const int vertsPerPoly)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									// Based on code by Eric Lengyel from:
							 | 
						||
| 
								 | 
							
									// http://www.terathon.com/code/edges.php
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									int maxEdgeCount = npolys*vertsPerPoly;
							 | 
						||
| 
								 | 
							
									unsigned short* firstEdge = (unsigned short*)rcAlloc(sizeof(unsigned short)*(nverts + maxEdgeCount), RC_ALLOC_TEMP);
							 | 
						||
| 
								 | 
							
									if (!firstEdge)
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									unsigned short* nextEdge = firstEdge + nverts;
							 | 
						||
| 
								 | 
							
									int edgeCount = 0;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									rcEdge* edges = (rcEdge*)rcAlloc(sizeof(rcEdge)*maxEdgeCount, RC_ALLOC_TEMP);
							 | 
						||
| 
								 | 
							
									if (!edges)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										rcFree(firstEdge);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nverts; i++)
							 | 
						||
| 
								 | 
							
										firstEdge[i] = RC_MESH_NULL_IDX;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < npolys; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										unsigned short* t = &polys[i*vertsPerPoly*2];
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < vertsPerPoly; ++j)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											if (t[j] == RC_MESH_NULL_IDX) break;
							 | 
						||
| 
								 | 
							
											unsigned short v0 = t[j];
							 | 
						||
| 
								 | 
							
											unsigned short v1 = (j+1 >= vertsPerPoly || t[j+1] == RC_MESH_NULL_IDX) ? t[0] : t[j+1];
							 | 
						||
| 
								 | 
							
											if (v0 < v1)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												rcEdge& edge = edges[edgeCount];
							 | 
						||
| 
								 | 
							
												edge.vert[0] = v0;
							 | 
						||
| 
								 | 
							
												edge.vert[1] = v1;
							 | 
						||
| 
								 | 
							
												edge.poly[0] = (unsigned short)i;
							 | 
						||
| 
								 | 
							
												edge.polyEdge[0] = (unsigned short)j;
							 | 
						||
| 
								 | 
							
												edge.poly[1] = (unsigned short)i;
							 | 
						||
| 
								 | 
							
												edge.polyEdge[1] = 0;
							 | 
						||
| 
								 | 
							
												// Insert edge
							 | 
						||
| 
								 | 
							
												nextEdge[edgeCount] = firstEdge[v0];
							 | 
						||
| 
								 | 
							
												firstEdge[v0] = (unsigned short)edgeCount;
							 | 
						||
| 
								 | 
							
												edgeCount++;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < npolys; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										unsigned short* t = &polys[i*vertsPerPoly*2];
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < vertsPerPoly; ++j)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											if (t[j] == RC_MESH_NULL_IDX) break;
							 | 
						||
| 
								 | 
							
											unsigned short v0 = t[j];
							 | 
						||
| 
								 | 
							
											unsigned short v1 = (j+1 >= vertsPerPoly || t[j+1] == RC_MESH_NULL_IDX) ? t[0] : t[j+1];
							 | 
						||
| 
								 | 
							
											if (v0 > v1)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												for (unsigned short e = firstEdge[v1]; e != RC_MESH_NULL_IDX; e = nextEdge[e])
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													rcEdge& edge = edges[e];
							 | 
						||
| 
								 | 
							
													if (edge.vert[1] == v0 && edge.poly[0] == edge.poly[1])
							 | 
						||
| 
								 | 
							
													{
							 | 
						||
| 
								 | 
							
														edge.poly[1] = (unsigned short)i;
							 | 
						||
| 
								 | 
							
														edge.polyEdge[1] = (unsigned short)j;
							 | 
						||
| 
								 | 
							
														break;
							 | 
						||
| 
								 | 
							
													}
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Store adjacency
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < edgeCount; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const rcEdge& e = edges[i];
							 | 
						||
| 
								 | 
							
										if (e.poly[0] != e.poly[1])
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											unsigned short* p0 = &polys[e.poly[0]*vertsPerPoly*2];
							 | 
						||
| 
								 | 
							
											unsigned short* p1 = &polys[e.poly[1]*vertsPerPoly*2];
							 | 
						||
| 
								 | 
							
											p0[vertsPerPoly + e.polyEdge[0]] = e.poly[1];
							 | 
						||
| 
								 | 
							
											p1[vertsPerPoly + e.polyEdge[1]] = e.poly[0];
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									rcFree(firstEdge);
							 | 
						||
| 
								 | 
							
									rcFree(edges);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return true;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static const int VERTEX_BUCKET_COUNT = (1<<12);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline int computeVertexHash(int x, int y, int z)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const unsigned int h1 = 0x8da6b343; // Large multiplicative constants;
							 | 
						||
| 
								 | 
							
									const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes
							 | 
						||
| 
								 | 
							
									const unsigned int h3 = 0xcb1ab31f;
							 | 
						||
| 
								 | 
							
									unsigned int n = h1 * x + h2 * y + h3 * z;
							 | 
						||
| 
								 | 
							
									return (int)(n & (VERTEX_BUCKET_COUNT-1));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static unsigned short addVertex(unsigned short x, unsigned short y, unsigned short z,
							 | 
						||
| 
								 | 
							
																unsigned short* verts, int* firstVert, int* nextVert, int& nv)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									int bucket = computeVertexHash(x, 0, z);
							 | 
						||
| 
								 | 
							
									int i = firstVert[bucket];
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									while (i != -1)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const unsigned short* v = &verts[i*3];
							 | 
						||
| 
								 | 
							
										if (v[0] == x && (rcAbs(v[1] - y) <= 2) && v[2] == z)
							 | 
						||
| 
								 | 
							
											return (unsigned short)i;
							 | 
						||
| 
								 | 
							
										i = nextVert[i]; // next
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Could not find, create new.
							 | 
						||
| 
								 | 
							
									i = nv; nv++;
							 | 
						||
| 
								 | 
							
									unsigned short* v = &verts[i*3];
							 | 
						||
| 
								 | 
							
									v[0] = x;
							 | 
						||
| 
								 | 
							
									v[1] = y;
							 | 
						||
| 
								 | 
							
									v[2] = z;
							 | 
						||
| 
								 | 
							
									nextVert[i] = firstVert[bucket];
							 | 
						||
| 
								 | 
							
									firstVert[bucket] = i;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return (unsigned short)i;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv).
							 | 
						||
| 
								 | 
							
								inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
							 | 
						||
| 
								 | 
							
								inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline int area2(const int* a, const int* b, const int* c)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//	Exclusive or: true iff exactly one argument is true.
							 | 
						||
| 
								 | 
							
								//	The arguments are negated to ensure that they are 0/1
							 | 
						||
| 
								 | 
							
								//	values.  Then the bitwise Xor operator may apply.
							 | 
						||
| 
								 | 
							
								//	(This idea is due to Michael Baldwin.)
							 | 
						||
| 
								 | 
							
								inline bool xorb(bool x, bool y)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return !x ^ !y;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Returns true iff c is strictly to the left of the directed
							 | 
						||
| 
								 | 
							
								// line through a to b.
							 | 
						||
| 
								 | 
							
								inline bool left(const int* a, const int* b, const int* c)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return area2(a, b, c) < 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline bool leftOn(const int* a, const int* b, const int* c)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return area2(a, b, c) <= 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline bool collinear(const int* a, const int* b, const int* c)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return area2(a, b, c) == 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//	Returns true iff ab properly intersects cd: they share
							 | 
						||
| 
								 | 
							
								//	a point interior to both segments.  The properness of the
							 | 
						||
| 
								 | 
							
								//	intersection is ensured by using strict leftness.
							 | 
						||
| 
								 | 
							
								static bool intersectProp(const int* a, const int* b, const int* c, const int* d)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									// Eliminate improper cases.
							 | 
						||
| 
								 | 
							
									if (collinear(a,b,c) || collinear(a,b,d) ||
							 | 
						||
| 
								 | 
							
										collinear(c,d,a) || collinear(c,d,b))
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Returns T iff (a,b,c) are collinear and point c lies 
							 | 
						||
| 
								 | 
							
								// on the closed segement ab.
							 | 
						||
| 
								 | 
							
								static bool between(const int* a, const int* b, const int* c)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									if (!collinear(a, b, c))
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									// If ab not vertical, check betweenness on x; else on y.
							 | 
						||
| 
								 | 
							
									if (a[0] != b[0])
							 | 
						||
| 
								 | 
							
										return	((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0]));
							 | 
						||
| 
								 | 
							
									else
							 | 
						||
| 
								 | 
							
										return	((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2]));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Returns true iff segments ab and cd intersect, properly or improperly.
							 | 
						||
| 
								 | 
							
								static bool intersect(const int* a, const int* b, const int* c, const int* d)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									if (intersectProp(a, b, c, d))
							 | 
						||
| 
								 | 
							
										return true;
							 | 
						||
| 
								 | 
							
									else if (between(a, b, c) || between(a, b, d) ||
							 | 
						||
| 
								 | 
							
											 between(c, d, a) || between(c, d, b))
							 | 
						||
| 
								 | 
							
										return true;
							 | 
						||
| 
								 | 
							
									else
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static bool vequal(const int* a, const int* b)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return a[0] == b[0] && a[2] == b[2];
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Returns T iff (v_i, v_j) is a proper internal *or* external
							 | 
						||
| 
								 | 
							
								// diagonal of P, *ignoring edges incident to v_i and v_j*.
							 | 
						||
| 
								 | 
							
								static bool diagonalie(int i, int j, int n, const int* verts, int* indices)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const int* d0 = &verts[(indices[i] & 0x0fffffff) * 4];
							 | 
						||
| 
								 | 
							
									const int* d1 = &verts[(indices[j] & 0x0fffffff) * 4];
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// For each edge (k,k+1) of P
							 | 
						||
| 
								 | 
							
									for (int k = 0; k < n; k++)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										int k1 = next(k, n);
							 | 
						||
| 
								 | 
							
										// Skip edges incident to i or j
							 | 
						||
| 
								 | 
							
										if (!((k == i) || (k1 == i) || (k == j) || (k1 == j)))
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											const int* p0 = &verts[(indices[k] & 0x0fffffff) * 4];
							 | 
						||
| 
								 | 
							
											const int* p1 = &verts[(indices[k1] & 0x0fffffff) * 4];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1))
							 | 
						||
| 
								 | 
							
												continue;
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											if (intersect(d0, d1, p0, p1))
							 | 
						||
| 
								 | 
							
												return false;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									return true;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Returns true iff the diagonal (i,j) is strictly internal to the 
							 | 
						||
| 
								 | 
							
								// polygon P in the neighborhood of the i endpoint.
							 | 
						||
| 
								 | 
							
								static bool	inCone(int i, int j, int n, const int* verts, int* indices)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const int* pi = &verts[(indices[i] & 0x0fffffff) * 4];
							 | 
						||
| 
								 | 
							
									const int* pj = &verts[(indices[j] & 0x0fffffff) * 4];
							 | 
						||
| 
								 | 
							
									const int* pi1 = &verts[(indices[next(i, n)] & 0x0fffffff) * 4];
							 | 
						||
| 
								 | 
							
									const int* pin1 = &verts[(indices[prev(i, n)] & 0x0fffffff) * 4];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									// If P[i] is a convex vertex [ i+1 left or on (i-1,i) ].
							 | 
						||
| 
								 | 
							
									if (leftOn(pin1, pi, pi1))
							 | 
						||
| 
								 | 
							
										return left(pi, pj, pin1) && left(pj, pi, pi1);
							 | 
						||
| 
								 | 
							
									// Assume (i-1,i,i+1) not collinear.
							 | 
						||
| 
								 | 
							
									// else P[i] is reflex.
							 | 
						||
| 
								 | 
							
									return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Returns T iff (v_i, v_j) is a proper internal
							 | 
						||
| 
								 | 
							
								// diagonal of P.
							 | 
						||
| 
								 | 
							
								static bool diagonal(int i, int j, int n, const int* verts, int* indices)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return inCone(i, j, n, verts, indices) && diagonalie(i, j, n, verts, indices);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static bool diagonalieLoose(int i, int j, int n, const int* verts, int* indices)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const int* d0 = &verts[(indices[i] & 0x0fffffff) * 4];
							 | 
						||
| 
								 | 
							
									const int* d1 = &verts[(indices[j] & 0x0fffffff) * 4];
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// For each edge (k,k+1) of P
							 | 
						||
| 
								 | 
							
									for (int k = 0; k < n; k++)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										int k1 = next(k, n);
							 | 
						||
| 
								 | 
							
										// Skip edges incident to i or j
							 | 
						||
| 
								 | 
							
										if (!((k == i) || (k1 == i) || (k == j) || (k1 == j)))
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											const int* p0 = &verts[(indices[k] & 0x0fffffff) * 4];
							 | 
						||
| 
								 | 
							
											const int* p1 = &verts[(indices[k1] & 0x0fffffff) * 4];
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1))
							 | 
						||
| 
								 | 
							
												continue;
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											if (intersectProp(d0, d1, p0, p1))
							 | 
						||
| 
								 | 
							
												return false;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									return true;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static bool	inConeLoose(int i, int j, int n, const int* verts, int* indices)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const int* pi = &verts[(indices[i] & 0x0fffffff) * 4];
							 | 
						||
| 
								 | 
							
									const int* pj = &verts[(indices[j] & 0x0fffffff) * 4];
							 | 
						||
| 
								 | 
							
									const int* pi1 = &verts[(indices[next(i, n)] & 0x0fffffff) * 4];
							 | 
						||
| 
								 | 
							
									const int* pin1 = &verts[(indices[prev(i, n)] & 0x0fffffff) * 4];
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// If P[i] is a convex vertex [ i+1 left or on (i-1,i) ].
							 | 
						||
| 
								 | 
							
									if (leftOn(pin1, pi, pi1))
							 | 
						||
| 
								 | 
							
										return leftOn(pi, pj, pin1) && leftOn(pj, pi, pi1);
							 | 
						||
| 
								 | 
							
									// Assume (i-1,i,i+1) not collinear.
							 | 
						||
| 
								 | 
							
									// else P[i] is reflex.
							 | 
						||
| 
								 | 
							
									return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static bool diagonalLoose(int i, int j, int n, const int* verts, int* indices)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return inConeLoose(i, j, n, verts, indices) && diagonalieLoose(i, j, n, verts, indices);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int triangulate(int n, const int* verts, int* indices, int* tris)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									int ntris = 0;
							 | 
						||
| 
								 | 
							
									int* dst = tris;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// The last bit of the index is used to indicate if the vertex can be removed.
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < n; i++)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										int i1 = next(i, n);
							 | 
						||
| 
								 | 
							
										int i2 = next(i1, n);
							 | 
						||
| 
								 | 
							
										if (diagonal(i, i2, n, verts, indices))
							 | 
						||
| 
								 | 
							
											indices[i1] |= 0x80000000;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									while (n > 3)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										int minLen = -1;
							 | 
						||
| 
								 | 
							
										int mini = -1;
							 | 
						||
| 
								 | 
							
										for (int i = 0; i < n; i++)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											int i1 = next(i, n);
							 | 
						||
| 
								 | 
							
											if (indices[i1] & 0x80000000)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												const int* p0 = &verts[(indices[i] & 0x0fffffff) * 4];
							 | 
						||
| 
								 | 
							
												const int* p2 = &verts[(indices[next(i1, n)] & 0x0fffffff) * 4];
							 | 
						||
| 
								 | 
							
												
							 | 
						||
| 
								 | 
							
												int dx = p2[0] - p0[0];
							 | 
						||
| 
								 | 
							
												int dy = p2[2] - p0[2];
							 | 
						||
| 
								 | 
							
												int len = dx*dx + dy*dy;
							 | 
						||
| 
								 | 
							
												
							 | 
						||
| 
								 | 
							
												if (minLen < 0 || len < minLen)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													minLen = len;
							 | 
						||
| 
								 | 
							
													mini = i;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										if (mini == -1)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											// We might get here because the contour has overlapping segments, like this:
							 | 
						||
| 
								 | 
							
											//
							 | 
						||
| 
								 | 
							
											//  A o-o=====o---o B
							 | 
						||
| 
								 | 
							
											//   /  |C   D|    \.
							 | 
						||
| 
								 | 
							
											//  o   o     o     o
							 | 
						||
| 
								 | 
							
											//  :   :     :     :
							 | 
						||
| 
								 | 
							
											// We'll try to recover by loosing up the inCone test a bit so that a diagonal
							 | 
						||
| 
								 | 
							
											// like A-B or C-D can be found and we can continue.
							 | 
						||
| 
								 | 
							
											minLen = -1;
							 | 
						||
| 
								 | 
							
											mini = -1;
							 | 
						||
| 
								 | 
							
											for (int i = 0; i < n; i++)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												int i1 = next(i, n);
							 | 
						||
| 
								 | 
							
												int i2 = next(i1, n);
							 | 
						||
| 
								 | 
							
												if (diagonalLoose(i, i2, n, verts, indices))
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													const int* p0 = &verts[(indices[i] & 0x0fffffff) * 4];
							 | 
						||
| 
								 | 
							
													const int* p2 = &verts[(indices[next(i2, n)] & 0x0fffffff) * 4];
							 | 
						||
| 
								 | 
							
													int dx = p2[0] - p0[0];
							 | 
						||
| 
								 | 
							
													int dy = p2[2] - p0[2];
							 | 
						||
| 
								 | 
							
													int len = dx*dx + dy*dy;
							 | 
						||
| 
								 | 
							
													
							 | 
						||
| 
								 | 
							
													if (minLen < 0 || len < minLen)
							 | 
						||
| 
								 | 
							
													{
							 | 
						||
| 
								 | 
							
														minLen = len;
							 | 
						||
| 
								 | 
							
														mini = i;
							 | 
						||
| 
								 | 
							
													}
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											if (mini == -1)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// The contour is messed up. This sometimes happens
							 | 
						||
| 
								 | 
							
												// if the contour simplification is too aggressive.
							 | 
						||
| 
								 | 
							
												return -ntris;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										int i = mini;
							 | 
						||
| 
								 | 
							
										int i1 = next(i, n);
							 | 
						||
| 
								 | 
							
										int i2 = next(i1, n);
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										*dst++ = indices[i] & 0x0fffffff;
							 | 
						||
| 
								 | 
							
										*dst++ = indices[i1] & 0x0fffffff;
							 | 
						||
| 
								 | 
							
										*dst++ = indices[i2] & 0x0fffffff;
							 | 
						||
| 
								 | 
							
										ntris++;
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Removes P[i1] by copying P[i+1]...P[n-1] left one index.
							 | 
						||
| 
								 | 
							
										n--;
							 | 
						||
| 
								 | 
							
										for (int k = i1; k < n; k++)
							 | 
						||
| 
								 | 
							
											indices[k] = indices[k+1];
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										if (i1 >= n) i1 = 0;
							 | 
						||
| 
								 | 
							
										i = prev(i1,n);
							 | 
						||
| 
								 | 
							
										// Update diagonal flags.
							 | 
						||
| 
								 | 
							
										if (diagonal(prev(i, n), i1, n, verts, indices))
							 | 
						||
| 
								 | 
							
											indices[i] |= 0x80000000;
							 | 
						||
| 
								 | 
							
										else
							 | 
						||
| 
								 | 
							
											indices[i] &= 0x0fffffff;
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										if (diagonal(i, next(i1, n), n, verts, indices))
							 | 
						||
| 
								 | 
							
											indices[i1] |= 0x80000000;
							 | 
						||
| 
								 | 
							
										else
							 | 
						||
| 
								 | 
							
											indices[i1] &= 0x0fffffff;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Append the remaining triangle.
							 | 
						||
| 
								 | 
							
									*dst++ = indices[0] & 0x0fffffff;
							 | 
						||
| 
								 | 
							
									*dst++ = indices[1] & 0x0fffffff;
							 | 
						||
| 
								 | 
							
									*dst++ = indices[2] & 0x0fffffff;
							 | 
						||
| 
								 | 
							
									ntris++;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return ntris;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int countPolyVerts(const unsigned short* p, const int nvp)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nvp; ++i)
							 | 
						||
| 
								 | 
							
										if (p[i] == RC_MESH_NULL_IDX)
							 | 
						||
| 
								 | 
							
											return i;
							 | 
						||
| 
								 | 
							
									return nvp;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline bool uleft(const unsigned short* a, const unsigned short* b, const unsigned short* c)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return ((int)b[0] - (int)a[0]) * ((int)c[2] - (int)a[2]) -
							 | 
						||
| 
								 | 
							
										   ((int)c[0] - (int)a[0]) * ((int)b[2] - (int)a[2]) < 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int getPolyMergeValue(unsigned short* pa, unsigned short* pb,
							 | 
						||
| 
								 | 
							
															 const unsigned short* verts, int& ea, int& eb,
							 | 
						||
| 
								 | 
							
															 const int nvp)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const int na = countPolyVerts(pa, nvp);
							 | 
						||
| 
								 | 
							
									const int nb = countPolyVerts(pb, nvp);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// If the merged polygon would be too big, do not merge.
							 | 
						||
| 
								 | 
							
									if (na+nb-2 > nvp)
							 | 
						||
| 
								 | 
							
										return -1;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Check if the polygons share an edge.
							 | 
						||
| 
								 | 
							
									ea = -1;
							 | 
						||
| 
								 | 
							
									eb = -1;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < na; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										unsigned short va0 = pa[i];
							 | 
						||
| 
								 | 
							
										unsigned short va1 = pa[(i+1) % na];
							 | 
						||
| 
								 | 
							
										if (va0 > va1)
							 | 
						||
| 
								 | 
							
											rcSwap(va0, va1);
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < nb; ++j)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											unsigned short vb0 = pb[j];
							 | 
						||
| 
								 | 
							
											unsigned short vb1 = pb[(j+1) % nb];
							 | 
						||
| 
								 | 
							
											if (vb0 > vb1)
							 | 
						||
| 
								 | 
							
												rcSwap(vb0, vb1);
							 | 
						||
| 
								 | 
							
											if (va0 == vb0 && va1 == vb1)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												ea = i;
							 | 
						||
| 
								 | 
							
												eb = j;
							 | 
						||
| 
								 | 
							
												break;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// No common edge, cannot merge.
							 | 
						||
| 
								 | 
							
									if (ea == -1 || eb == -1)
							 | 
						||
| 
								 | 
							
										return -1;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Check to see if the merged polygon would be convex.
							 | 
						||
| 
								 | 
							
									unsigned short va, vb, vc;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									va = pa[(ea+na-1) % na];
							 | 
						||
| 
								 | 
							
									vb = pa[ea];
							 | 
						||
| 
								 | 
							
									vc = pb[(eb+2) % nb];
							 | 
						||
| 
								 | 
							
									if (!uleft(&verts[va*3], &verts[vb*3], &verts[vc*3]))
							 | 
						||
| 
								 | 
							
										return -1;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									va = pb[(eb+nb-1) % nb];
							 | 
						||
| 
								 | 
							
									vb = pb[eb];
							 | 
						||
| 
								 | 
							
									vc = pa[(ea+2) % na];
							 | 
						||
| 
								 | 
							
									if (!uleft(&verts[va*3], &verts[vb*3], &verts[vc*3]))
							 | 
						||
| 
								 | 
							
										return -1;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									va = pa[ea];
							 | 
						||
| 
								 | 
							
									vb = pa[(ea+1)%na];
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									int dx = (int)verts[va*3+0] - (int)verts[vb*3+0];
							 | 
						||
| 
								 | 
							
									int dy = (int)verts[va*3+2] - (int)verts[vb*3+2];
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return dx*dx + dy*dy;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void mergePolyVerts(unsigned short* pa, unsigned short* pb, int ea, int eb,
							 | 
						||
| 
								 | 
							
														   unsigned short* tmp, const int nvp)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const int na = countPolyVerts(pa, nvp);
							 | 
						||
| 
								 | 
							
									const int nb = countPolyVerts(pb, nvp);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Merge polygons.
							 | 
						||
| 
								 | 
							
									memset(tmp, 0xff, sizeof(unsigned short)*nvp);
							 | 
						||
| 
								 | 
							
									int n = 0;
							 | 
						||
| 
								 | 
							
									// Add pa
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < na-1; ++i)
							 | 
						||
| 
								 | 
							
										tmp[n++] = pa[(ea+1+i) % na];
							 | 
						||
| 
								 | 
							
									// Add pb
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nb-1; ++i)
							 | 
						||
| 
								 | 
							
										tmp[n++] = pb[(eb+1+i) % nb];
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									memcpy(pa, tmp, sizeof(unsigned short)*nvp);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void pushFront(int v, int* arr, int& an)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									an++;
							 | 
						||
| 
								 | 
							
									for (int i = an-1; i > 0; --i) arr[i] = arr[i-1];
							 | 
						||
| 
								 | 
							
									arr[0] = v;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void pushBack(int v, int* arr, int& an)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									arr[an] = v;
							 | 
						||
| 
								 | 
							
									an++;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static bool canRemoveVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned short rem)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const int nvp = mesh.nvp;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Count number of polygons to remove.
							 | 
						||
| 
								 | 
							
									int numRemovedVerts = 0;
							 | 
						||
| 
								 | 
							
									int numTouchedVerts = 0;
							 | 
						||
| 
								 | 
							
									int numRemainingEdges = 0;
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < mesh.npolys; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										unsigned short* p = &mesh.polys[i*nvp*2];
							 | 
						||
| 
								 | 
							
										const int nv = countPolyVerts(p, nvp);
							 | 
						||
| 
								 | 
							
										int numRemoved = 0;
							 | 
						||
| 
								 | 
							
										int numVerts = 0;
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < nv; ++j)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											if (p[j] == rem)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												numTouchedVerts++;
							 | 
						||
| 
								 | 
							
												numRemoved++;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											numVerts++;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										if (numRemoved)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											numRemovedVerts += numRemoved;
							 | 
						||
| 
								 | 
							
											numRemainingEdges += numVerts-(numRemoved+1);
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// There would be too few edges remaining to create a polygon.
							 | 
						||
| 
								 | 
							
									// This can happen for example when a tip of a triangle is marked
							 | 
						||
| 
								 | 
							
									// as deletion, but there are no other polys that share the vertex.
							 | 
						||
| 
								 | 
							
									// In this case, the vertex should not be removed.
							 | 
						||
| 
								 | 
							
									if (numRemainingEdges <= 2)
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Find edges which share the removed vertex.
							 | 
						||
| 
								 | 
							
									const int maxEdges = numTouchedVerts*2;
							 | 
						||
| 
								 | 
							
									int nedges = 0;
							 | 
						||
| 
								 | 
							
									rcScopedDelete<int> edges((int*)rcAlloc(sizeof(int)*maxEdges*3, RC_ALLOC_TEMP));
							 | 
						||
| 
								 | 
							
									if (!edges)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_WARNING, "canRemoveVertex: Out of memory 'edges' (%d).", maxEdges*3);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < mesh.npolys; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										unsigned short* p = &mesh.polys[i*nvp*2];
							 | 
						||
| 
								 | 
							
										const int nv = countPolyVerts(p, nvp);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										// Collect edges which touches the removed vertex.
							 | 
						||
| 
								 | 
							
										for (int j = 0, k = nv-1; j < nv; k = j++)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											if (p[j] == rem || p[k] == rem)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// Arrange edge so that a=rem.
							 | 
						||
| 
								 | 
							
												int a = p[j], b = p[k];
							 | 
						||
| 
								 | 
							
												if (b == rem)
							 | 
						||
| 
								 | 
							
													rcSwap(a,b);
							 | 
						||
| 
								 | 
							
													
							 | 
						||
| 
								 | 
							
												// Check if the edge exists
							 | 
						||
| 
								 | 
							
												bool exists = false;
							 | 
						||
| 
								 | 
							
												for (int m = 0; m < nedges; ++m)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													int* e = &edges[m*3];
							 | 
						||
| 
								 | 
							
													if (e[1] == b)
							 | 
						||
| 
								 | 
							
													{
							 | 
						||
| 
								 | 
							
														// Exists, increment vertex share count.
							 | 
						||
| 
								 | 
							
														e[2]++;
							 | 
						||
| 
								 | 
							
														exists = true;
							 | 
						||
| 
								 | 
							
													}
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
												// Add new edge.
							 | 
						||
| 
								 | 
							
												if (!exists)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													int* e = &edges[nedges*3];
							 | 
						||
| 
								 | 
							
													e[0] = a;
							 | 
						||
| 
								 | 
							
													e[1] = b;
							 | 
						||
| 
								 | 
							
													e[2] = 1;
							 | 
						||
| 
								 | 
							
													nedges++;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									// There should be no more than 2 open edges.
							 | 
						||
| 
								 | 
							
									// This catches the case that two non-adjacent polygons
							 | 
						||
| 
								 | 
							
									// share the removed vertex. In that case, do not remove the vertex.
							 | 
						||
| 
								 | 
							
									int numOpenEdges = 0;
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nedges; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										if (edges[i*3+2] < 2)
							 | 
						||
| 
								 | 
							
											numOpenEdges++;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									if (numOpenEdges > 2)
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return true;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static bool removeVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned short rem, const int maxTris)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const int nvp = mesh.nvp;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									// Count number of polygons to remove.
							 | 
						||
| 
								 | 
							
									int numRemovedVerts = 0;
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < mesh.npolys; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										unsigned short* p = &mesh.polys[i*nvp*2];
							 | 
						||
| 
								 | 
							
										const int nv = countPolyVerts(p, nvp);
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < nv; ++j)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											if (p[j] == rem)
							 | 
						||
| 
								 | 
							
												numRemovedVerts++;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									int nedges = 0;
							 | 
						||
| 
								 | 
							
									rcScopedDelete<int> edges((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp*4, RC_ALLOC_TEMP));
							 | 
						||
| 
								 | 
							
									if (!edges)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'edges' (%d).", numRemovedVerts*nvp*4);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									int nhole = 0;
							 | 
						||
| 
								 | 
							
									rcScopedDelete<int> hole((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp, RC_ALLOC_TEMP));
							 | 
						||
| 
								 | 
							
									if (!hole)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'hole' (%d).", numRemovedVerts*nvp);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									int nhreg = 0;
							 | 
						||
| 
								 | 
							
									rcScopedDelete<int> hreg((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp, RC_ALLOC_TEMP));
							 | 
						||
| 
								 | 
							
									if (!hreg)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'hreg' (%d).", numRemovedVerts*nvp);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									int nharea = 0;
							 | 
						||
| 
								 | 
							
									rcScopedDelete<int> harea((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp, RC_ALLOC_TEMP));
							 | 
						||
| 
								 | 
							
									if (!harea)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'harea' (%d).", numRemovedVerts*nvp);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < mesh.npolys; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										unsigned short* p = &mesh.polys[i*nvp*2];
							 | 
						||
| 
								 | 
							
										const int nv = countPolyVerts(p, nvp);
							 | 
						||
| 
								 | 
							
										bool hasRem = false;
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < nv; ++j)
							 | 
						||
| 
								 | 
							
											if (p[j] == rem) hasRem = true;
							 | 
						||
| 
								 | 
							
										if (hasRem)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											// Collect edges which does not touch the removed vertex.
							 | 
						||
| 
								 | 
							
											for (int j = 0, k = nv-1; j < nv; k = j++)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												if (p[j] != rem && p[k] != rem)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													int* e = &edges[nedges*4];
							 | 
						||
| 
								 | 
							
													e[0] = p[k];
							 | 
						||
| 
								 | 
							
													e[1] = p[j];
							 | 
						||
| 
								 | 
							
													e[2] = mesh.regs[i];
							 | 
						||
| 
								 | 
							
													e[3] = mesh.areas[i];
							 | 
						||
| 
								 | 
							
													nedges++;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											// Remove the polygon.
							 | 
						||
| 
								 | 
							
											unsigned short* p2 = &mesh.polys[(mesh.npolys-1)*nvp*2];
							 | 
						||
| 
								 | 
							
											if (p != p2)
							 | 
						||
| 
								 | 
							
												memcpy(p,p2,sizeof(unsigned short)*nvp);
							 | 
						||
| 
								 | 
							
											memset(p+nvp,0xff,sizeof(unsigned short)*nvp);
							 | 
						||
| 
								 | 
							
											mesh.regs[i] = mesh.regs[mesh.npolys-1];
							 | 
						||
| 
								 | 
							
											mesh.areas[i] = mesh.areas[mesh.npolys-1];
							 | 
						||
| 
								 | 
							
											mesh.npolys--;
							 | 
						||
| 
								 | 
							
											--i;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Remove vertex.
							 | 
						||
| 
								 | 
							
									for (int i = (int)rem; i < mesh.nverts - 1; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										mesh.verts[i*3+0] = mesh.verts[(i+1)*3+0];
							 | 
						||
| 
								 | 
							
										mesh.verts[i*3+1] = mesh.verts[(i+1)*3+1];
							 | 
						||
| 
								 | 
							
										mesh.verts[i*3+2] = mesh.verts[(i+1)*3+2];
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									mesh.nverts--;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									// Adjust indices to match the removed vertex layout.
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < mesh.npolys; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										unsigned short* p = &mesh.polys[i*nvp*2];
							 | 
						||
| 
								 | 
							
										const int nv = countPolyVerts(p, nvp);
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < nv; ++j)
							 | 
						||
| 
								 | 
							
											if (p[j] > rem) p[j]--;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nedges; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										if (edges[i*4+0] > rem) edges[i*4+0]--;
							 | 
						||
| 
								 | 
							
										if (edges[i*4+1] > rem) edges[i*4+1]--;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									if (nedges == 0)
							 | 
						||
| 
								 | 
							
										return true;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									// Start with one vertex, keep appending connected
							 | 
						||
| 
								 | 
							
									// segments to the start and end of the hole.
							 | 
						||
| 
								 | 
							
									pushBack(edges[0], hole, nhole);
							 | 
						||
| 
								 | 
							
									pushBack(edges[2], hreg, nhreg);
							 | 
						||
| 
								 | 
							
									pushBack(edges[3], harea, nharea);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									while (nedges)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										bool match = false;
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										for (int i = 0; i < nedges; ++i)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											const int ea = edges[i*4+0];
							 | 
						||
| 
								 | 
							
											const int eb = edges[i*4+1];
							 | 
						||
| 
								 | 
							
											const int r = edges[i*4+2];
							 | 
						||
| 
								 | 
							
											const int a = edges[i*4+3];
							 | 
						||
| 
								 | 
							
											bool add = false;
							 | 
						||
| 
								 | 
							
											if (hole[0] == eb)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// The segment matches the beginning of the hole boundary.
							 | 
						||
| 
								 | 
							
												pushFront(ea, hole, nhole);
							 | 
						||
| 
								 | 
							
												pushFront(r, hreg, nhreg);
							 | 
						||
| 
								 | 
							
												pushFront(a, harea, nharea);
							 | 
						||
| 
								 | 
							
												add = true;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											else if (hole[nhole-1] == ea)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// The segment matches the end of the hole boundary.
							 | 
						||
| 
								 | 
							
												pushBack(eb, hole, nhole);
							 | 
						||
| 
								 | 
							
												pushBack(r, hreg, nhreg);
							 | 
						||
| 
								 | 
							
												pushBack(a, harea, nharea);
							 | 
						||
| 
								 | 
							
												add = true;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											if (add)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// The edge segment was added, remove it.
							 | 
						||
| 
								 | 
							
												edges[i*4+0] = edges[(nedges-1)*4+0];
							 | 
						||
| 
								 | 
							
												edges[i*4+1] = edges[(nedges-1)*4+1];
							 | 
						||
| 
								 | 
							
												edges[i*4+2] = edges[(nedges-1)*4+2];
							 | 
						||
| 
								 | 
							
												edges[i*4+3] = edges[(nedges-1)*4+3];
							 | 
						||
| 
								 | 
							
												--nedges;
							 | 
						||
| 
								 | 
							
												match = true;
							 | 
						||
| 
								 | 
							
												--i;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										if (!match)
							 | 
						||
| 
								 | 
							
											break;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									rcScopedDelete<int> tris((int*)rcAlloc(sizeof(int)*nhole*3, RC_ALLOC_TEMP));
							 | 
						||
| 
								 | 
							
									if (!tris)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'tris' (%d).", nhole*3);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									rcScopedDelete<int> tverts((int*)rcAlloc(sizeof(int)*nhole*4, RC_ALLOC_TEMP));
							 | 
						||
| 
								 | 
							
									if (!tverts)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'tverts' (%d).", nhole*4);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									rcScopedDelete<int> thole((int*)rcAlloc(sizeof(int)*nhole, RC_ALLOC_TEMP));
							 | 
						||
| 
								 | 
							
									if (!thole)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'thole' (%d).", nhole);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									// Generate temp vertex array for triangulation.
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nhole; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const int pi = hole[i];
							 | 
						||
| 
								 | 
							
										tverts[i*4+0] = mesh.verts[pi*3+0];
							 | 
						||
| 
								 | 
							
										tverts[i*4+1] = mesh.verts[pi*3+1];
							 | 
						||
| 
								 | 
							
										tverts[i*4+2] = mesh.verts[pi*3+2];
							 | 
						||
| 
								 | 
							
										tverts[i*4+3] = 0;
							 | 
						||
| 
								 | 
							
										thole[i] = i;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									// Triangulate the hole.
							 | 
						||
| 
								 | 
							
									int ntris = triangulate(nhole, &tverts[0], &thole[0], tris);
							 | 
						||
| 
								 | 
							
									if (ntris < 0)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ntris = -ntris;
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_WARNING, "removeVertex: triangulate() returned bad results.");
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Merge the hole triangles back to polygons.
							 | 
						||
| 
								 | 
							
									rcScopedDelete<unsigned short> polys((unsigned short*)rcAlloc(sizeof(unsigned short)*(ntris+1)*nvp, RC_ALLOC_TEMP));
							 | 
						||
| 
								 | 
							
									if (!polys)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "removeVertex: Out of memory 'polys' (%d).", (ntris+1)*nvp);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									rcScopedDelete<unsigned short> pregs((unsigned short*)rcAlloc(sizeof(unsigned short)*ntris, RC_ALLOC_TEMP));
							 | 
						||
| 
								 | 
							
									if (!pregs)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "removeVertex: Out of memory 'pregs' (%d).", ntris);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									rcScopedDelete<unsigned char> pareas((unsigned char*)rcAlloc(sizeof(unsigned char)*ntris, RC_ALLOC_TEMP));
							 | 
						||
| 
								 | 
							
									if (!pareas)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "removeVertex: Out of memory 'pareas' (%d).", ntris);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									unsigned short* tmpPoly = &polys[ntris*nvp];
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
									// Build initial polygons.
							 | 
						||
| 
								 | 
							
									int npolys = 0;
							 | 
						||
| 
								 | 
							
									memset(polys, 0xff, ntris*nvp*sizeof(unsigned short));
							 | 
						||
| 
								 | 
							
									for (int j = 0; j < ntris; ++j)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										int* t = &tris[j*3];
							 | 
						||
| 
								 | 
							
										if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2])
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											polys[npolys*nvp+0] = (unsigned short)hole[t[0]];
							 | 
						||
| 
								 | 
							
											polys[npolys*nvp+1] = (unsigned short)hole[t[1]];
							 | 
						||
| 
								 | 
							
											polys[npolys*nvp+2] = (unsigned short)hole[t[2]];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											// If this polygon covers multiple region types then
							 | 
						||
| 
								 | 
							
											// mark it as such
							 | 
						||
| 
								 | 
							
											if (hreg[t[0]] != hreg[t[1]] || hreg[t[1]] != hreg[t[2]])
							 | 
						||
| 
								 | 
							
												pregs[npolys] = RC_MULTIPLE_REGS;
							 | 
						||
| 
								 | 
							
											else
							 | 
						||
| 
								 | 
							
												pregs[npolys] = (unsigned short)hreg[t[0]];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											pareas[npolys] = (unsigned char)harea[t[0]];
							 | 
						||
| 
								 | 
							
											npolys++;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									if (!npolys)
							 | 
						||
| 
								 | 
							
										return true;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Merge polygons.
							 | 
						||
| 
								 | 
							
									if (nvp > 3)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										for (;;)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											// Find best polygons to merge.
							 | 
						||
| 
								 | 
							
											int bestMergeVal = 0;
							 | 
						||
| 
								 | 
							
											int bestPa = 0, bestPb = 0, bestEa = 0, bestEb = 0;
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											for (int j = 0; j < npolys-1; ++j)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												unsigned short* pj = &polys[j*nvp];
							 | 
						||
| 
								 | 
							
												for (int k = j+1; k < npolys; ++k)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													unsigned short* pk = &polys[k*nvp];
							 | 
						||
| 
								 | 
							
													int ea, eb;
							 | 
						||
| 
								 | 
							
													int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb, nvp);
							 | 
						||
| 
								 | 
							
													if (v > bestMergeVal)
							 | 
						||
| 
								 | 
							
													{
							 | 
						||
| 
								 | 
							
														bestMergeVal = v;
							 | 
						||
| 
								 | 
							
														bestPa = j;
							 | 
						||
| 
								 | 
							
														bestPb = k;
							 | 
						||
| 
								 | 
							
														bestEa = ea;
							 | 
						||
| 
								 | 
							
														bestEb = eb;
							 | 
						||
| 
								 | 
							
													}
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											if (bestMergeVal > 0)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// Found best, merge.
							 | 
						||
| 
								 | 
							
												unsigned short* pa = &polys[bestPa*nvp];
							 | 
						||
| 
								 | 
							
												unsigned short* pb = &polys[bestPb*nvp];
							 | 
						||
| 
								 | 
							
												mergePolyVerts(pa, pb, bestEa, bestEb, tmpPoly, nvp);
							 | 
						||
| 
								 | 
							
												if (pregs[bestPa] != pregs[bestPb])
							 | 
						||
| 
								 | 
							
													pregs[bestPa] = RC_MULTIPLE_REGS;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												unsigned short* last = &polys[(npolys-1)*nvp];
							 | 
						||
| 
								 | 
							
												if (pb != last)
							 | 
						||
| 
								 | 
							
													memcpy(pb, last, sizeof(unsigned short)*nvp);
							 | 
						||
| 
								 | 
							
												pregs[bestPb] = pregs[npolys-1];
							 | 
						||
| 
								 | 
							
												pareas[bestPb] = pareas[npolys-1];
							 | 
						||
| 
								 | 
							
												npolys--;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											else
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// Could not merge any polygons, stop.
							 | 
						||
| 
								 | 
							
												break;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Store polygons.
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < npolys; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										if (mesh.npolys >= maxTris) break;
							 | 
						||
| 
								 | 
							
										unsigned short* p = &mesh.polys[mesh.npolys*nvp*2];
							 | 
						||
| 
								 | 
							
										memset(p,0xff,sizeof(unsigned short)*nvp*2);
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < nvp; ++j)
							 | 
						||
| 
								 | 
							
											p[j] = polys[i*nvp+j];
							 | 
						||
| 
								 | 
							
										mesh.regs[mesh.npolys] = pregs[i];
							 | 
						||
| 
								 | 
							
										mesh.areas[mesh.npolys] = pareas[i];
							 | 
						||
| 
								 | 
							
										mesh.npolys++;
							 | 
						||
| 
								 | 
							
										if (mesh.npolys > maxTris)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											ctx->log(RC_LOG_ERROR, "removeVertex: Too many polygons %d (max:%d).", mesh.npolys, maxTris);
							 | 
						||
| 
								 | 
							
											return false;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return true;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/// @par
							 | 
						||
| 
								 | 
							
								///
							 | 
						||
| 
								 | 
							
								/// @note If the mesh data is to be used to construct a Detour navigation mesh, then the upper 
							 | 
						||
| 
								 | 
							
								/// limit must be retricted to <= #DT_VERTS_PER_POLYGON.
							 | 
						||
| 
								 | 
							
								///
							 | 
						||
| 
								 | 
							
								/// @see rcAllocPolyMesh, rcContourSet, rcPolyMesh, rcConfig
							 | 
						||
| 
								 | 
							
								bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMesh& mesh)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									rcAssert(ctx);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									rcScopedTimer timer(ctx, RC_TIMER_BUILD_POLYMESH);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									rcVcopy(mesh.bmin, cset.bmin);
							 | 
						||
| 
								 | 
							
									rcVcopy(mesh.bmax, cset.bmax);
							 | 
						||
| 
								 | 
							
									mesh.cs = cset.cs;
							 | 
						||
| 
								 | 
							
									mesh.ch = cset.ch;
							 | 
						||
| 
								 | 
							
									mesh.borderSize = cset.borderSize;
							 | 
						||
| 
								 | 
							
									mesh.maxEdgeError = cset.maxError;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									int maxVertices = 0;
							 | 
						||
| 
								 | 
							
									int maxTris = 0;
							 | 
						||
| 
								 | 
							
									int maxVertsPerCont = 0;
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < cset.nconts; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										// Skip null contours.
							 | 
						||
| 
								 | 
							
										if (cset.conts[i].nverts < 3) continue;
							 | 
						||
| 
								 | 
							
										maxVertices += cset.conts[i].nverts;
							 | 
						||
| 
								 | 
							
										maxTris += cset.conts[i].nverts - 2;
							 | 
						||
| 
								 | 
							
										maxVertsPerCont = rcMax(maxVertsPerCont, cset.conts[i].nverts);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									if (maxVertices >= 0xfffe)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Too many vertices %d.", maxVertices);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
									rcScopedDelete<unsigned char> vflags((unsigned char*)rcAlloc(sizeof(unsigned char)*maxVertices, RC_ALLOC_TEMP));
							 | 
						||
| 
								 | 
							
									if (!vflags)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'vflags' (%d).", maxVertices);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									memset(vflags, 0, maxVertices);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									mesh.verts = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxVertices*3, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
									if (!mesh.verts)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.verts' (%d).", maxVertices);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									mesh.polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxTris*nvp*2, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
									if (!mesh.polys)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.polys' (%d).", maxTris*nvp*2);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									mesh.regs = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxTris, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
									if (!mesh.regs)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.regs' (%d).", maxTris);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									mesh.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxTris, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
									if (!mesh.areas)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.areas' (%d).", maxTris);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									mesh.nverts = 0;
							 | 
						||
| 
								 | 
							
									mesh.npolys = 0;
							 | 
						||
| 
								 | 
							
									mesh.nvp = nvp;
							 | 
						||
| 
								 | 
							
									mesh.maxpolys = maxTris;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									memset(mesh.verts, 0, sizeof(unsigned short)*maxVertices*3);
							 | 
						||
| 
								 | 
							
									memset(mesh.polys, 0xff, sizeof(unsigned short)*maxTris*nvp*2);
							 | 
						||
| 
								 | 
							
									memset(mesh.regs, 0, sizeof(unsigned short)*maxTris);
							 | 
						||
| 
								 | 
							
									memset(mesh.areas, 0, sizeof(unsigned char)*maxTris);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									rcScopedDelete<int> nextVert((int*)rcAlloc(sizeof(int)*maxVertices, RC_ALLOC_TEMP));
							 | 
						||
| 
								 | 
							
									if (!nextVert)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'nextVert' (%d).", maxVertices);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									memset(nextVert, 0, sizeof(int)*maxVertices);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									rcScopedDelete<int> firstVert((int*)rcAlloc(sizeof(int)*VERTEX_BUCKET_COUNT, RC_ALLOC_TEMP));
							 | 
						||
| 
								 | 
							
									if (!firstVert)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'firstVert' (%d).", VERTEX_BUCKET_COUNT);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < VERTEX_BUCKET_COUNT; ++i)
							 | 
						||
| 
								 | 
							
										firstVert[i] = -1;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									rcScopedDelete<int> indices((int*)rcAlloc(sizeof(int)*maxVertsPerCont, RC_ALLOC_TEMP));
							 | 
						||
| 
								 | 
							
									if (!indices)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'indices' (%d).", maxVertsPerCont);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									rcScopedDelete<int> tris((int*)rcAlloc(sizeof(int)*maxVertsPerCont*3, RC_ALLOC_TEMP));
							 | 
						||
| 
								 | 
							
									if (!tris)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'tris' (%d).", maxVertsPerCont*3);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									rcScopedDelete<unsigned short> polys((unsigned short*)rcAlloc(sizeof(unsigned short)*(maxVertsPerCont+1)*nvp, RC_ALLOC_TEMP));
							 | 
						||
| 
								 | 
							
									if (!polys)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'polys' (%d).", maxVertsPerCont*nvp);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									unsigned short* tmpPoly = &polys[maxVertsPerCont*nvp];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < cset.nconts; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										rcContour& cont = cset.conts[i];
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Skip null contours.
							 | 
						||
| 
								 | 
							
										if (cont.nverts < 3)
							 | 
						||
| 
								 | 
							
											continue;
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Triangulate contour
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < cont.nverts; ++j)
							 | 
						||
| 
								 | 
							
											indices[j] = j;
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
										int ntris = triangulate(cont.nverts, cont.verts, &indices[0], &tris[0]);
							 | 
						||
| 
								 | 
							
										if (ntris <= 0)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											// Bad triangulation, should not happen.
							 | 
						||
| 
								 | 
							
								/*			printf("\tconst float bmin[3] = {%ff,%ff,%ff};\n", cset.bmin[0], cset.bmin[1], cset.bmin[2]);
							 | 
						||
| 
								 | 
							
											printf("\tconst float cs = %ff;\n", cset.cs);
							 | 
						||
| 
								 | 
							
											printf("\tconst float ch = %ff;\n", cset.ch);
							 | 
						||
| 
								 | 
							
											printf("\tconst int verts[] = {\n");
							 | 
						||
| 
								 | 
							
											for (int k = 0; k < cont.nverts; ++k)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												const int* v = &cont.verts[k*4];
							 | 
						||
| 
								 | 
							
												printf("\t\t%d,%d,%d,%d,\n", v[0], v[1], v[2], v[3]);
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											printf("\t};\n\tconst int nverts = sizeof(verts)/(sizeof(int)*4);\n");*/
							 | 
						||
| 
								 | 
							
											ctx->log(RC_LOG_WARNING, "rcBuildPolyMesh: Bad triangulation Contour %d.", i);
							 | 
						||
| 
								 | 
							
											ntris = -ntris;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
												
							 | 
						||
| 
								 | 
							
										// Add and merge vertices.
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < cont.nverts; ++j)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											const int* v = &cont.verts[j*4];
							 | 
						||
| 
								 | 
							
											indices[j] = addVertex((unsigned short)v[0], (unsigned short)v[1], (unsigned short)v[2],
							 | 
						||
| 
								 | 
							
																   mesh.verts, firstVert, nextVert, mesh.nverts);
							 | 
						||
| 
								 | 
							
											if (v[3] & RC_BORDER_VERTEX)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// This vertex should be removed.
							 | 
						||
| 
								 | 
							
												vflags[indices[j]] = 1;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										// Build initial polygons.
							 | 
						||
| 
								 | 
							
										int npolys = 0;
							 | 
						||
| 
								 | 
							
										memset(polys, 0xff, maxVertsPerCont*nvp*sizeof(unsigned short));
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < ntris; ++j)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											int* t = &tris[j*3];
							 | 
						||
| 
								 | 
							
											if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2])
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												polys[npolys*nvp+0] = (unsigned short)indices[t[0]];
							 | 
						||
| 
								 | 
							
												polys[npolys*nvp+1] = (unsigned short)indices[t[1]];
							 | 
						||
| 
								 | 
							
												polys[npolys*nvp+2] = (unsigned short)indices[t[2]];
							 | 
						||
| 
								 | 
							
												npolys++;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										if (!npolys)
							 | 
						||
| 
								 | 
							
											continue;
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Merge polygons.
							 | 
						||
| 
								 | 
							
										if (nvp > 3)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											for(;;)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// Find best polygons to merge.
							 | 
						||
| 
								 | 
							
												int bestMergeVal = 0;
							 | 
						||
| 
								 | 
							
												int bestPa = 0, bestPb = 0, bestEa = 0, bestEb = 0;
							 | 
						||
| 
								 | 
							
												
							 | 
						||
| 
								 | 
							
												for (int j = 0; j < npolys-1; ++j)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													unsigned short* pj = &polys[j*nvp];
							 | 
						||
| 
								 | 
							
													for (int k = j+1; k < npolys; ++k)
							 | 
						||
| 
								 | 
							
													{
							 | 
						||
| 
								 | 
							
														unsigned short* pk = &polys[k*nvp];
							 | 
						||
| 
								 | 
							
														int ea, eb;
							 | 
						||
| 
								 | 
							
														int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb, nvp);
							 | 
						||
| 
								 | 
							
														if (v > bestMergeVal)
							 | 
						||
| 
								 | 
							
														{
							 | 
						||
| 
								 | 
							
															bestMergeVal = v;
							 | 
						||
| 
								 | 
							
															bestPa = j;
							 | 
						||
| 
								 | 
							
															bestPb = k;
							 | 
						||
| 
								 | 
							
															bestEa = ea;
							 | 
						||
| 
								 | 
							
															bestEb = eb;
							 | 
						||
| 
								 | 
							
														}
							 | 
						||
| 
								 | 
							
													}
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
												
							 | 
						||
| 
								 | 
							
												if (bestMergeVal > 0)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													// Found best, merge.
							 | 
						||
| 
								 | 
							
													unsigned short* pa = &polys[bestPa*nvp];
							 | 
						||
| 
								 | 
							
													unsigned short* pb = &polys[bestPb*nvp];
							 | 
						||
| 
								 | 
							
													mergePolyVerts(pa, pb, bestEa, bestEb, tmpPoly, nvp);
							 | 
						||
| 
								 | 
							
													unsigned short* lastPoly = &polys[(npolys-1)*nvp];
							 | 
						||
| 
								 | 
							
													if (pb != lastPoly)
							 | 
						||
| 
								 | 
							
														memcpy(pb, lastPoly, sizeof(unsigned short)*nvp);
							 | 
						||
| 
								 | 
							
													npolys--;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
												else
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													// Could not merge any polygons, stop.
							 | 
						||
| 
								 | 
							
													break;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Store polygons.
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < npolys; ++j)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											unsigned short* p = &mesh.polys[mesh.npolys*nvp*2];
							 | 
						||
| 
								 | 
							
											unsigned short* q = &polys[j*nvp];
							 | 
						||
| 
								 | 
							
											for (int k = 0; k < nvp; ++k)
							 | 
						||
| 
								 | 
							
												p[k] = q[k];
							 | 
						||
| 
								 | 
							
											mesh.regs[mesh.npolys] = cont.reg;
							 | 
						||
| 
								 | 
							
											mesh.areas[mesh.npolys] = cont.area;
							 | 
						||
| 
								 | 
							
											mesh.npolys++;
							 | 
						||
| 
								 | 
							
											if (mesh.npolys > maxTris)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Too many polygons %d (max:%d).", mesh.npolys, maxTris);
							 | 
						||
| 
								 | 
							
												return false;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Remove edge vertices.
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < mesh.nverts; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										if (vflags[i])
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											if (!canRemoveVertex(ctx, mesh, (unsigned short)i))
							 | 
						||
| 
								 | 
							
												continue;
							 | 
						||
| 
								 | 
							
											if (!removeVertex(ctx, mesh, (unsigned short)i, maxTris))
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// Failed to remove vertex
							 | 
						||
| 
								 | 
							
												ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Failed to remove edge vertex %d.", i);
							 | 
						||
| 
								 | 
							
												return false;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											// Remove vertex
							 | 
						||
| 
								 | 
							
											// Note: mesh.nverts is already decremented inside removeVertex()!
							 | 
						||
| 
								 | 
							
											// Fixup vertex flags
							 | 
						||
| 
								 | 
							
											for (int j = i; j < mesh.nverts; ++j)
							 | 
						||
| 
								 | 
							
												vflags[j] = vflags[j+1];
							 | 
						||
| 
								 | 
							
											--i;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Calculate adjacency.
							 | 
						||
| 
								 | 
							
									if (!buildMeshAdjacency(mesh.polys, mesh.npolys, mesh.nverts, nvp))
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Adjacency failed.");
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Find portal edges
							 | 
						||
| 
								 | 
							
									if (mesh.borderSize > 0)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const int w = cset.width;
							 | 
						||
| 
								 | 
							
										const int h = cset.height;
							 | 
						||
| 
								 | 
							
										for (int i = 0; i < mesh.npolys; ++i)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											unsigned short* p = &mesh.polys[i*2*nvp];
							 | 
						||
| 
								 | 
							
											for (int j = 0; j < nvp; ++j)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												if (p[j] == RC_MESH_NULL_IDX) break;
							 | 
						||
| 
								 | 
							
												// Skip connected edges.
							 | 
						||
| 
								 | 
							
												if (p[nvp+j] != RC_MESH_NULL_IDX)
							 | 
						||
| 
								 | 
							
													continue;
							 | 
						||
| 
								 | 
							
												int nj = j+1;
							 | 
						||
| 
								 | 
							
												if (nj >= nvp || p[nj] == RC_MESH_NULL_IDX) nj = 0;
							 | 
						||
| 
								 | 
							
												const unsigned short* va = &mesh.verts[p[j]*3];
							 | 
						||
| 
								 | 
							
												const unsigned short* vb = &mesh.verts[p[nj]*3];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
												if ((int)va[0] == 0 && (int)vb[0] == 0)
							 | 
						||
| 
								 | 
							
													p[nvp+j] = 0x8000 | 0;
							 | 
						||
| 
								 | 
							
												else if ((int)va[2] == h && (int)vb[2] == h)
							 | 
						||
| 
								 | 
							
													p[nvp+j] = 0x8000 | 1;
							 | 
						||
| 
								 | 
							
												else if ((int)va[0] == w && (int)vb[0] == w)
							 | 
						||
| 
								 | 
							
													p[nvp+j] = 0x8000 | 2;
							 | 
						||
| 
								 | 
							
												else if ((int)va[2] == 0 && (int)vb[2] == 0)
							 | 
						||
| 
								 | 
							
													p[nvp+j] = 0x8000 | 3;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									// Just allocate the mesh flags array. The user is resposible to fill it.
							 | 
						||
| 
								 | 
							
									mesh.flags = (unsigned short*)rcAlloc(sizeof(unsigned short)*mesh.npolys, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
									if (!mesh.flags)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.flags' (%d).", mesh.npolys);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									memset(mesh.flags, 0, sizeof(unsigned short) * mesh.npolys);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									if (mesh.nverts > 0xffff)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: The resulting mesh has too many vertices %d (max %d). Data can be corrupted.", mesh.nverts, 0xffff);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									if (mesh.npolys > 0xffff)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: The resulting mesh has too many polygons %d (max %d). Data can be corrupted.", mesh.npolys, 0xffff);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return true;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/// @see rcAllocPolyMesh, rcPolyMesh
							 | 
						||
| 
								 | 
							
								bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									rcAssert(ctx);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									if (!nmeshes || !meshes)
							 | 
						||
| 
								 | 
							
										return true;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									rcScopedTimer timer(ctx, RC_TIMER_MERGE_POLYMESH);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									mesh.nvp = meshes[0]->nvp;
							 | 
						||
| 
								 | 
							
									mesh.cs = meshes[0]->cs;
							 | 
						||
| 
								 | 
							
									mesh.ch = meshes[0]->ch;
							 | 
						||
| 
								 | 
							
									rcVcopy(mesh.bmin, meshes[0]->bmin);
							 | 
						||
| 
								 | 
							
									rcVcopy(mesh.bmax, meshes[0]->bmax);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									int maxVerts = 0;
							 | 
						||
| 
								 | 
							
									int maxPolys = 0;
							 | 
						||
| 
								 | 
							
									int maxVertsPerMesh = 0;
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nmeshes; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										rcVmin(mesh.bmin, meshes[i]->bmin);
							 | 
						||
| 
								 | 
							
										rcVmax(mesh.bmax, meshes[i]->bmax);
							 | 
						||
| 
								 | 
							
										maxVertsPerMesh = rcMax(maxVertsPerMesh, meshes[i]->nverts);
							 | 
						||
| 
								 | 
							
										maxVerts += meshes[i]->nverts;
							 | 
						||
| 
								 | 
							
										maxPolys += meshes[i]->npolys;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									mesh.nverts = 0;
							 | 
						||
| 
								 | 
							
									mesh.verts = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxVerts*3, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
									if (!mesh.verts)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.verts' (%d).", maxVerts*3);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									mesh.npolys = 0;
							 | 
						||
| 
								 | 
							
									mesh.polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxPolys*2*mesh.nvp, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
									if (!mesh.polys)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.polys' (%d).", maxPolys*2*mesh.nvp);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									memset(mesh.polys, 0xff, sizeof(unsigned short)*maxPolys*2*mesh.nvp);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									mesh.regs = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxPolys, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
									if (!mesh.regs)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.regs' (%d).", maxPolys);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									memset(mesh.regs, 0, sizeof(unsigned short)*maxPolys);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									mesh.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxPolys, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
									if (!mesh.areas)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.areas' (%d).", maxPolys);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									memset(mesh.areas, 0, sizeof(unsigned char)*maxPolys);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									mesh.flags = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxPolys, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
									if (!mesh.flags)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.flags' (%d).", maxPolys);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									memset(mesh.flags, 0, sizeof(unsigned short)*maxPolys);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									rcScopedDelete<int> nextVert((int*)rcAlloc(sizeof(int)*maxVerts, RC_ALLOC_TEMP));
							 | 
						||
| 
								 | 
							
									if (!nextVert)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'nextVert' (%d).", maxVerts);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									memset(nextVert, 0, sizeof(int)*maxVerts);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									rcScopedDelete<int> firstVert((int*)rcAlloc(sizeof(int)*VERTEX_BUCKET_COUNT, RC_ALLOC_TEMP));
							 | 
						||
| 
								 | 
							
									if (!firstVert)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'firstVert' (%d).", VERTEX_BUCKET_COUNT);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < VERTEX_BUCKET_COUNT; ++i)
							 | 
						||
| 
								 | 
							
										firstVert[i] = -1;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									rcScopedDelete<unsigned short> vremap((unsigned short*)rcAlloc(sizeof(unsigned short)*maxVertsPerMesh, RC_ALLOC_PERM));
							 | 
						||
| 
								 | 
							
									if (!vremap)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'vremap' (%d).", maxVertsPerMesh);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									memset(vremap, 0, sizeof(unsigned short)*maxVertsPerMesh);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nmeshes; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const rcPolyMesh* pmesh = meshes[i];
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										const unsigned short ox = (unsigned short)floorf((pmesh->bmin[0]-mesh.bmin[0])/mesh.cs+0.5f);
							 | 
						||
| 
								 | 
							
										const unsigned short oz = (unsigned short)floorf((pmesh->bmin[2]-mesh.bmin[2])/mesh.cs+0.5f);
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										bool isMinX = (ox == 0);
							 | 
						||
| 
								 | 
							
										bool isMinZ = (oz == 0);
							 | 
						||
| 
								 | 
							
										bool isMaxX = ((unsigned short)floorf((mesh.bmax[0] - pmesh->bmax[0]) / mesh.cs + 0.5f)) == 0;
							 | 
						||
| 
								 | 
							
										bool isMaxZ = ((unsigned short)floorf((mesh.bmax[2] - pmesh->bmax[2]) / mesh.cs + 0.5f)) == 0;
							 | 
						||
| 
								 | 
							
										bool isOnBorder = (isMinX || isMinZ || isMaxX || isMaxZ);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < pmesh->nverts; ++j)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											unsigned short* v = &pmesh->verts[j*3];
							 | 
						||
| 
								 | 
							
											vremap[j] = addVertex(v[0]+ox, v[1], v[2]+oz,
							 | 
						||
| 
								 | 
							
																  mesh.verts, firstVert, nextVert, mesh.nverts);
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < pmesh->npolys; ++j)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											unsigned short* tgt = &mesh.polys[mesh.npolys*2*mesh.nvp];
							 | 
						||
| 
								 | 
							
											unsigned short* src = &pmesh->polys[j*2*mesh.nvp];
							 | 
						||
| 
								 | 
							
											mesh.regs[mesh.npolys] = pmesh->regs[j];
							 | 
						||
| 
								 | 
							
											mesh.areas[mesh.npolys] = pmesh->areas[j];
							 | 
						||
| 
								 | 
							
											mesh.flags[mesh.npolys] = pmesh->flags[j];
							 | 
						||
| 
								 | 
							
											mesh.npolys++;
							 | 
						||
| 
								 | 
							
											for (int k = 0; k < mesh.nvp; ++k)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												if (src[k] == RC_MESH_NULL_IDX) break;
							 | 
						||
| 
								 | 
							
												tgt[k] = vremap[src[k]];
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											if (isOnBorder)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												for (int k = mesh.nvp; k < mesh.nvp * 2; ++k)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													if (src[k] & 0x8000 && src[k] != 0xffff)
							 | 
						||
| 
								 | 
							
													{
							 | 
						||
| 
								 | 
							
														unsigned short dir = src[k] & 0xf;
							 | 
						||
| 
								 | 
							
														switch (dir)
							 | 
						||
| 
								 | 
							
														{
							 | 
						||
| 
								 | 
							
															case 0: // Portal x-
							 | 
						||
| 
								 | 
							
																if (isMinX)
							 | 
						||
| 
								 | 
							
																	tgt[k] = src[k];
							 | 
						||
| 
								 | 
							
																break;
							 | 
						||
| 
								 | 
							
															case 1: // Portal z+
							 | 
						||
| 
								 | 
							
																if (isMaxZ)
							 | 
						||
| 
								 | 
							
																	tgt[k] = src[k];
							 | 
						||
| 
								 | 
							
																break;
							 | 
						||
| 
								 | 
							
															case 2: // Portal x+
							 | 
						||
| 
								 | 
							
																if (isMaxX)
							 | 
						||
| 
								 | 
							
																	tgt[k] = src[k];
							 | 
						||
| 
								 | 
							
																break;
							 | 
						||
| 
								 | 
							
															case 3: // Portal z-
							 | 
						||
| 
								 | 
							
																if (isMinZ)
							 | 
						||
| 
								 | 
							
																	tgt[k] = src[k];
							 | 
						||
| 
								 | 
							
																break;
							 | 
						||
| 
								 | 
							
														}
							 | 
						||
| 
								 | 
							
													}
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									// Calculate adjacency.
							 | 
						||
| 
								 | 
							
									if (!buildMeshAdjacency(mesh.polys, mesh.npolys, mesh.nverts, mesh.nvp))
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Adjacency failed.");
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									if (mesh.nverts > 0xffff)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: The resulting mesh has too many vertices %d (max %d). Data can be corrupted.", mesh.nverts, 0xffff);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									if (mesh.npolys > 0xffff)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: The resulting mesh has too many polygons %d (max %d). Data can be corrupted.", mesh.npolys, 0xffff);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return true;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								bool rcCopyPolyMesh(rcContext* ctx, const rcPolyMesh& src, rcPolyMesh& dst)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									rcAssert(ctx);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Destination must be empty.
							 | 
						||
| 
								 | 
							
									rcAssert(dst.verts == 0);
							 | 
						||
| 
								 | 
							
									rcAssert(dst.polys == 0);
							 | 
						||
| 
								 | 
							
									rcAssert(dst.regs == 0);
							 | 
						||
| 
								 | 
							
									rcAssert(dst.areas == 0);
							 | 
						||
| 
								 | 
							
									rcAssert(dst.flags == 0);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									dst.nverts = src.nverts;
							 | 
						||
| 
								 | 
							
									dst.npolys = src.npolys;
							 | 
						||
| 
								 | 
							
									dst.maxpolys = src.npolys;
							 | 
						||
| 
								 | 
							
									dst.nvp = src.nvp;
							 | 
						||
| 
								 | 
							
									rcVcopy(dst.bmin, src.bmin);
							 | 
						||
| 
								 | 
							
									rcVcopy(dst.bmax, src.bmax);
							 | 
						||
| 
								 | 
							
									dst.cs = src.cs;
							 | 
						||
| 
								 | 
							
									dst.ch = src.ch;
							 | 
						||
| 
								 | 
							
									dst.borderSize = src.borderSize;
							 | 
						||
| 
								 | 
							
									dst.maxEdgeError = src.maxEdgeError;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									dst.verts = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.nverts*3, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
									if (!dst.verts)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.verts' (%d).", src.nverts*3);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									memcpy(dst.verts, src.verts, sizeof(unsigned short)*src.nverts*3);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									dst.polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.npolys*2*src.nvp, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
									if (!dst.polys)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.polys' (%d).", src.npolys*2*src.nvp);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									memcpy(dst.polys, src.polys, sizeof(unsigned short)*src.npolys*2*src.nvp);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									dst.regs = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.npolys, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
									if (!dst.regs)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.regs' (%d).", src.npolys);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									memcpy(dst.regs, src.regs, sizeof(unsigned short)*src.npolys);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									dst.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*src.npolys, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
									if (!dst.areas)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.areas' (%d).", src.npolys);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									memcpy(dst.areas, src.areas, sizeof(unsigned char)*src.npolys);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									dst.flags = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.npolys, RC_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
									if (!dst.flags)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.flags' (%d).", src.npolys);
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									memcpy(dst.flags, src.flags, sizeof(unsigned short)*src.npolys);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return true;
							 | 
						||
| 
								 | 
							
								}
							 |