3156 lines
		
	
	
		
			86 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			3156 lines
		
	
	
		
			86 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|  | /*
 | ||
|  |  *  Multi-precision integer library | ||
|  |  * | ||
|  |  *  Copyright The Mbed TLS Contributors | ||
|  |  *  SPDX-License-Identifier: Apache-2.0 | ||
|  |  * | ||
|  |  *  Licensed under the Apache License, Version 2.0 (the "License"); you may | ||
|  |  *  not use this file except in compliance with the License. | ||
|  |  *  You may obtain a copy of the License at | ||
|  |  * | ||
|  |  *  http://www.apache.org/licenses/LICENSE-2.0
 | ||
|  |  * | ||
|  |  *  Unless required by applicable law or agreed to in writing, software | ||
|  |  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT | ||
|  |  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
|  |  *  See the License for the specific language governing permissions and | ||
|  |  *  limitations under the License. | ||
|  |  */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  *  The following sources were referenced in the design of this Multi-precision | ||
|  |  *  Integer library: | ||
|  |  * | ||
|  |  *  [1] Handbook of Applied Cryptography - 1997 | ||
|  |  *      Menezes, van Oorschot and Vanstone | ||
|  |  * | ||
|  |  *  [2] Multi-Precision Math | ||
|  |  *      Tom St Denis | ||
|  |  *      https://github.com/libtom/libtommath/blob/develop/tommath.pdf
 | ||
|  |  * | ||
|  |  *  [3] GNU Multi-Precision Arithmetic Library | ||
|  |  *      https://gmplib.org/manual/index.html
 | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | #include "common.h"
 | ||
|  | 
 | ||
|  | #if defined(MBEDTLS_BIGNUM_C)
 | ||
|  | 
 | ||
|  | #include "mbedtls/bignum.h"
 | ||
|  | #include "mbedtls/bn_mul.h"
 | ||
|  | #include "mbedtls/platform_util.h"
 | ||
|  | #include "mbedtls/error.h"
 | ||
|  | #include "constant_time_internal.h"
 | ||
|  | 
 | ||
|  | #include <limits.h>
 | ||
|  | #include <string.h>
 | ||
|  | 
 | ||
|  | #include "mbedtls/platform.h"
 | ||
|  | 
 | ||
|  | #define MPI_VALIDATE_RET( cond )                                       \
 | ||
|  |     MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA ) | ||
|  | #define MPI_VALIDATE( cond )                                           \
 | ||
|  |     MBEDTLS_INTERNAL_VALIDATE( cond ) | ||
|  | 
 | ||
|  | #define ciL    (sizeof(mbedtls_mpi_uint))         /* chars in limb  */
 | ||
|  | #define biL    (ciL << 3)               /* bits  in limb  */
 | ||
|  | #define biH    (ciL << 2)               /* half limb size */
 | ||
|  | 
 | ||
|  | #define MPI_SIZE_T_MAX  ( (size_t) -1 ) /* SIZE_T_MAX is not standard */
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Convert between bits/chars and number of limbs | ||
|  |  * Divide first in order to avoid potential overflows | ||
|  |  */ | ||
|  | #define BITS_TO_LIMBS(i)  ( (i) / biL + ( (i) % biL != 0 ) )
 | ||
|  | #define CHARS_TO_LIMBS(i) ( (i) / ciL + ( (i) % ciL != 0 ) )
 | ||
|  | 
 | ||
|  | /* Implementation that should never be optimized out by the compiler */ | ||
|  | static void mbedtls_mpi_zeroize( mbedtls_mpi_uint *v, size_t n ) | ||
|  | { | ||
|  |     mbedtls_platform_zeroize( v, ciL * n ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Initialize one MPI | ||
|  |  */ | ||
|  | void mbedtls_mpi_init( mbedtls_mpi *X ) | ||
|  | { | ||
|  |     MPI_VALIDATE( X != NULL ); | ||
|  | 
 | ||
|  |     X->s = 1; | ||
|  |     X->n = 0; | ||
|  |     X->p = NULL; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Unallocate one MPI | ||
|  |  */ | ||
|  | void mbedtls_mpi_free( mbedtls_mpi *X ) | ||
|  | { | ||
|  |     if( X == NULL ) | ||
|  |         return; | ||
|  | 
 | ||
|  |     if( X->p != NULL ) | ||
|  |     { | ||
|  |         mbedtls_mpi_zeroize( X->p, X->n ); | ||
|  |         mbedtls_free( X->p ); | ||
|  |     } | ||
|  | 
 | ||
|  |     X->s = 1; | ||
|  |     X->n = 0; | ||
|  |     X->p = NULL; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Enlarge to the specified number of limbs | ||
|  |  */ | ||
|  | int mbedtls_mpi_grow( mbedtls_mpi *X, size_t nblimbs ) | ||
|  | { | ||
|  |     mbedtls_mpi_uint *p; | ||
|  |     MPI_VALIDATE_RET( X != NULL ); | ||
|  | 
 | ||
|  |     if( nblimbs > MBEDTLS_MPI_MAX_LIMBS ) | ||
|  |         return( MBEDTLS_ERR_MPI_ALLOC_FAILED ); | ||
|  | 
 | ||
|  |     if( X->n < nblimbs ) | ||
|  |     { | ||
|  |         if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( nblimbs, ciL ) ) == NULL ) | ||
|  |             return( MBEDTLS_ERR_MPI_ALLOC_FAILED ); | ||
|  | 
 | ||
|  |         if( X->p != NULL ) | ||
|  |         { | ||
|  |             memcpy( p, X->p, X->n * ciL ); | ||
|  |             mbedtls_mpi_zeroize( X->p, X->n ); | ||
|  |             mbedtls_free( X->p ); | ||
|  |         } | ||
|  | 
 | ||
|  |         X->n = nblimbs; | ||
|  |         X->p = p; | ||
|  |     } | ||
|  | 
 | ||
|  |     return( 0 ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Resize down as much as possible, | ||
|  |  * while keeping at least the specified number of limbs | ||
|  |  */ | ||
|  | int mbedtls_mpi_shrink( mbedtls_mpi *X, size_t nblimbs ) | ||
|  | { | ||
|  |     mbedtls_mpi_uint *p; | ||
|  |     size_t i; | ||
|  |     MPI_VALIDATE_RET( X != NULL ); | ||
|  | 
 | ||
|  |     if( nblimbs > MBEDTLS_MPI_MAX_LIMBS ) | ||
|  |         return( MBEDTLS_ERR_MPI_ALLOC_FAILED ); | ||
|  | 
 | ||
|  |     /* Actually resize up if there are currently fewer than nblimbs limbs. */ | ||
|  |     if( X->n <= nblimbs ) | ||
|  |         return( mbedtls_mpi_grow( X, nblimbs ) ); | ||
|  |     /* After this point, then X->n > nblimbs and in particular X->n > 0. */ | ||
|  | 
 | ||
|  |     for( i = X->n - 1; i > 0; i-- ) | ||
|  |         if( X->p[i] != 0 ) | ||
|  |             break; | ||
|  |     i++; | ||
|  | 
 | ||
|  |     if( i < nblimbs ) | ||
|  |         i = nblimbs; | ||
|  | 
 | ||
|  |     if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( i, ciL ) ) == NULL ) | ||
|  |         return( MBEDTLS_ERR_MPI_ALLOC_FAILED ); | ||
|  | 
 | ||
|  |     if( X->p != NULL ) | ||
|  |     { | ||
|  |         memcpy( p, X->p, i * ciL ); | ||
|  |         mbedtls_mpi_zeroize( X->p, X->n ); | ||
|  |         mbedtls_free( X->p ); | ||
|  |     } | ||
|  | 
 | ||
|  |     X->n = i; | ||
|  |     X->p = p; | ||
|  | 
 | ||
|  |     return( 0 ); | ||
|  | } | ||
|  | 
 | ||
|  | /* Resize X to have exactly n limbs and set it to 0. */ | ||
|  | static int mbedtls_mpi_resize_clear( mbedtls_mpi *X, size_t limbs ) | ||
|  | { | ||
|  |     if( limbs == 0 ) | ||
|  |     { | ||
|  |         mbedtls_mpi_free( X ); | ||
|  |         return( 0 ); | ||
|  |     } | ||
|  |     else if( X->n == limbs ) | ||
|  |     { | ||
|  |         memset( X->p, 0, limbs * ciL ); | ||
|  |         X->s = 1; | ||
|  |         return( 0 ); | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |         mbedtls_mpi_free( X ); | ||
|  |         return( mbedtls_mpi_grow( X, limbs ) ); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Copy the contents of Y into X. | ||
|  |  * | ||
|  |  * This function is not constant-time. Leading zeros in Y may be removed. | ||
|  |  * | ||
|  |  * Ensure that X does not shrink. This is not guaranteed by the public API, | ||
|  |  * but some code in the bignum module relies on this property, for example | ||
|  |  * in mbedtls_mpi_exp_mod(). | ||
|  |  */ | ||
|  | int mbedtls_mpi_copy( mbedtls_mpi *X, const mbedtls_mpi *Y ) | ||
|  | { | ||
|  |     int ret = 0; | ||
|  |     size_t i; | ||
|  |     MPI_VALIDATE_RET( X != NULL ); | ||
|  |     MPI_VALIDATE_RET( Y != NULL ); | ||
|  | 
 | ||
|  |     if( X == Y ) | ||
|  |         return( 0 ); | ||
|  | 
 | ||
|  |     if( Y->n == 0 ) | ||
|  |     { | ||
|  |         if( X->n != 0 ) | ||
|  |         { | ||
|  |             X->s = 1; | ||
|  |             memset( X->p, 0, X->n * ciL ); | ||
|  |         } | ||
|  |         return( 0 ); | ||
|  |     } | ||
|  | 
 | ||
|  |     for( i = Y->n - 1; i > 0; i-- ) | ||
|  |         if( Y->p[i] != 0 ) | ||
|  |             break; | ||
|  |     i++; | ||
|  | 
 | ||
|  |     X->s = Y->s; | ||
|  | 
 | ||
|  |     if( X->n < i ) | ||
|  |     { | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i ) ); | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |         memset( X->p + i, 0, ( X->n - i ) * ciL ); | ||
|  |     } | ||
|  | 
 | ||
|  |     memcpy( X->p, Y->p, i * ciL ); | ||
|  | 
 | ||
|  | cleanup: | ||
|  | 
 | ||
|  |     return( ret ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Swap the contents of X and Y | ||
|  |  */ | ||
|  | void mbedtls_mpi_swap( mbedtls_mpi *X, mbedtls_mpi *Y ) | ||
|  | { | ||
|  |     mbedtls_mpi T; | ||
|  |     MPI_VALIDATE( X != NULL ); | ||
|  |     MPI_VALIDATE( Y != NULL ); | ||
|  | 
 | ||
|  |     memcpy( &T,  X, sizeof( mbedtls_mpi ) ); | ||
|  |     memcpy(  X,  Y, sizeof( mbedtls_mpi ) ); | ||
|  |     memcpy(  Y, &T, sizeof( mbedtls_mpi ) ); | ||
|  | } | ||
|  | 
 | ||
|  | static inline mbedtls_mpi_uint mpi_sint_abs( mbedtls_mpi_sint z ) | ||
|  | { | ||
|  |     if( z >= 0 ) | ||
|  |         return( z ); | ||
|  |     /* Take care to handle the most negative value (-2^(biL-1)) correctly.
 | ||
|  |      * A naive -z would have undefined behavior. | ||
|  |      * Write this in a way that makes popular compilers happy (GCC, Clang, | ||
|  |      * MSVC). */ | ||
|  |     return( (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Set value from integer | ||
|  |  */ | ||
|  | int mbedtls_mpi_lset( mbedtls_mpi *X, mbedtls_mpi_sint z ) | ||
|  | { | ||
|  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | ||
|  |     MPI_VALIDATE_RET( X != NULL ); | ||
|  | 
 | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, 1 ) ); | ||
|  |     memset( X->p, 0, X->n * ciL ); | ||
|  | 
 | ||
|  |     X->p[0] = mpi_sint_abs( z ); | ||
|  |     X->s    = ( z < 0 ) ? -1 : 1; | ||
|  | 
 | ||
|  | cleanup: | ||
|  | 
 | ||
|  |     return( ret ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Get a specific bit | ||
|  |  */ | ||
|  | int mbedtls_mpi_get_bit( const mbedtls_mpi *X, size_t pos ) | ||
|  | { | ||
|  |     MPI_VALIDATE_RET( X != NULL ); | ||
|  | 
 | ||
|  |     if( X->n * biL <= pos ) | ||
|  |         return( 0 ); | ||
|  | 
 | ||
|  |     return( ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01 ); | ||
|  | } | ||
|  | 
 | ||
|  | /* Get a specific byte, without range checks. */ | ||
|  | #define GET_BYTE( X, i )                                \
 | ||
|  |     ( ( ( X )->p[( i ) / ciL] >> ( ( ( i ) % ciL ) * 8 ) ) & 0xff ) | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Set a bit to a specific value of 0 or 1 | ||
|  |  */ | ||
|  | int mbedtls_mpi_set_bit( mbedtls_mpi *X, size_t pos, unsigned char val ) | ||
|  | { | ||
|  |     int ret = 0; | ||
|  |     size_t off = pos / biL; | ||
|  |     size_t idx = pos % biL; | ||
|  |     MPI_VALIDATE_RET( X != NULL ); | ||
|  | 
 | ||
|  |     if( val != 0 && val != 1 ) | ||
|  |         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); | ||
|  | 
 | ||
|  |     if( X->n * biL <= pos ) | ||
|  |     { | ||
|  |         if( val == 0 ) | ||
|  |             return( 0 ); | ||
|  | 
 | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, off + 1 ) ); | ||
|  |     } | ||
|  | 
 | ||
|  |     X->p[off] &= ~( (mbedtls_mpi_uint) 0x01 << idx ); | ||
|  |     X->p[off] |= (mbedtls_mpi_uint) val << idx; | ||
|  | 
 | ||
|  | cleanup: | ||
|  | 
 | ||
|  |     return( ret ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Return the number of less significant zero-bits | ||
|  |  */ | ||
|  | size_t mbedtls_mpi_lsb( const mbedtls_mpi *X ) | ||
|  | { | ||
|  |     size_t i, j, count = 0; | ||
|  |     MBEDTLS_INTERNAL_VALIDATE_RET( X != NULL, 0 ); | ||
|  | 
 | ||
|  |     for( i = 0; i < X->n; i++ ) | ||
|  |         for( j = 0; j < biL; j++, count++ ) | ||
|  |             if( ( ( X->p[i] >> j ) & 1 ) != 0 ) | ||
|  |                 return( count ); | ||
|  | 
 | ||
|  |     return( 0 ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Count leading zero bits in a given integer | ||
|  |  */ | ||
|  | static size_t mbedtls_clz( const mbedtls_mpi_uint x ) | ||
|  | { | ||
|  |     size_t j; | ||
|  |     mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1); | ||
|  | 
 | ||
|  |     for( j = 0; j < biL; j++ ) | ||
|  |     { | ||
|  |         if( x & mask ) break; | ||
|  | 
 | ||
|  |         mask >>= 1; | ||
|  |     } | ||
|  | 
 | ||
|  |     return j; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Return the number of bits | ||
|  |  */ | ||
|  | size_t mbedtls_mpi_bitlen( const mbedtls_mpi *X ) | ||
|  | { | ||
|  |     size_t i, j; | ||
|  | 
 | ||
|  |     if( X->n == 0 ) | ||
|  |         return( 0 ); | ||
|  | 
 | ||
|  |     for( i = X->n - 1; i > 0; i-- ) | ||
|  |         if( X->p[i] != 0 ) | ||
|  |             break; | ||
|  | 
 | ||
|  |     j = biL - mbedtls_clz( X->p[i] ); | ||
|  | 
 | ||
|  |     return( ( i * biL ) + j ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Return the total size in bytes | ||
|  |  */ | ||
|  | size_t mbedtls_mpi_size( const mbedtls_mpi *X ) | ||
|  | { | ||
|  |     return( ( mbedtls_mpi_bitlen( X ) + 7 ) >> 3 ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Convert an ASCII character to digit value | ||
|  |  */ | ||
|  | static int mpi_get_digit( mbedtls_mpi_uint *d, int radix, char c ) | ||
|  | { | ||
|  |     *d = 255; | ||
|  | 
 | ||
|  |     if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30; | ||
|  |     if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37; | ||
|  |     if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57; | ||
|  | 
 | ||
|  |     if( *d >= (mbedtls_mpi_uint) radix ) | ||
|  |         return( MBEDTLS_ERR_MPI_INVALID_CHARACTER ); | ||
|  | 
 | ||
|  |     return( 0 ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Import from an ASCII string | ||
|  |  */ | ||
|  | int mbedtls_mpi_read_string( mbedtls_mpi *X, int radix, const char *s ) | ||
|  | { | ||
|  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | ||
|  |     size_t i, j, slen, n; | ||
|  |     int sign = 1; | ||
|  |     mbedtls_mpi_uint d; | ||
|  |     mbedtls_mpi T; | ||
|  |     MPI_VALIDATE_RET( X != NULL ); | ||
|  |     MPI_VALIDATE_RET( s != NULL ); | ||
|  | 
 | ||
|  |     if( radix < 2 || radix > 16 ) | ||
|  |         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); | ||
|  | 
 | ||
|  |     mbedtls_mpi_init( &T ); | ||
|  | 
 | ||
|  |     if( s[0] == 0 ) | ||
|  |     { | ||
|  |         mbedtls_mpi_free( X ); | ||
|  |         return( 0 ); | ||
|  |     } | ||
|  | 
 | ||
|  |     if( s[0] == '-' ) | ||
|  |     { | ||
|  |         ++s; | ||
|  |         sign = -1; | ||
|  |     } | ||
|  | 
 | ||
|  |     slen = strlen( s ); | ||
|  | 
 | ||
|  |     if( radix == 16 ) | ||
|  |     { | ||
|  |         if( slen > MPI_SIZE_T_MAX >> 2 ) | ||
|  |             return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); | ||
|  | 
 | ||
|  |         n = BITS_TO_LIMBS( slen << 2 ); | ||
|  | 
 | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n ) ); | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) ); | ||
|  | 
 | ||
|  |         for( i = slen, j = 0; i > 0; i--, j++ ) | ||
|  |         { | ||
|  |             MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) ); | ||
|  |             X->p[j / ( 2 * ciL )] |= d << ( ( j % ( 2 * ciL ) ) << 2 ); | ||
|  |         } | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) ); | ||
|  | 
 | ||
|  |         for( i = 0; i < slen; i++ ) | ||
|  |         { | ||
|  |             MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i] ) ); | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T, X, radix ) ); | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, &T, d ) ); | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     if( sign < 0 && mbedtls_mpi_bitlen( X ) != 0 ) | ||
|  |         X->s = -1; | ||
|  | 
 | ||
|  | cleanup: | ||
|  | 
 | ||
|  |     mbedtls_mpi_free( &T ); | ||
|  | 
 | ||
|  |     return( ret ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Helper to write the digits high-order first. | ||
|  |  */ | ||
|  | static int mpi_write_hlp( mbedtls_mpi *X, int radix, | ||
|  |                           char **p, const size_t buflen ) | ||
|  | { | ||
|  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | ||
|  |     mbedtls_mpi_uint r; | ||
|  |     size_t length = 0; | ||
|  |     char *p_end = *p + buflen; | ||
|  | 
 | ||
|  |     do | ||
|  |     { | ||
|  |         if( length >= buflen ) | ||
|  |         { | ||
|  |             return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL ); | ||
|  |         } | ||
|  | 
 | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, radix ) ); | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_div_int( X, NULL, X, radix ) ); | ||
|  |         /*
 | ||
|  |          * Write the residue in the current position, as an ASCII character. | ||
|  |          */ | ||
|  |         if( r < 0xA ) | ||
|  |             *(--p_end) = (char)( '0' + r ); | ||
|  |         else | ||
|  |             *(--p_end) = (char)( 'A' + ( r - 0xA ) ); | ||
|  | 
 | ||
|  |         length++; | ||
|  |     } while( mbedtls_mpi_cmp_int( X, 0 ) != 0 ); | ||
|  | 
 | ||
|  |     memmove( *p, p_end, length ); | ||
|  |     *p += length; | ||
|  | 
 | ||
|  | cleanup: | ||
|  | 
 | ||
|  |     return( ret ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Export into an ASCII string | ||
|  |  */ | ||
|  | int mbedtls_mpi_write_string( const mbedtls_mpi *X, int radix, | ||
|  |                               char *buf, size_t buflen, size_t *olen ) | ||
|  | { | ||
|  |     int ret = 0; | ||
|  |     size_t n; | ||
|  |     char *p; | ||
|  |     mbedtls_mpi T; | ||
|  |     MPI_VALIDATE_RET( X    != NULL ); | ||
|  |     MPI_VALIDATE_RET( olen != NULL ); | ||
|  |     MPI_VALIDATE_RET( buflen == 0 || buf != NULL ); | ||
|  | 
 | ||
|  |     if( radix < 2 || radix > 16 ) | ||
|  |         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); | ||
|  | 
 | ||
|  |     n = mbedtls_mpi_bitlen( X ); /* Number of bits necessary to present `n`. */ | ||
|  |     if( radix >=  4 ) n >>= 1;   /* Number of 4-adic digits necessary to present
 | ||
|  |                                   * `n`. If radix > 4, this might be a strict | ||
|  |                                   * overapproximation of the number of | ||
|  |                                   * radix-adic digits needed to present `n`. */ | ||
|  |     if( radix >= 16 ) n >>= 1;   /* Number of hexadecimal digits necessary to
 | ||
|  |                                   * present `n`. */ | ||
|  | 
 | ||
|  |     n += 1; /* Terminating null byte */ | ||
|  |     n += 1; /* Compensate for the divisions above, which round down `n`
 | ||
|  |              * in case it's not even. */ | ||
|  |     n += 1; /* Potential '-'-sign. */ | ||
|  |     n += ( n & 1 ); /* Make n even to have enough space for hexadecimal writing,
 | ||
|  |                      * which always uses an even number of hex-digits. */ | ||
|  | 
 | ||
|  |     if( buflen < n ) | ||
|  |     { | ||
|  |         *olen = n; | ||
|  |         return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL ); | ||
|  |     } | ||
|  | 
 | ||
|  |     p = buf; | ||
|  |     mbedtls_mpi_init( &T ); | ||
|  | 
 | ||
|  |     if( X->s == -1 ) | ||
|  |     { | ||
|  |         *p++ = '-'; | ||
|  |         buflen--; | ||
|  |     } | ||
|  | 
 | ||
|  |     if( radix == 16 ) | ||
|  |     { | ||
|  |         int c; | ||
|  |         size_t i, j, k; | ||
|  | 
 | ||
|  |         for( i = X->n, k = 0; i > 0; i-- ) | ||
|  |         { | ||
|  |             for( j = ciL; j > 0; j-- ) | ||
|  |             { | ||
|  |                 c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF; | ||
|  | 
 | ||
|  |                 if( c == 0 && k == 0 && ( i + j ) != 2 ) | ||
|  |                     continue; | ||
|  | 
 | ||
|  |                 *(p++) = "0123456789ABCDEF" [c / 16]; | ||
|  |                 *(p++) = "0123456789ABCDEF" [c % 16]; | ||
|  |                 k = 1; | ||
|  |             } | ||
|  |         } | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T, X ) ); | ||
|  | 
 | ||
|  |         if( T.s == -1 ) | ||
|  |             T.s = 1; | ||
|  | 
 | ||
|  |         MBEDTLS_MPI_CHK( mpi_write_hlp( &T, radix, &p, buflen ) ); | ||
|  |     } | ||
|  | 
 | ||
|  |     *p++ = '\0'; | ||
|  |     *olen = p - buf; | ||
|  | 
 | ||
|  | cleanup: | ||
|  | 
 | ||
|  |     mbedtls_mpi_free( &T ); | ||
|  | 
 | ||
|  |     return( ret ); | ||
|  | } | ||
|  | 
 | ||
|  | #if defined(MBEDTLS_FS_IO)
 | ||
|  | /*
 | ||
|  |  * Read X from an opened file | ||
|  |  */ | ||
|  | int mbedtls_mpi_read_file( mbedtls_mpi *X, int radix, FILE *fin ) | ||
|  | { | ||
|  |     mbedtls_mpi_uint d; | ||
|  |     size_t slen; | ||
|  |     char *p; | ||
|  |     /*
 | ||
|  |      * Buffer should have space for (short) label and decimal formatted MPI, | ||
|  |      * newline characters and '\0' | ||
|  |      */ | ||
|  |     char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ]; | ||
|  | 
 | ||
|  |     MPI_VALIDATE_RET( X   != NULL ); | ||
|  |     MPI_VALIDATE_RET( fin != NULL ); | ||
|  | 
 | ||
|  |     if( radix < 2 || radix > 16 ) | ||
|  |         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); | ||
|  | 
 | ||
|  |     memset( s, 0, sizeof( s ) ); | ||
|  |     if( fgets( s, sizeof( s ) - 1, fin ) == NULL ) | ||
|  |         return( MBEDTLS_ERR_MPI_FILE_IO_ERROR ); | ||
|  | 
 | ||
|  |     slen = strlen( s ); | ||
|  |     if( slen == sizeof( s ) - 2 ) | ||
|  |         return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL ); | ||
|  | 
 | ||
|  |     if( slen > 0 && s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; } | ||
|  |     if( slen > 0 && s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; } | ||
|  | 
 | ||
|  |     p = s + slen; | ||
|  |     while( p-- > s ) | ||
|  |         if( mpi_get_digit( &d, radix, *p ) != 0 ) | ||
|  |             break; | ||
|  | 
 | ||
|  |     return( mbedtls_mpi_read_string( X, radix, p + 1 ) ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Write X into an opened file (or stdout if fout == NULL) | ||
|  |  */ | ||
|  | int mbedtls_mpi_write_file( const char *p, const mbedtls_mpi *X, int radix, FILE *fout ) | ||
|  | { | ||
|  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | ||
|  |     size_t n, slen, plen; | ||
|  |     /*
 | ||
|  |      * Buffer should have space for (short) label and decimal formatted MPI, | ||
|  |      * newline characters and '\0' | ||
|  |      */ | ||
|  |     char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ]; | ||
|  |     MPI_VALIDATE_RET( X != NULL ); | ||
|  | 
 | ||
|  |     if( radix < 2 || radix > 16 ) | ||
|  |         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); | ||
|  | 
 | ||
|  |     memset( s, 0, sizeof( s ) ); | ||
|  | 
 | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_write_string( X, radix, s, sizeof( s ) - 2, &n ) ); | ||
|  | 
 | ||
|  |     if( p == NULL ) p = ""; | ||
|  | 
 | ||
|  |     plen = strlen( p ); | ||
|  |     slen = strlen( s ); | ||
|  |     s[slen++] = '\r'; | ||
|  |     s[slen++] = '\n'; | ||
|  | 
 | ||
|  |     if( fout != NULL ) | ||
|  |     { | ||
|  |         if( fwrite( p, 1, plen, fout ) != plen || | ||
|  |             fwrite( s, 1, slen, fout ) != slen ) | ||
|  |             return( MBEDTLS_ERR_MPI_FILE_IO_ERROR ); | ||
|  |     } | ||
|  |     else | ||
|  |         mbedtls_printf( "%s%s", p, s ); | ||
|  | 
 | ||
|  | cleanup: | ||
|  | 
 | ||
|  |     return( ret ); | ||
|  | } | ||
|  | #endif /* MBEDTLS_FS_IO */
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint
 | ||
|  |  * into the storage form used by mbedtls_mpi. */ | ||
|  | 
 | ||
|  | static mbedtls_mpi_uint mpi_uint_bigendian_to_host_c( mbedtls_mpi_uint x ) | ||
|  | { | ||
|  |     uint8_t i; | ||
|  |     unsigned char *x_ptr; | ||
|  |     mbedtls_mpi_uint tmp = 0; | ||
|  | 
 | ||
|  |     for( i = 0, x_ptr = (unsigned char*) &x; i < ciL; i++, x_ptr++ ) | ||
|  |     { | ||
|  |         tmp <<= CHAR_BIT; | ||
|  |         tmp |= (mbedtls_mpi_uint) *x_ptr; | ||
|  |     } | ||
|  | 
 | ||
|  |     return( tmp ); | ||
|  | } | ||
|  | 
 | ||
|  | static mbedtls_mpi_uint mpi_uint_bigendian_to_host( mbedtls_mpi_uint x ) | ||
|  | { | ||
|  | #if defined(__BYTE_ORDER__)
 | ||
|  | 
 | ||
|  | /* Nothing to do on bigendian systems. */ | ||
|  | #if ( __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ )
 | ||
|  |     return( x ); | ||
|  | #endif /* __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ */
 | ||
|  | 
 | ||
|  | #if ( __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ )
 | ||
|  | 
 | ||
|  | /* For GCC and Clang, have builtins for byte swapping. */ | ||
|  | #if defined(__GNUC__) && defined(__GNUC_PREREQ)
 | ||
|  | #if __GNUC_PREREQ(4,3)
 | ||
|  | #define have_bswap
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if defined(__clang__) && defined(__has_builtin)
 | ||
|  | #if __has_builtin(__builtin_bswap32)  &&                 \
 | ||
|  |     __has_builtin(__builtin_bswap64) | ||
|  | #define have_bswap
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if defined(have_bswap)
 | ||
|  |     /* The compiler is hopefully able to statically evaluate this! */ | ||
|  |     switch( sizeof(mbedtls_mpi_uint) ) | ||
|  |     { | ||
|  |         case 4: | ||
|  |             return( __builtin_bswap32(x) ); | ||
|  |         case 8: | ||
|  |             return( __builtin_bswap64(x) ); | ||
|  |     } | ||
|  | #endif
 | ||
|  | #endif /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ */
 | ||
|  | #endif /* __BYTE_ORDER__ */
 | ||
|  | 
 | ||
|  |     /* Fall back to C-based reordering if we don't know the byte order
 | ||
|  |      * or we couldn't use a compiler-specific builtin. */ | ||
|  |     return( mpi_uint_bigendian_to_host_c( x ) ); | ||
|  | } | ||
|  | 
 | ||
|  | static void mpi_bigendian_to_host( mbedtls_mpi_uint * const p, size_t limbs ) | ||
|  | { | ||
|  |     mbedtls_mpi_uint *cur_limb_left; | ||
|  |     mbedtls_mpi_uint *cur_limb_right; | ||
|  |     if( limbs == 0 ) | ||
|  |         return; | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * Traverse limbs and | ||
|  |      * - adapt byte-order in each limb | ||
|  |      * - swap the limbs themselves. | ||
|  |      * For that, simultaneously traverse the limbs from left to right | ||
|  |      * and from right to left, as long as the left index is not bigger | ||
|  |      * than the right index (it's not a problem if limbs is odd and the | ||
|  |      * indices coincide in the last iteration). | ||
|  |      */ | ||
|  |     for( cur_limb_left = p, cur_limb_right = p + ( limbs - 1 ); | ||
|  |          cur_limb_left <= cur_limb_right; | ||
|  |          cur_limb_left++, cur_limb_right-- ) | ||
|  |     { | ||
|  |         mbedtls_mpi_uint tmp; | ||
|  |         /* Note that if cur_limb_left == cur_limb_right,
 | ||
|  |          * this code effectively swaps the bytes only once. */ | ||
|  |         tmp             = mpi_uint_bigendian_to_host( *cur_limb_left  ); | ||
|  |         *cur_limb_left  = mpi_uint_bigendian_to_host( *cur_limb_right ); | ||
|  |         *cur_limb_right = tmp; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Import X from unsigned binary data, little endian | ||
|  |  */ | ||
|  | int mbedtls_mpi_read_binary_le( mbedtls_mpi *X, | ||
|  |                                 const unsigned char *buf, size_t buflen ) | ||
|  | { | ||
|  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | ||
|  |     size_t i; | ||
|  |     size_t const limbs = CHARS_TO_LIMBS( buflen ); | ||
|  | 
 | ||
|  |     /* Ensure that target MPI has exactly the necessary number of limbs */ | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) ); | ||
|  | 
 | ||
|  |     for( i = 0; i < buflen; i++ ) | ||
|  |         X->p[i / ciL] |= ((mbedtls_mpi_uint) buf[i]) << ((i % ciL) << 3); | ||
|  | 
 | ||
|  | cleanup: | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * This function is also used to import keys. However, wiping the buffers | ||
|  |      * upon failure is not necessary because failure only can happen before any | ||
|  |      * input is copied. | ||
|  |      */ | ||
|  |     return( ret ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Import X from unsigned binary data, big endian | ||
|  |  */ | ||
|  | int mbedtls_mpi_read_binary( mbedtls_mpi *X, const unsigned char *buf, size_t buflen ) | ||
|  | { | ||
|  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | ||
|  |     size_t const limbs    = CHARS_TO_LIMBS( buflen ); | ||
|  |     size_t const overhead = ( limbs * ciL ) - buflen; | ||
|  |     unsigned char *Xp; | ||
|  | 
 | ||
|  |     MPI_VALIDATE_RET( X != NULL ); | ||
|  |     MPI_VALIDATE_RET( buflen == 0 || buf != NULL ); | ||
|  | 
 | ||
|  |     /* Ensure that target MPI has exactly the necessary number of limbs */ | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) ); | ||
|  | 
 | ||
|  |     /* Avoid calling `memcpy` with NULL source or destination argument,
 | ||
|  |      * even if buflen is 0. */ | ||
|  |     if( buflen != 0 ) | ||
|  |     { | ||
|  |         Xp = (unsigned char*) X->p; | ||
|  |         memcpy( Xp + overhead, buf, buflen ); | ||
|  | 
 | ||
|  |         mpi_bigendian_to_host( X->p, limbs ); | ||
|  |     } | ||
|  | 
 | ||
|  | cleanup: | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * This function is also used to import keys. However, wiping the buffers | ||
|  |      * upon failure is not necessary because failure only can happen before any | ||
|  |      * input is copied. | ||
|  |      */ | ||
|  |     return( ret ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Export X into unsigned binary data, little endian | ||
|  |  */ | ||
|  | int mbedtls_mpi_write_binary_le( const mbedtls_mpi *X, | ||
|  |                                  unsigned char *buf, size_t buflen ) | ||
|  | { | ||
|  |     size_t stored_bytes = X->n * ciL; | ||
|  |     size_t bytes_to_copy; | ||
|  |     size_t i; | ||
|  | 
 | ||
|  |     if( stored_bytes < buflen ) | ||
|  |     { | ||
|  |         bytes_to_copy = stored_bytes; | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |         bytes_to_copy = buflen; | ||
|  | 
 | ||
|  |         /* The output buffer is smaller than the allocated size of X.
 | ||
|  |          * However X may fit if its leading bytes are zero. */ | ||
|  |         for( i = bytes_to_copy; i < stored_bytes; i++ ) | ||
|  |         { | ||
|  |             if( GET_BYTE( X, i ) != 0 ) | ||
|  |                 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL ); | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     for( i = 0; i < bytes_to_copy; i++ ) | ||
|  |         buf[i] = GET_BYTE( X, i ); | ||
|  | 
 | ||
|  |     if( stored_bytes < buflen ) | ||
|  |     { | ||
|  |         /* Write trailing 0 bytes */ | ||
|  |         memset( buf + stored_bytes, 0, buflen - stored_bytes ); | ||
|  |     } | ||
|  | 
 | ||
|  |     return( 0 ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Export X into unsigned binary data, big endian | ||
|  |  */ | ||
|  | int mbedtls_mpi_write_binary( const mbedtls_mpi *X, | ||
|  |                               unsigned char *buf, size_t buflen ) | ||
|  | { | ||
|  |     size_t stored_bytes; | ||
|  |     size_t bytes_to_copy; | ||
|  |     unsigned char *p; | ||
|  |     size_t i; | ||
|  | 
 | ||
|  |     MPI_VALIDATE_RET( X != NULL ); | ||
|  |     MPI_VALIDATE_RET( buflen == 0 || buf != NULL ); | ||
|  | 
 | ||
|  |     stored_bytes = X->n * ciL; | ||
|  | 
 | ||
|  |     if( stored_bytes < buflen ) | ||
|  |     { | ||
|  |         /* There is enough space in the output buffer. Write initial
 | ||
|  |          * null bytes and record the position at which to start | ||
|  |          * writing the significant bytes. In this case, the execution | ||
|  |          * trace of this function does not depend on the value of the | ||
|  |          * number. */ | ||
|  |         bytes_to_copy = stored_bytes; | ||
|  |         p = buf + buflen - stored_bytes; | ||
|  |         memset( buf, 0, buflen - stored_bytes ); | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |         /* The output buffer is smaller than the allocated size of X.
 | ||
|  |          * However X may fit if its leading bytes are zero. */ | ||
|  |         bytes_to_copy = buflen; | ||
|  |         p = buf; | ||
|  |         for( i = bytes_to_copy; i < stored_bytes; i++ ) | ||
|  |         { | ||
|  |             if( GET_BYTE( X, i ) != 0 ) | ||
|  |                 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL ); | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     for( i = 0; i < bytes_to_copy; i++ ) | ||
|  |         p[bytes_to_copy - i - 1] = GET_BYTE( X, i ); | ||
|  | 
 | ||
|  |     return( 0 ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Left-shift: X <<= count | ||
|  |  */ | ||
|  | int mbedtls_mpi_shift_l( mbedtls_mpi *X, size_t count ) | ||
|  | { | ||
|  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | ||
|  |     size_t i, v0, t1; | ||
|  |     mbedtls_mpi_uint r0 = 0, r1; | ||
|  |     MPI_VALIDATE_RET( X != NULL ); | ||
|  | 
 | ||
|  |     v0 = count / (biL    ); | ||
|  |     t1 = count & (biL - 1); | ||
|  | 
 | ||
|  |     i = mbedtls_mpi_bitlen( X ) + count; | ||
|  | 
 | ||
|  |     if( X->n * biL < i ) | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, BITS_TO_LIMBS( i ) ) ); | ||
|  | 
 | ||
|  |     ret = 0; | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * shift by count / limb_size | ||
|  |      */ | ||
|  |     if( v0 > 0 ) | ||
|  |     { | ||
|  |         for( i = X->n; i > v0; i-- ) | ||
|  |             X->p[i - 1] = X->p[i - v0 - 1]; | ||
|  | 
 | ||
|  |         for( ; i > 0; i-- ) | ||
|  |             X->p[i - 1] = 0; | ||
|  |     } | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * shift by count % limb_size | ||
|  |      */ | ||
|  |     if( t1 > 0 ) | ||
|  |     { | ||
|  |         for( i = v0; i < X->n; i++ ) | ||
|  |         { | ||
|  |             r1 = X->p[i] >> (biL - t1); | ||
|  |             X->p[i] <<= t1; | ||
|  |             X->p[i] |= r0; | ||
|  |             r0 = r1; | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  | cleanup: | ||
|  | 
 | ||
|  |     return( ret ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Right-shift: X >>= count | ||
|  |  */ | ||
|  | int mbedtls_mpi_shift_r( mbedtls_mpi *X, size_t count ) | ||
|  | { | ||
|  |     size_t i, v0, v1; | ||
|  |     mbedtls_mpi_uint r0 = 0, r1; | ||
|  |     MPI_VALIDATE_RET( X != NULL ); | ||
|  | 
 | ||
|  |     v0 = count /  biL; | ||
|  |     v1 = count & (biL - 1); | ||
|  | 
 | ||
|  |     if( v0 > X->n || ( v0 == X->n && v1 > 0 ) ) | ||
|  |         return mbedtls_mpi_lset( X, 0 ); | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * shift by count / limb_size | ||
|  |      */ | ||
|  |     if( v0 > 0 ) | ||
|  |     { | ||
|  |         for( i = 0; i < X->n - v0; i++ ) | ||
|  |             X->p[i] = X->p[i + v0]; | ||
|  | 
 | ||
|  |         for( ; i < X->n; i++ ) | ||
|  |             X->p[i] = 0; | ||
|  |     } | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * shift by count % limb_size | ||
|  |      */ | ||
|  |     if( v1 > 0 ) | ||
|  |     { | ||
|  |         for( i = X->n; i > 0; i-- ) | ||
|  |         { | ||
|  |             r1 = X->p[i - 1] << (biL - v1); | ||
|  |             X->p[i - 1] >>= v1; | ||
|  |             X->p[i - 1] |= r0; | ||
|  |             r0 = r1; | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     return( 0 ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Compare unsigned values | ||
|  |  */ | ||
|  | int mbedtls_mpi_cmp_abs( const mbedtls_mpi *X, const mbedtls_mpi *Y ) | ||
|  | { | ||
|  |     size_t i, j; | ||
|  |     MPI_VALIDATE_RET( X != NULL ); | ||
|  |     MPI_VALIDATE_RET( Y != NULL ); | ||
|  | 
 | ||
|  |     for( i = X->n; i > 0; i-- ) | ||
|  |         if( X->p[i - 1] != 0 ) | ||
|  |             break; | ||
|  | 
 | ||
|  |     for( j = Y->n; j > 0; j-- ) | ||
|  |         if( Y->p[j - 1] != 0 ) | ||
|  |             break; | ||
|  | 
 | ||
|  |     if( i == 0 && j == 0 ) | ||
|  |         return( 0 ); | ||
|  | 
 | ||
|  |     if( i > j ) return(  1 ); | ||
|  |     if( j > i ) return( -1 ); | ||
|  | 
 | ||
|  |     for( ; i > 0; i-- ) | ||
|  |     { | ||
|  |         if( X->p[i - 1] > Y->p[i - 1] ) return(  1 ); | ||
|  |         if( X->p[i - 1] < Y->p[i - 1] ) return( -1 ); | ||
|  |     } | ||
|  | 
 | ||
|  |     return( 0 ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Compare signed values | ||
|  |  */ | ||
|  | int mbedtls_mpi_cmp_mpi( const mbedtls_mpi *X, const mbedtls_mpi *Y ) | ||
|  | { | ||
|  |     size_t i, j; | ||
|  |     MPI_VALIDATE_RET( X != NULL ); | ||
|  |     MPI_VALIDATE_RET( Y != NULL ); | ||
|  | 
 | ||
|  |     for( i = X->n; i > 0; i-- ) | ||
|  |         if( X->p[i - 1] != 0 ) | ||
|  |             break; | ||
|  | 
 | ||
|  |     for( j = Y->n; j > 0; j-- ) | ||
|  |         if( Y->p[j - 1] != 0 ) | ||
|  |             break; | ||
|  | 
 | ||
|  |     if( i == 0 && j == 0 ) | ||
|  |         return( 0 ); | ||
|  | 
 | ||
|  |     if( i > j ) return(  X->s ); | ||
|  |     if( j > i ) return( -Y->s ); | ||
|  | 
 | ||
|  |     if( X->s > 0 && Y->s < 0 ) return(  1 ); | ||
|  |     if( Y->s > 0 && X->s < 0 ) return( -1 ); | ||
|  | 
 | ||
|  |     for( ; i > 0; i-- ) | ||
|  |     { | ||
|  |         if( X->p[i - 1] > Y->p[i - 1] ) return(  X->s ); | ||
|  |         if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s ); | ||
|  |     } | ||
|  | 
 | ||
|  |     return( 0 ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Compare signed values | ||
|  |  */ | ||
|  | int mbedtls_mpi_cmp_int( const mbedtls_mpi *X, mbedtls_mpi_sint z ) | ||
|  | { | ||
|  |     mbedtls_mpi Y; | ||
|  |     mbedtls_mpi_uint p[1]; | ||
|  |     MPI_VALIDATE_RET( X != NULL ); | ||
|  | 
 | ||
|  |     *p  = mpi_sint_abs( z ); | ||
|  |     Y.s = ( z < 0 ) ? -1 : 1; | ||
|  |     Y.n = 1; | ||
|  |     Y.p = p; | ||
|  | 
 | ||
|  |     return( mbedtls_mpi_cmp_mpi( X, &Y ) ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Unsigned addition: X = |A| + |B|  (HAC 14.7) | ||
|  |  */ | ||
|  | int mbedtls_mpi_add_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B ) | ||
|  | { | ||
|  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | ||
|  |     size_t i, j; | ||
|  |     mbedtls_mpi_uint *o, *p, c, tmp; | ||
|  |     MPI_VALIDATE_RET( X != NULL ); | ||
|  |     MPI_VALIDATE_RET( A != NULL ); | ||
|  |     MPI_VALIDATE_RET( B != NULL ); | ||
|  | 
 | ||
|  |     if( X == B ) | ||
|  |     { | ||
|  |         const mbedtls_mpi *T = A; A = X; B = T; | ||
|  |     } | ||
|  | 
 | ||
|  |     if( X != A ) | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) ); | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * X should always be positive as a result of unsigned additions. | ||
|  |      */ | ||
|  |     X->s = 1; | ||
|  | 
 | ||
|  |     for( j = B->n; j > 0; j-- ) | ||
|  |         if( B->p[j - 1] != 0 ) | ||
|  |             break; | ||
|  | 
 | ||
|  |     /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0
 | ||
|  |      * and B is 0 (of any size). */ | ||
|  |     if( j == 0 ) | ||
|  |         return( 0 ); | ||
|  | 
 | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) ); | ||
|  | 
 | ||
|  |     o = B->p; p = X->p; c = 0; | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * tmp is used because it might happen that p == o | ||
|  |      */ | ||
|  |     for( i = 0; i < j; i++, o++, p++ ) | ||
|  |     { | ||
|  |         tmp= *o; | ||
|  |         *p +=  c; c  = ( *p <  c ); | ||
|  |         *p += tmp; c += ( *p < tmp ); | ||
|  |     } | ||
|  | 
 | ||
|  |     while( c != 0 ) | ||
|  |     { | ||
|  |         if( i >= X->n ) | ||
|  |         { | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + 1 ) ); | ||
|  |             p = X->p + i; | ||
|  |         } | ||
|  | 
 | ||
|  |         *p += c; c = ( *p < c ); i++; p++; | ||
|  |     } | ||
|  | 
 | ||
|  | cleanup: | ||
|  | 
 | ||
|  |     return( ret ); | ||
|  | } | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * Helper for mbedtls_mpi subtraction. | ||
|  |  * | ||
|  |  * Calculate l - r where l and r have the same size. | ||
|  |  * This function operates modulo (2^ciL)^n and returns the carry | ||
|  |  * (1 if there was a wraparound, i.e. if `l < r`, and 0 otherwise). | ||
|  |  * | ||
|  |  * d may be aliased to l or r. | ||
|  |  * | ||
|  |  * \param n             Number of limbs of \p d, \p l and \p r. | ||
|  |  * \param[out] d        The result of the subtraction. | ||
|  |  * \param[in] l         The left operand. | ||
|  |  * \param[in] r         The right operand. | ||
|  |  * | ||
|  |  * \return              1 if `l < r`. | ||
|  |  *                      0 if `l >= r`. | ||
|  |  */ | ||
|  | static mbedtls_mpi_uint mpi_sub_hlp( size_t n, | ||
|  |                                      mbedtls_mpi_uint *d, | ||
|  |                                      const mbedtls_mpi_uint *l, | ||
|  |                                      const mbedtls_mpi_uint *r ) | ||
|  | { | ||
|  |     size_t i; | ||
|  |     mbedtls_mpi_uint c = 0, t, z; | ||
|  | 
 | ||
|  |     for( i = 0; i < n; i++ ) | ||
|  |     { | ||
|  |         z = ( l[i] <  c );    t = l[i] - c; | ||
|  |         c = ( t < r[i] ) + z; d[i] = t - r[i]; | ||
|  |     } | ||
|  | 
 | ||
|  |     return( c ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Unsigned subtraction: X = |A| - |B|  (HAC 14.9, 14.10) | ||
|  |  */ | ||
|  | int mbedtls_mpi_sub_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B ) | ||
|  | { | ||
|  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | ||
|  |     size_t n; | ||
|  |     mbedtls_mpi_uint carry; | ||
|  |     MPI_VALIDATE_RET( X != NULL ); | ||
|  |     MPI_VALIDATE_RET( A != NULL ); | ||
|  |     MPI_VALIDATE_RET( B != NULL ); | ||
|  | 
 | ||
|  |     for( n = B->n; n > 0; n-- ) | ||
|  |         if( B->p[n - 1] != 0 ) | ||
|  |             break; | ||
|  |     if( n > A->n ) | ||
|  |     { | ||
|  |         /* B >= (2^ciL)^n > A */ | ||
|  |         ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE; | ||
|  |         goto cleanup; | ||
|  |     } | ||
|  | 
 | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, A->n ) ); | ||
|  | 
 | ||
|  |     /* Set the high limbs of X to match A. Don't touch the lower limbs
 | ||
|  |      * because X might be aliased to B, and we must not overwrite the | ||
|  |      * significant digits of B. */ | ||
|  |     if( A->n > n ) | ||
|  |         memcpy( X->p + n, A->p + n, ( A->n - n ) * ciL ); | ||
|  |     if( X->n > A->n ) | ||
|  |         memset( X->p + A->n, 0, ( X->n - A->n ) * ciL ); | ||
|  | 
 | ||
|  |     carry = mpi_sub_hlp( n, X->p, A->p, B->p ); | ||
|  |     if( carry != 0 ) | ||
|  |     { | ||
|  |         /* Propagate the carry to the first nonzero limb of X. */ | ||
|  |         for( ; n < X->n && X->p[n] == 0; n++ ) | ||
|  |             --X->p[n]; | ||
|  |         /* If we ran out of space for the carry, it means that the result
 | ||
|  |          * is negative. */ | ||
|  |         if( n == X->n ) | ||
|  |         { | ||
|  |             ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE; | ||
|  |             goto cleanup; | ||
|  |         } | ||
|  |         --X->p[n]; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* X should always be positive as a result of unsigned subtractions. */ | ||
|  |     X->s = 1; | ||
|  | 
 | ||
|  | cleanup: | ||
|  |     return( ret ); | ||
|  | } | ||
|  | 
 | ||
|  | /* Common function for signed addition and subtraction.
 | ||
|  |  * Calculate A + B * flip_B where flip_B is 1 or -1. | ||
|  |  */ | ||
|  | static int add_sub_mpi( mbedtls_mpi *X, | ||
|  |                         const mbedtls_mpi *A, const mbedtls_mpi *B, | ||
|  |                         int flip_B ) | ||
|  | { | ||
|  |     int ret, s; | ||
|  |     MPI_VALIDATE_RET( X != NULL ); | ||
|  |     MPI_VALIDATE_RET( A != NULL ); | ||
|  |     MPI_VALIDATE_RET( B != NULL ); | ||
|  | 
 | ||
|  |     s = A->s; | ||
|  |     if( A->s * B->s * flip_B < 0 ) | ||
|  |     { | ||
|  |         int cmp = mbedtls_mpi_cmp_abs( A, B ); | ||
|  |         if( cmp >= 0 ) | ||
|  |         { | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) ); | ||
|  |             /* If |A| = |B|, the result is 0 and we must set the sign bit
 | ||
|  |              * to +1 regardless of which of A or B was negative. Otherwise, | ||
|  |              * since |A| > |B|, the sign is the sign of A. */ | ||
|  |             X->s = cmp == 0 ? 1 : s; | ||
|  |         } | ||
|  |         else | ||
|  |         { | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) ); | ||
|  |             /* Since |A| < |B|, the sign is the opposite of A. */ | ||
|  |             X->s = -s; | ||
|  |         } | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) ); | ||
|  |         X->s = s; | ||
|  |     } | ||
|  | 
 | ||
|  | cleanup: | ||
|  | 
 | ||
|  |     return( ret ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Signed addition: X = A + B | ||
|  |  */ | ||
|  | int mbedtls_mpi_add_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B ) | ||
|  | { | ||
|  |     return( add_sub_mpi( X, A, B, 1 ) ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Signed subtraction: X = A - B | ||
|  |  */ | ||
|  | int mbedtls_mpi_sub_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B ) | ||
|  | { | ||
|  |     return( add_sub_mpi( X, A, B, -1 ) ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Signed addition: X = A + b | ||
|  |  */ | ||
|  | int mbedtls_mpi_add_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b ) | ||
|  | { | ||
|  |     mbedtls_mpi B; | ||
|  |     mbedtls_mpi_uint p[1]; | ||
|  |     MPI_VALIDATE_RET( X != NULL ); | ||
|  |     MPI_VALIDATE_RET( A != NULL ); | ||
|  | 
 | ||
|  |     p[0] = mpi_sint_abs( b ); | ||
|  |     B.s = ( b < 0 ) ? -1 : 1; | ||
|  |     B.n = 1; | ||
|  |     B.p = p; | ||
|  | 
 | ||
|  |     return( mbedtls_mpi_add_mpi( X, A, &B ) ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Signed subtraction: X = A - b | ||
|  |  */ | ||
|  | int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b ) | ||
|  | { | ||
|  |     mbedtls_mpi B; | ||
|  |     mbedtls_mpi_uint p[1]; | ||
|  |     MPI_VALIDATE_RET( X != NULL ); | ||
|  |     MPI_VALIDATE_RET( A != NULL ); | ||
|  | 
 | ||
|  |     p[0] = mpi_sint_abs( b ); | ||
|  |     B.s = ( b < 0 ) ? -1 : 1; | ||
|  |     B.n = 1; | ||
|  |     B.p = p; | ||
|  | 
 | ||
|  |     return( mbedtls_mpi_sub_mpi( X, A, &B ) ); | ||
|  | } | ||
|  | 
 | ||
|  | /** Helper for mbedtls_mpi multiplication.
 | ||
|  |  * | ||
|  |  * Add \p b * \p s to \p d. | ||
|  |  * | ||
|  |  * \param i             The number of limbs of \p s. | ||
|  |  * \param[in] s         A bignum to multiply, of size \p i. | ||
|  |  *                      It may overlap with \p d, but only if | ||
|  |  *                      \p d <= \p s. | ||
|  |  *                      Its leading limb must not be \c 0. | ||
|  |  * \param[in,out] d     The bignum to add to. | ||
|  |  *                      It must be sufficiently large to store the | ||
|  |  *                      result of the multiplication. This means | ||
|  |  *                      \p i + 1 limbs if \p d[\p i - 1] started as 0 and \p b | ||
|  |  *                      is not known a priori. | ||
|  |  * \param b             A scalar to multiply. | ||
|  |  */ | ||
|  | static | ||
|  | #if defined(__APPLE__) && defined(__arm__)
 | ||
|  | /*
 | ||
|  |  * Apple LLVM version 4.2 (clang-425.0.24) (based on LLVM 3.2svn) | ||
|  |  * appears to need this to prevent bad ARM code generation at -O3. | ||
|  |  */ | ||
|  | __attribute__ ((noinline)) | ||
|  | #endif
 | ||
|  | void mpi_mul_hlp( size_t i, | ||
|  |                   const mbedtls_mpi_uint *s, | ||
|  |                   mbedtls_mpi_uint *d, | ||
|  |                   mbedtls_mpi_uint b ) | ||
|  | { | ||
|  |     mbedtls_mpi_uint c = 0, t = 0; | ||
|  | 
 | ||
|  | #if defined(MULADDC_HUIT)
 | ||
|  |     for( ; i >= 8; i -= 8 ) | ||
|  |     { | ||
|  |         MULADDC_INIT | ||
|  |         MULADDC_HUIT | ||
|  |         MULADDC_STOP | ||
|  |     } | ||
|  | 
 | ||
|  |     for( ; i > 0; i-- ) | ||
|  |     { | ||
|  |         MULADDC_INIT | ||
|  |         MULADDC_CORE | ||
|  |         MULADDC_STOP | ||
|  |     } | ||
|  | #else /* MULADDC_HUIT */
 | ||
|  |     for( ; i >= 16; i -= 16 ) | ||
|  |     { | ||
|  |         MULADDC_INIT | ||
|  |         MULADDC_CORE   MULADDC_CORE | ||
|  |         MULADDC_CORE   MULADDC_CORE | ||
|  |         MULADDC_CORE   MULADDC_CORE | ||
|  |         MULADDC_CORE   MULADDC_CORE | ||
|  | 
 | ||
|  |         MULADDC_CORE   MULADDC_CORE | ||
|  |         MULADDC_CORE   MULADDC_CORE | ||
|  |         MULADDC_CORE   MULADDC_CORE | ||
|  |         MULADDC_CORE   MULADDC_CORE | ||
|  |         MULADDC_STOP | ||
|  |     } | ||
|  | 
 | ||
|  |     for( ; i >= 8; i -= 8 ) | ||
|  |     { | ||
|  |         MULADDC_INIT | ||
|  |         MULADDC_CORE   MULADDC_CORE | ||
|  |         MULADDC_CORE   MULADDC_CORE | ||
|  | 
 | ||
|  |         MULADDC_CORE   MULADDC_CORE | ||
|  |         MULADDC_CORE   MULADDC_CORE | ||
|  |         MULADDC_STOP | ||
|  |     } | ||
|  | 
 | ||
|  |     for( ; i > 0; i-- ) | ||
|  |     { | ||
|  |         MULADDC_INIT | ||
|  |         MULADDC_CORE | ||
|  |         MULADDC_STOP | ||
|  |     } | ||
|  | #endif /* MULADDC_HUIT */
 | ||
|  | 
 | ||
|  |     t++; | ||
|  | 
 | ||
|  |     while( c != 0 ) | ||
|  |     { | ||
|  |         *d += c; c = ( *d < c ); d++; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Baseline multiplication: X = A * B  (HAC 14.12) | ||
|  |  */ | ||
|  | int mbedtls_mpi_mul_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B ) | ||
|  | { | ||
|  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | ||
|  |     size_t i, j; | ||
|  |     mbedtls_mpi TA, TB; | ||
|  |     int result_is_zero = 0; | ||
|  |     MPI_VALIDATE_RET( X != NULL ); | ||
|  |     MPI_VALIDATE_RET( A != NULL ); | ||
|  |     MPI_VALIDATE_RET( B != NULL ); | ||
|  | 
 | ||
|  |     mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB ); | ||
|  | 
 | ||
|  |     if( X == A ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) ); A = &TA; } | ||
|  |     if( X == B ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) ); B = &TB; } | ||
|  | 
 | ||
|  |     for( i = A->n; i > 0; i-- ) | ||
|  |         if( A->p[i - 1] != 0 ) | ||
|  |             break; | ||
|  |     if( i == 0 ) | ||
|  |         result_is_zero = 1; | ||
|  | 
 | ||
|  |     for( j = B->n; j > 0; j-- ) | ||
|  |         if( B->p[j - 1] != 0 ) | ||
|  |             break; | ||
|  |     if( j == 0 ) | ||
|  |         result_is_zero = 1; | ||
|  | 
 | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + j ) ); | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) ); | ||
|  | 
 | ||
|  |     for( ; j > 0; j-- ) | ||
|  |         mpi_mul_hlp( i, A->p, X->p + j - 1, B->p[j - 1] ); | ||
|  | 
 | ||
|  |     /* If the result is 0, we don't shortcut the operation, which reduces
 | ||
|  |      * but does not eliminate side channels leaking the zero-ness. We do | ||
|  |      * need to take care to set the sign bit properly since the library does | ||
|  |      * not fully support an MPI object with a value of 0 and s == -1. */ | ||
|  |     if( result_is_zero ) | ||
|  |         X->s = 1; | ||
|  |     else | ||
|  |         X->s = A->s * B->s; | ||
|  | 
 | ||
|  | cleanup: | ||
|  | 
 | ||
|  |     mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TA ); | ||
|  | 
 | ||
|  |     return( ret ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Baseline multiplication: X = A * b | ||
|  |  */ | ||
|  | int mbedtls_mpi_mul_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b ) | ||
|  | { | ||
|  |     MPI_VALIDATE_RET( X != NULL ); | ||
|  |     MPI_VALIDATE_RET( A != NULL ); | ||
|  | 
 | ||
|  |     /* mpi_mul_hlp can't deal with a leading 0. */ | ||
|  |     size_t n = A->n; | ||
|  |     while( n > 0 && A->p[n - 1] == 0 ) | ||
|  |         --n; | ||
|  | 
 | ||
|  |     /* The general method below doesn't work if n==0 or b==0. By chance
 | ||
|  |      * calculating the result is trivial in those cases. */ | ||
|  |     if( b == 0 || n == 0 ) | ||
|  |     { | ||
|  |         return( mbedtls_mpi_lset( X, 0 ) ); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* Calculate A*b as A + A*(b-1) to take advantage of mpi_mul_hlp */ | ||
|  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | ||
|  |     /* In general, A * b requires 1 limb more than b. If
 | ||
|  |      * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same | ||
|  |      * number of limbs as A and the call to grow() is not required since | ||
|  |      * copy() will take care of the growth if needed. However, experimentally, | ||
|  |      * making the call to grow() unconditional causes slightly fewer | ||
|  |      * calls to calloc() in ECP code, presumably because it reuses the | ||
|  |      * same mpi for a while and this way the mpi is more likely to directly | ||
|  |      * grow to its final size. */ | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n + 1 ) ); | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) ); | ||
|  |     mpi_mul_hlp( n, A->p, X->p, b - 1 ); | ||
|  | 
 | ||
|  | cleanup: | ||
|  |     return( ret ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and | ||
|  |  * mbedtls_mpi_uint divisor, d | ||
|  |  */ | ||
|  | static mbedtls_mpi_uint mbedtls_int_div_int( mbedtls_mpi_uint u1, | ||
|  |             mbedtls_mpi_uint u0, mbedtls_mpi_uint d, mbedtls_mpi_uint *r ) | ||
|  | { | ||
|  | #if defined(MBEDTLS_HAVE_UDBL)
 | ||
|  |     mbedtls_t_udbl dividend, quotient; | ||
|  | #else
 | ||
|  |     const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH; | ||
|  |     const mbedtls_mpi_uint uint_halfword_mask = ( (mbedtls_mpi_uint) 1 << biH ) - 1; | ||
|  |     mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient; | ||
|  |     mbedtls_mpi_uint u0_msw, u0_lsw; | ||
|  |     size_t s; | ||
|  | #endif
 | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * Check for overflow | ||
|  |      */ | ||
|  |     if( 0 == d || u1 >= d ) | ||
|  |     { | ||
|  |         if (r != NULL) *r = ~0; | ||
|  | 
 | ||
|  |         return ( ~0 ); | ||
|  |     } | ||
|  | 
 | ||
|  | #if defined(MBEDTLS_HAVE_UDBL)
 | ||
|  |     dividend  = (mbedtls_t_udbl) u1 << biL; | ||
|  |     dividend |= (mbedtls_t_udbl) u0; | ||
|  |     quotient = dividend / d; | ||
|  |     if( quotient > ( (mbedtls_t_udbl) 1 << biL ) - 1 ) | ||
|  |         quotient = ( (mbedtls_t_udbl) 1 << biL ) - 1; | ||
|  | 
 | ||
|  |     if( r != NULL ) | ||
|  |         *r = (mbedtls_mpi_uint)( dividend - (quotient * d ) ); | ||
|  | 
 | ||
|  |     return (mbedtls_mpi_uint) quotient; | ||
|  | #else
 | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * Algorithm D, Section 4.3.1 - The Art of Computer Programming | ||
|  |      *   Vol. 2 - Seminumerical Algorithms, Knuth | ||
|  |      */ | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * Normalize the divisor, d, and dividend, u0, u1 | ||
|  |      */ | ||
|  |     s = mbedtls_clz( d ); | ||
|  |     d = d << s; | ||
|  | 
 | ||
|  |     u1 = u1 << s; | ||
|  |     u1 |= ( u0 >> ( biL - s ) ) & ( -(mbedtls_mpi_sint)s >> ( biL - 1 ) ); | ||
|  |     u0 =  u0 << s; | ||
|  | 
 | ||
|  |     d1 = d >> biH; | ||
|  |     d0 = d & uint_halfword_mask; | ||
|  | 
 | ||
|  |     u0_msw = u0 >> biH; | ||
|  |     u0_lsw = u0 & uint_halfword_mask; | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * Find the first quotient and remainder | ||
|  |      */ | ||
|  |     q1 = u1 / d1; | ||
|  |     r0 = u1 - d1 * q1; | ||
|  | 
 | ||
|  |     while( q1 >= radix || ( q1 * d0 > radix * r0 + u0_msw ) ) | ||
|  |     { | ||
|  |         q1 -= 1; | ||
|  |         r0 += d1; | ||
|  | 
 | ||
|  |         if ( r0 >= radix ) break; | ||
|  |     } | ||
|  | 
 | ||
|  |     rAX = ( u1 * radix ) + ( u0_msw - q1 * d ); | ||
|  |     q0 = rAX / d1; | ||
|  |     r0 = rAX - q0 * d1; | ||
|  | 
 | ||
|  |     while( q0 >= radix || ( q0 * d0 > radix * r0 + u0_lsw ) ) | ||
|  |     { | ||
|  |         q0 -= 1; | ||
|  |         r0 += d1; | ||
|  | 
 | ||
|  |         if ( r0 >= radix ) break; | ||
|  |     } | ||
|  | 
 | ||
|  |     if (r != NULL) | ||
|  |         *r = ( rAX * radix + u0_lsw - q0 * d ) >> s; | ||
|  | 
 | ||
|  |     quotient = q1 * radix + q0; | ||
|  | 
 | ||
|  |     return quotient; | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Division by mbedtls_mpi: A = Q * B + R  (HAC 14.20) | ||
|  |  */ | ||
|  | int mbedtls_mpi_div_mpi( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A, | ||
|  |                          const mbedtls_mpi *B ) | ||
|  | { | ||
|  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | ||
|  |     size_t i, n, t, k; | ||
|  |     mbedtls_mpi X, Y, Z, T1, T2; | ||
|  |     mbedtls_mpi_uint TP2[3]; | ||
|  |     MPI_VALIDATE_RET( A != NULL ); | ||
|  |     MPI_VALIDATE_RET( B != NULL ); | ||
|  | 
 | ||
|  |     if( mbedtls_mpi_cmp_int( B, 0 ) == 0 ) | ||
|  |         return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO ); | ||
|  | 
 | ||
|  |     mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z ); | ||
|  |     mbedtls_mpi_init( &T1 ); | ||
|  |     /*
 | ||
|  |      * Avoid dynamic memory allocations for constant-size T2. | ||
|  |      * | ||
|  |      * T2 is used for comparison only and the 3 limbs are assigned explicitly, | ||
|  |      * so nobody increase the size of the MPI and we're safe to use an on-stack | ||
|  |      * buffer. | ||
|  |      */ | ||
|  |     T2.s = 1; | ||
|  |     T2.n = sizeof( TP2 ) / sizeof( *TP2 ); | ||
|  |     T2.p = TP2; | ||
|  | 
 | ||
|  |     if( mbedtls_mpi_cmp_abs( A, B ) < 0 ) | ||
|  |     { | ||
|  |         if( Q != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_lset( Q, 0 ) ); | ||
|  |         if( R != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, A ) ); | ||
|  |         return( 0 ); | ||
|  |     } | ||
|  | 
 | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &X, A ) ); | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, B ) ); | ||
|  |     X.s = Y.s = 1; | ||
|  | 
 | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &Z, A->n + 2 ) ); | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Z,  0 ) ); | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T1, A->n + 2 ) ); | ||
|  | 
 | ||
|  |     k = mbedtls_mpi_bitlen( &Y ) % biL; | ||
|  |     if( k < biL - 1 ) | ||
|  |     { | ||
|  |         k = biL - 1 - k; | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &X, k ) ); | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, k ) ); | ||
|  |     } | ||
|  |     else k = 0; | ||
|  | 
 | ||
|  |     n = X.n - 1; | ||
|  |     t = Y.n - 1; | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, biL * ( n - t ) ) ); | ||
|  | 
 | ||
|  |     while( mbedtls_mpi_cmp_mpi( &X, &Y ) >= 0 ) | ||
|  |     { | ||
|  |         Z.p[n - t]++; | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &Y ) ); | ||
|  |     } | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, biL * ( n - t ) ) ); | ||
|  | 
 | ||
|  |     for( i = n; i > t ; i-- ) | ||
|  |     { | ||
|  |         if( X.p[i] >= Y.p[t] ) | ||
|  |             Z.p[i - t - 1] = ~0; | ||
|  |         else | ||
|  |         { | ||
|  |             Z.p[i - t - 1] = mbedtls_int_div_int( X.p[i], X.p[i - 1], | ||
|  |                                                             Y.p[t], NULL); | ||
|  |         } | ||
|  | 
 | ||
|  |         T2.p[0] = ( i < 2 ) ? 0 : X.p[i - 2]; | ||
|  |         T2.p[1] = ( i < 1 ) ? 0 : X.p[i - 1]; | ||
|  |         T2.p[2] = X.p[i]; | ||
|  | 
 | ||
|  |         Z.p[i - t - 1]++; | ||
|  |         do | ||
|  |         { | ||
|  |             Z.p[i - t - 1]--; | ||
|  | 
 | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T1, 0 ) ); | ||
|  |             T1.p[0] = ( t < 1 ) ? 0 : Y.p[t - 1]; | ||
|  |             T1.p[1] = Y.p[t]; | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) ); | ||
|  |         } | ||
|  |         while( mbedtls_mpi_cmp_mpi( &T1, &T2 ) > 0 ); | ||
|  | 
 | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) ); | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1,  biL * ( i - t - 1 ) ) ); | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) ); | ||
|  | 
 | ||
|  |         if( mbedtls_mpi_cmp_int( &X, 0 ) < 0 ) | ||
|  |         { | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &Y ) ); | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) ); | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &X, &X, &T1 ) ); | ||
|  |             Z.p[i - t - 1]--; | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     if( Q != NULL ) | ||
|  |     { | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_copy( Q, &Z ) ); | ||
|  |         Q->s = A->s * B->s; | ||
|  |     } | ||
|  | 
 | ||
|  |     if( R != NULL ) | ||
|  |     { | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &X, k ) ); | ||
|  |         X.s = A->s; | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, &X ) ); | ||
|  | 
 | ||
|  |         if( mbedtls_mpi_cmp_int( R, 0 ) == 0 ) | ||
|  |             R->s = 1; | ||
|  |     } | ||
|  | 
 | ||
|  | cleanup: | ||
|  | 
 | ||
|  |     mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z ); | ||
|  |     mbedtls_mpi_free( &T1 ); | ||
|  |     mbedtls_platform_zeroize( TP2, sizeof( TP2 ) ); | ||
|  | 
 | ||
|  |     return( ret ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Division by int: A = Q * b + R | ||
|  |  */ | ||
|  | int mbedtls_mpi_div_int( mbedtls_mpi *Q, mbedtls_mpi *R, | ||
|  |                          const mbedtls_mpi *A, | ||
|  |                          mbedtls_mpi_sint b ) | ||
|  | { | ||
|  |     mbedtls_mpi B; | ||
|  |     mbedtls_mpi_uint p[1]; | ||
|  |     MPI_VALIDATE_RET( A != NULL ); | ||
|  | 
 | ||
|  |     p[0] = mpi_sint_abs( b ); | ||
|  |     B.s = ( b < 0 ) ? -1 : 1; | ||
|  |     B.n = 1; | ||
|  |     B.p = p; | ||
|  | 
 | ||
|  |     return( mbedtls_mpi_div_mpi( Q, R, A, &B ) ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Modulo: R = A mod B | ||
|  |  */ | ||
|  | int mbedtls_mpi_mod_mpi( mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B ) | ||
|  | { | ||
|  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | ||
|  |     MPI_VALIDATE_RET( R != NULL ); | ||
|  |     MPI_VALIDATE_RET( A != NULL ); | ||
|  |     MPI_VALIDATE_RET( B != NULL ); | ||
|  | 
 | ||
|  |     if( mbedtls_mpi_cmp_int( B, 0 ) < 0 ) | ||
|  |         return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE ); | ||
|  | 
 | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( NULL, R, A, B ) ); | ||
|  | 
 | ||
|  |     while( mbedtls_mpi_cmp_int( R, 0 ) < 0 ) | ||
|  |       MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( R, R, B ) ); | ||
|  | 
 | ||
|  |     while( mbedtls_mpi_cmp_mpi( R, B ) >= 0 ) | ||
|  |       MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( R, R, B ) ); | ||
|  | 
 | ||
|  | cleanup: | ||
|  | 
 | ||
|  |     return( ret ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Modulo: r = A mod b | ||
|  |  */ | ||
|  | int mbedtls_mpi_mod_int( mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b ) | ||
|  | { | ||
|  |     size_t i; | ||
|  |     mbedtls_mpi_uint x, y, z; | ||
|  |     MPI_VALIDATE_RET( r != NULL ); | ||
|  |     MPI_VALIDATE_RET( A != NULL ); | ||
|  | 
 | ||
|  |     if( b == 0 ) | ||
|  |         return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO ); | ||
|  | 
 | ||
|  |     if( b < 0 ) | ||
|  |         return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE ); | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * handle trivial cases | ||
|  |      */ | ||
|  |     if( b == 1 || A->n == 0 ) | ||
|  |     { | ||
|  |         *r = 0; | ||
|  |         return( 0 ); | ||
|  |     } | ||
|  | 
 | ||
|  |     if( b == 2 ) | ||
|  |     { | ||
|  |         *r = A->p[0] & 1; | ||
|  |         return( 0 ); | ||
|  |     } | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * general case | ||
|  |      */ | ||
|  |     for( i = A->n, y = 0; i > 0; i-- ) | ||
|  |     { | ||
|  |         x  = A->p[i - 1]; | ||
|  |         y  = ( y << biH ) | ( x >> biH ); | ||
|  |         z  = y / b; | ||
|  |         y -= z * b; | ||
|  | 
 | ||
|  |         x <<= biH; | ||
|  |         y  = ( y << biH ) | ( x >> biH ); | ||
|  |         z  = y / b; | ||
|  |         y -= z * b; | ||
|  |     } | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * If A is negative, then the current y represents a negative value. | ||
|  |      * Flipping it to the positive side. | ||
|  |      */ | ||
|  |     if( A->s < 0 && y != 0 ) | ||
|  |         y = b - y; | ||
|  | 
 | ||
|  |     *r = y; | ||
|  | 
 | ||
|  |     return( 0 ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Fast Montgomery initialization (thanks to Tom St Denis) | ||
|  |  */ | ||
|  | static void mpi_montg_init( mbedtls_mpi_uint *mm, const mbedtls_mpi *N ) | ||
|  | { | ||
|  |     mbedtls_mpi_uint x, m0 = N->p[0]; | ||
|  |     unsigned int i; | ||
|  | 
 | ||
|  |     x  = m0; | ||
|  |     x += ( ( m0 + 2 ) & 4 ) << 1; | ||
|  | 
 | ||
|  |     for( i = biL; i >= 8; i /= 2 ) | ||
|  |         x *= ( 2 - ( m0 * x ) ); | ||
|  | 
 | ||
|  |     *mm = ~x + 1; | ||
|  | } | ||
|  | 
 | ||
|  | /** Montgomery multiplication: A = A * B * R^-1 mod N  (HAC 14.36)
 | ||
|  |  * | ||
|  |  * \param[in,out]   A   One of the numbers to multiply. | ||
|  |  *                      It must have at least as many limbs as N | ||
|  |  *                      (A->n >= N->n), and any limbs beyond n are ignored. | ||
|  |  *                      On successful completion, A contains the result of | ||
|  |  *                      the multiplication A * B * R^-1 mod N where | ||
|  |  *                      R = (2^ciL)^n. | ||
|  |  * \param[in]       B   One of the numbers to multiply. | ||
|  |  *                      It must be nonzero and must not have more limbs than N | ||
|  |  *                      (B->n <= N->n). | ||
|  |  * \param[in]       N   The modulo. N must be odd. | ||
|  |  * \param           mm  The value calculated by `mpi_montg_init(&mm, N)`. | ||
|  |  *                      This is -N^-1 mod 2^ciL. | ||
|  |  * \param[in,out]   T   A bignum for temporary storage. | ||
|  |  *                      It must be at least twice the limb size of N plus 2 | ||
|  |  *                      (T->n >= 2 * (N->n + 1)). | ||
|  |  *                      Its initial content is unused and | ||
|  |  *                      its final content is indeterminate. | ||
|  |  *                      Note that unlike the usual convention in the library | ||
|  |  *                      for `const mbedtls_mpi*`, the content of T can change. | ||
|  |  */ | ||
|  | static void mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B, const mbedtls_mpi *N, mbedtls_mpi_uint mm, | ||
|  |                          const mbedtls_mpi *T ) | ||
|  | { | ||
|  |     size_t i, n, m; | ||
|  |     mbedtls_mpi_uint u0, u1, *d; | ||
|  | 
 | ||
|  |     memset( T->p, 0, T->n * ciL ); | ||
|  | 
 | ||
|  |     d = T->p; | ||
|  |     n = N->n; | ||
|  |     m = ( B->n < n ) ? B->n : n; | ||
|  | 
 | ||
|  |     for( i = 0; i < n; i++ ) | ||
|  |     { | ||
|  |         /*
 | ||
|  |          * T = (T + u0*B + u1*N) / 2^biL | ||
|  |          */ | ||
|  |         u0 = A->p[i]; | ||
|  |         u1 = ( d[0] + u0 * B->p[0] ) * mm; | ||
|  | 
 | ||
|  |         mpi_mul_hlp( m, B->p, d, u0 ); | ||
|  |         mpi_mul_hlp( n, N->p, d, u1 ); | ||
|  | 
 | ||
|  |         *d++ = u0; d[n + 1] = 0; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* At this point, d is either the desired result or the desired result
 | ||
|  |      * plus N. We now potentially subtract N, avoiding leaking whether the | ||
|  |      * subtraction is performed through side channels. */ | ||
|  | 
 | ||
|  |     /* Copy the n least significant limbs of d to A, so that
 | ||
|  |      * A = d if d < N (recall that N has n limbs). */ | ||
|  |     memcpy( A->p, d, n * ciL ); | ||
|  |     /* If d >= N then we want to set A to d - N. To prevent timing attacks,
 | ||
|  |      * do the calculation without using conditional tests. */ | ||
|  |     /* Set d to d0 + (2^biL)^n - N where d0 is the current value of d. */ | ||
|  |     d[n] += 1; | ||
|  |     d[n] -= mpi_sub_hlp( n, d, d, N->p ); | ||
|  |     /* If d0 < N then d < (2^biL)^n
 | ||
|  |      * so d[n] == 0 and we want to keep A as it is. | ||
|  |      * If d0 >= N then d >= (2^biL)^n, and d <= (2^biL)^n + N < 2 * (2^biL)^n | ||
|  |      * so d[n] == 1 and we want to set A to the result of the subtraction | ||
|  |      * which is d - (2^biL)^n, i.e. the n least significant limbs of d. | ||
|  |      * This exactly corresponds to a conditional assignment. */ | ||
|  |     mbedtls_ct_mpi_uint_cond_assign( n, A->p, d, (unsigned char) d[n] ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Montgomery reduction: A = A * R^-1 mod N | ||
|  |  * | ||
|  |  * See mpi_montmul() regarding constraints and guarantees on the parameters. | ||
|  |  */ | ||
|  | static void mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N, | ||
|  |                          mbedtls_mpi_uint mm, const mbedtls_mpi *T ) | ||
|  | { | ||
|  |     mbedtls_mpi_uint z = 1; | ||
|  |     mbedtls_mpi U; | ||
|  | 
 | ||
|  |     U.n = U.s = (int) z; | ||
|  |     U.p = &z; | ||
|  | 
 | ||
|  |     mpi_montmul( A, &U, N, mm, T ); | ||
|  | } | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * Select an MPI from a table without leaking the index. | ||
|  |  * | ||
|  |  * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it | ||
|  |  * reads the entire table in order to avoid leaking the value of idx to an | ||
|  |  * attacker able to observe memory access patterns. | ||
|  |  * | ||
|  |  * \param[out] R        Where to write the selected MPI. | ||
|  |  * \param[in] T         The table to read from. | ||
|  |  * \param[in] T_size    The number of elements in the table. | ||
|  |  * \param[in] idx       The index of the element to select; | ||
|  |  *                      this must satisfy 0 <= idx < T_size. | ||
|  |  * | ||
|  |  * \return \c 0 on success, or a negative error code. | ||
|  |  */ | ||
|  | static int mpi_select( mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx ) | ||
|  | { | ||
|  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | ||
|  | 
 | ||
|  |     for( size_t i = 0; i < T_size; i++ ) | ||
|  |     { | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( R, &T[i], | ||
|  |                         (unsigned char) mbedtls_ct_size_bool_eq( i, idx ) ) ); | ||
|  |     } | ||
|  | 
 | ||
|  | cleanup: | ||
|  |     return( ret ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Sliding-window exponentiation: X = A^E mod N  (HAC 14.85) | ||
|  |  */ | ||
|  | int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A, | ||
|  |                          const mbedtls_mpi *E, const mbedtls_mpi *N, | ||
|  |                          mbedtls_mpi *prec_RR ) | ||
|  | { | ||
|  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | ||
|  |     size_t window_bitsize; | ||
|  |     size_t i, j, nblimbs; | ||
|  |     size_t bufsize, nbits; | ||
|  |     mbedtls_mpi_uint ei, mm, state; | ||
|  |     mbedtls_mpi RR, T, W[ (size_t) 1 << MBEDTLS_MPI_WINDOW_SIZE ], WW, Apos; | ||
|  |     int neg; | ||
|  | 
 | ||
|  |     MPI_VALIDATE_RET( X != NULL ); | ||
|  |     MPI_VALIDATE_RET( A != NULL ); | ||
|  |     MPI_VALIDATE_RET( E != NULL ); | ||
|  |     MPI_VALIDATE_RET( N != NULL ); | ||
|  | 
 | ||
|  |     if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 || ( N->p[0] & 1 ) == 0 ) | ||
|  |         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); | ||
|  | 
 | ||
|  |     if( mbedtls_mpi_cmp_int( E, 0 ) < 0 ) | ||
|  |         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); | ||
|  | 
 | ||
|  |     if( mbedtls_mpi_bitlen( E ) > MBEDTLS_MPI_MAX_BITS || | ||
|  |         mbedtls_mpi_bitlen( N ) > MBEDTLS_MPI_MAX_BITS ) | ||
|  |         return ( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * Init temps and window size | ||
|  |      */ | ||
|  |     mpi_montg_init( &mm, N ); | ||
|  |     mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &T ); | ||
|  |     mbedtls_mpi_init( &Apos ); | ||
|  |     mbedtls_mpi_init( &WW ); | ||
|  |     memset( W, 0, sizeof( W ) ); | ||
|  | 
 | ||
|  |     i = mbedtls_mpi_bitlen( E ); | ||
|  | 
 | ||
|  |     window_bitsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 : | ||
|  |             ( i >  79 ) ? 4 : ( i >  23 ) ? 3 : 1; | ||
|  | 
 | ||
|  | #if( MBEDTLS_MPI_WINDOW_SIZE < 6 )
 | ||
|  |     if( window_bitsize > MBEDTLS_MPI_WINDOW_SIZE ) | ||
|  |         window_bitsize = MBEDTLS_MPI_WINDOW_SIZE; | ||
|  | #endif
 | ||
|  | 
 | ||
|  |     const size_t w_table_used_size = (size_t) 1 << window_bitsize; | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * This function is not constant-trace: its memory accesses depend on the | ||
|  |      * exponent value. To defend against timing attacks, callers (such as RSA | ||
|  |      * and DHM) should use exponent blinding. However this is not enough if the | ||
|  |      * adversary can find the exponent in a single trace, so this function | ||
|  |      * takes extra precautions against adversaries who can observe memory | ||
|  |      * access patterns. | ||
|  |      * | ||
|  |      * This function performs a series of multiplications by table elements and | ||
|  |      * squarings, and we want the prevent the adversary from finding out which | ||
|  |      * table element was used, and from distinguishing between multiplications | ||
|  |      * and squarings. Firstly, when multiplying by an element of the window | ||
|  |      * W[i], we do a constant-trace table lookup to obfuscate i. This leaves | ||
|  |      * squarings as having a different memory access patterns from other | ||
|  |      * multiplications. So secondly, we put the accumulator X in the table as | ||
|  |      * well, and also do a constant-trace table lookup to multiply by X. | ||
|  |      * | ||
|  |      * This way, all multiplications take the form of a lookup-and-multiply. | ||
|  |      * The number of lookup-and-multiply operations inside each iteration of | ||
|  |      * the main loop still depends on the bits of the exponent, but since the | ||
|  |      * other operations in the loop don't have an easily recognizable memory | ||
|  |      * trace, an adversary is unlikely to be able to observe the exact | ||
|  |      * patterns. | ||
|  |      * | ||
|  |      * An adversary may still be able to recover the exponent if they can | ||
|  |      * observe both memory accesses and branches. However, branch prediction | ||
|  |      * exploitation typically requires many traces of execution over the same | ||
|  |      * data, which is defeated by randomized blinding. | ||
|  |      * | ||
|  |      * To achieve this, we make a copy of X and we use the table entry in each | ||
|  |      * calculation from this point on. | ||
|  |      */ | ||
|  |     const size_t x_index = 0; | ||
|  |     mbedtls_mpi_init( &W[x_index] ); | ||
|  |     mbedtls_mpi_copy( &W[x_index], X ); | ||
|  | 
 | ||
|  |     j = N->n + 1; | ||
|  |     /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
 | ||
|  |      * and mpi_montred() calls later. Here we ensure that W[1] and X are | ||
|  |      * large enough, and later we'll grow other W[i] to the same length. | ||
|  |      * They must not be shrunk midway through this function! | ||
|  |      */ | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[x_index], j ) ); | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1],  j ) ); | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T, j * 2 ) ); | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * Compensate for negative A (and correct at the end) | ||
|  |      */ | ||
|  |     neg = ( A->s == -1 ); | ||
|  |     if( neg ) | ||
|  |     { | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Apos, A ) ); | ||
|  |         Apos.s = 1; | ||
|  |         A = &Apos; | ||
|  |     } | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * If 1st call, pre-compute R^2 mod N | ||
|  |      */ | ||
|  |     if( prec_RR == NULL || prec_RR->p == NULL ) | ||
|  |     { | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &RR, 1 ) ); | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &RR, N->n * 2 * biL ) ); | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &RR, &RR, N ) ); | ||
|  | 
 | ||
|  |         if( prec_RR != NULL ) | ||
|  |             memcpy( prec_RR, &RR, sizeof( mbedtls_mpi ) ); | ||
|  |     } | ||
|  |     else | ||
|  |         memcpy( &RR, prec_RR, sizeof( mbedtls_mpi ) ); | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * W[1] = A * R^2 * R^-1 mod N = A * R mod N | ||
|  |      */ | ||
|  |     if( mbedtls_mpi_cmp_mpi( A, N ) >= 0 ) | ||
|  |     { | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &W[1], A, N ) ); | ||
|  |         /* This should be a no-op because W[1] is already that large before
 | ||
|  |          * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow | ||
|  |          * in mpi_montmul() below, so let's make sure. */ | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], N->n + 1 ) ); | ||
|  |     } | ||
|  |     else | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[1], A ) ); | ||
|  | 
 | ||
|  |     /* Note that this is safe because W[1] always has at least N->n limbs
 | ||
|  |      * (it grew above and was preserved by mbedtls_mpi_copy()). */ | ||
|  |     mpi_montmul( &W[1], &RR, N, mm, &T ); | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * W[x_index] = R^2 * R^-1 mod N = R mod N | ||
|  |      */ | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[x_index], &RR ) ); | ||
|  |     mpi_montred( &W[x_index], N, mm, &T ); | ||
|  | 
 | ||
|  | 
 | ||
|  |     if( window_bitsize > 1 ) | ||
|  |     { | ||
|  |         /*
 | ||
|  |          * W[i] = W[1] ^ i | ||
|  |          * | ||
|  |          * The first bit of the sliding window is always 1 and therefore we | ||
|  |          * only need to store the second half of the table. | ||
|  |          * | ||
|  |          * (There are two special elements in the table: W[0] for the | ||
|  |          * accumulator/result and W[1] for A in Montgomery form. Both of these | ||
|  |          * are already set at this point.) | ||
|  |          */ | ||
|  |         j = w_table_used_size / 2; | ||
|  | 
 | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[j], N->n + 1 ) ); | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[j], &W[1]    ) ); | ||
|  | 
 | ||
|  |         for( i = 0; i < window_bitsize - 1; i++ ) | ||
|  |             mpi_montmul( &W[j], &W[j], N, mm, &T ); | ||
|  | 
 | ||
|  |         /*
 | ||
|  |          * W[i] = W[i - 1] * W[1] | ||
|  |          */ | ||
|  |         for( i = j + 1; i < w_table_used_size; i++ ) | ||
|  |         { | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[i], N->n + 1 ) ); | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[i], &W[i - 1] ) ); | ||
|  | 
 | ||
|  |             mpi_montmul( &W[i], &W[1], N, mm, &T ); | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     nblimbs = E->n; | ||
|  |     bufsize = 0; | ||
|  |     nbits   = 0; | ||
|  |     size_t exponent_bits_in_window = 0; | ||
|  |     state   = 0; | ||
|  | 
 | ||
|  |     while( 1 ) | ||
|  |     { | ||
|  |         if( bufsize == 0 ) | ||
|  |         { | ||
|  |             if( nblimbs == 0 ) | ||
|  |                 break; | ||
|  | 
 | ||
|  |             nblimbs--; | ||
|  | 
 | ||
|  |             bufsize = sizeof( mbedtls_mpi_uint ) << 3; | ||
|  |         } | ||
|  | 
 | ||
|  |         bufsize--; | ||
|  | 
 | ||
|  |         ei = (E->p[nblimbs] >> bufsize) & 1; | ||
|  | 
 | ||
|  |         /*
 | ||
|  |          * skip leading 0s | ||
|  |          */ | ||
|  |         if( ei == 0 && state == 0 ) | ||
|  |             continue; | ||
|  | 
 | ||
|  |         if( ei == 0 && state == 1 ) | ||
|  |         { | ||
|  |             /*
 | ||
|  |              * out of window, square W[x_index] | ||
|  |              */ | ||
|  |             MBEDTLS_MPI_CHK( mpi_select( &WW, W, w_table_used_size, x_index ) ); | ||
|  |             mpi_montmul( &W[x_index], &WW, N, mm, &T ); | ||
|  |             continue; | ||
|  |         } | ||
|  | 
 | ||
|  |         /*
 | ||
|  |          * add ei to current window | ||
|  |          */ | ||
|  |         state = 2; | ||
|  | 
 | ||
|  |         nbits++; | ||
|  |         exponent_bits_in_window |= ( ei << ( window_bitsize - nbits ) ); | ||
|  | 
 | ||
|  |         if( nbits == window_bitsize ) | ||
|  |         { | ||
|  |             /*
 | ||
|  |              * W[x_index] = W[x_index]^window_bitsize R^-1 mod N | ||
|  |              */ | ||
|  |             for( i = 0; i < window_bitsize; i++ ) | ||
|  |             { | ||
|  |                 MBEDTLS_MPI_CHK( mpi_select( &WW, W, w_table_used_size, | ||
|  |                                              x_index ) ); | ||
|  |                 mpi_montmul( &W[x_index], &WW, N, mm, &T ); | ||
|  |             } | ||
|  | 
 | ||
|  |             /*
 | ||
|  |              * W[x_index] = W[x_index] * W[exponent_bits_in_window] R^-1 mod N | ||
|  |              */ | ||
|  |             MBEDTLS_MPI_CHK( mpi_select( &WW, W, w_table_used_size, | ||
|  |                                          exponent_bits_in_window ) ); | ||
|  |             mpi_montmul( &W[x_index], &WW, N, mm, &T ); | ||
|  | 
 | ||
|  |             state--; | ||
|  |             nbits = 0; | ||
|  |             exponent_bits_in_window = 0; | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * process the remaining bits | ||
|  |      */ | ||
|  |     for( i = 0; i < nbits; i++ ) | ||
|  |     { | ||
|  |         MBEDTLS_MPI_CHK( mpi_select( &WW, W, w_table_used_size, x_index ) ); | ||
|  |         mpi_montmul( &W[x_index], &WW, N, mm, &T ); | ||
|  | 
 | ||
|  |         exponent_bits_in_window <<= 1; | ||
|  | 
 | ||
|  |         if( ( exponent_bits_in_window & ( (size_t) 1 << window_bitsize ) ) != 0 ) | ||
|  |         { | ||
|  |             MBEDTLS_MPI_CHK( mpi_select( &WW, W, w_table_used_size, 1 ) ); | ||
|  |             mpi_montmul( &W[x_index], &WW, N, mm, &T ); | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * W[x_index] = A^E * R * R^-1 mod N = A^E mod N | ||
|  |      */ | ||
|  |     mpi_montred( &W[x_index], N, mm, &T ); | ||
|  | 
 | ||
|  |     if( neg && E->n != 0 && ( E->p[0] & 1 ) != 0 ) | ||
|  |     { | ||
|  |         W[x_index].s = -1; | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &W[x_index], N, &W[x_index] ) ); | ||
|  |     } | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * Load the result in the output variable. | ||
|  |      */ | ||
|  |     mbedtls_mpi_copy( X, &W[x_index] ); | ||
|  | 
 | ||
|  | cleanup: | ||
|  | 
 | ||
|  |     /* The first bit of the sliding window is always 1 and therefore the first
 | ||
|  |      * half of the table was unused. */ | ||
|  |     for( i = w_table_used_size/2; i < w_table_used_size; i++ ) | ||
|  |         mbedtls_mpi_free( &W[i] ); | ||
|  | 
 | ||
|  |     mbedtls_mpi_free( &W[x_index] ); | ||
|  |     mbedtls_mpi_free( &W[1] ); | ||
|  |     mbedtls_mpi_free( &T ); | ||
|  |     mbedtls_mpi_free( &Apos ); | ||
|  |     mbedtls_mpi_free( &WW ); | ||
|  | 
 | ||
|  |     if( prec_RR == NULL || prec_RR->p == NULL ) | ||
|  |         mbedtls_mpi_free( &RR ); | ||
|  | 
 | ||
|  |     return( ret ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Greatest common divisor: G = gcd(A, B)  (HAC 14.54) | ||
|  |  */ | ||
|  | int mbedtls_mpi_gcd( mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B ) | ||
|  | { | ||
|  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | ||
|  |     size_t lz, lzt; | ||
|  |     mbedtls_mpi TA, TB; | ||
|  | 
 | ||
|  |     MPI_VALIDATE_RET( G != NULL ); | ||
|  |     MPI_VALIDATE_RET( A != NULL ); | ||
|  |     MPI_VALIDATE_RET( B != NULL ); | ||
|  | 
 | ||
|  |     mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB ); | ||
|  | 
 | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) ); | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) ); | ||
|  | 
 | ||
|  |     lz = mbedtls_mpi_lsb( &TA ); | ||
|  |     lzt = mbedtls_mpi_lsb( &TB ); | ||
|  | 
 | ||
|  |     /* The loop below gives the correct result when A==0 but not when B==0.
 | ||
|  |      * So have a special case for B==0. Leverage the fact that we just | ||
|  |      * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test | ||
|  |      * slightly more efficient than cmp_int(). */ | ||
|  |     if( lzt == 0 && mbedtls_mpi_get_bit( &TB, 0 ) == 0 ) | ||
|  |     { | ||
|  |         ret = mbedtls_mpi_copy( G, A ); | ||
|  |         goto cleanup; | ||
|  |     } | ||
|  | 
 | ||
|  |     if( lzt < lz ) | ||
|  |         lz = lzt; | ||
|  | 
 | ||
|  |     TA.s = TB.s = 1; | ||
|  | 
 | ||
|  |     /* We mostly follow the procedure described in HAC 14.54, but with some
 | ||
|  |      * minor differences: | ||
|  |      * - Sequences of multiplications or divisions by 2 are grouped into a | ||
|  |      *   single shift operation. | ||
|  |      * - The procedure in HAC assumes that 0 < TB <= TA. | ||
|  |      *     - The condition TB <= TA is not actually necessary for correctness. | ||
|  |      *       TA and TB have symmetric roles except for the loop termination | ||
|  |      *       condition, and the shifts at the beginning of the loop body | ||
|  |      *       remove any significance from the ordering of TA vs TB before | ||
|  |      *       the shifts. | ||
|  |      *     - If TA = 0, the loop goes through 0 iterations and the result is | ||
|  |      *       correctly TB. | ||
|  |      *     - The case TB = 0 was short-circuited above. | ||
|  |      * | ||
|  |      * For the correctness proof below, decompose the original values of | ||
|  |      * A and B as | ||
|  |      *   A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1 | ||
|  |      *   B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1 | ||
|  |      * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'), | ||
|  |      * and gcd(A',B') is odd or 0. | ||
|  |      * | ||
|  |      * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB). | ||
|  |      * The code maintains the following invariant: | ||
|  |      *     gcd(A,B) = 2^k * gcd(TA,TB) for some k   (I) | ||
|  |      */ | ||
|  | 
 | ||
|  |     /* Proof that the loop terminates:
 | ||
|  |      * At each iteration, either the right-shift by 1 is made on a nonzero | ||
|  |      * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases | ||
|  |      * by at least 1, or the right-shift by 1 is made on zero and then | ||
|  |      * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted | ||
|  |      * since in that case TB is calculated from TB-TA with the condition TB>TA). | ||
|  |      */ | ||
|  |     while( mbedtls_mpi_cmp_int( &TA, 0 ) != 0 ) | ||
|  |     { | ||
|  |         /* Divisions by 2 preserve the invariant (I). */ | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, mbedtls_mpi_lsb( &TA ) ) ); | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, mbedtls_mpi_lsb( &TB ) ) ); | ||
|  | 
 | ||
|  |         /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
 | ||
|  |          * TA-TB is even so the division by 2 has an integer result. | ||
|  |          * Invariant (I) is preserved since any odd divisor of both TA and TB | ||
|  |          * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2 | ||
|  |          * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also | ||
|  |          * divides TA. | ||
|  |          */ | ||
|  |         if( mbedtls_mpi_cmp_mpi( &TA, &TB ) >= 0 ) | ||
|  |         { | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TA, &TA, &TB ) ); | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, 1 ) ); | ||
|  |         } | ||
|  |         else | ||
|  |         { | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TB, &TB, &TA ) ); | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, 1 ) ); | ||
|  |         } | ||
|  |         /* Note that one of TA or TB is still odd. */ | ||
|  |     } | ||
|  | 
 | ||
|  |     /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
 | ||
|  |      * At the loop exit, TA = 0, so gcd(TA,TB) = TB. | ||
|  |      * - If there was at least one loop iteration, then one of TA or TB is odd, | ||
|  |      *   and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case, | ||
|  |      *   lz = min(a,b) so gcd(A,B) = 2^lz * TB. | ||
|  |      * - If there was no loop iteration, then A was 0, and gcd(A,B) = B. | ||
|  |      *   In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well. | ||
|  |      */ | ||
|  | 
 | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &TB, lz ) ); | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( G, &TB ) ); | ||
|  | 
 | ||
|  | cleanup: | ||
|  | 
 | ||
|  |     mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TB ); | ||
|  | 
 | ||
|  |     return( ret ); | ||
|  | } | ||
|  | 
 | ||
|  | /* Fill X with n_bytes random bytes.
 | ||
|  |  * X must already have room for those bytes. | ||
|  |  * The ordering of the bytes returned from the RNG is suitable for | ||
|  |  * deterministic ECDSA (see RFC 6979 §3.3 and mbedtls_mpi_random()). | ||
|  |  * The size and sign of X are unchanged. | ||
|  |  * n_bytes must not be 0. | ||
|  |  */ | ||
|  | static int mpi_fill_random_internal( | ||
|  |     mbedtls_mpi *X, size_t n_bytes, | ||
|  |     int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) | ||
|  | { | ||
|  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | ||
|  |     const size_t limbs = CHARS_TO_LIMBS( n_bytes ); | ||
|  |     const size_t overhead = ( limbs * ciL ) - n_bytes; | ||
|  | 
 | ||
|  |     if( X->n < limbs ) | ||
|  |         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); | ||
|  | 
 | ||
|  |     memset( X->p, 0, overhead ); | ||
|  |     memset( (unsigned char *) X->p + limbs * ciL, 0, ( X->n - limbs ) * ciL ); | ||
|  |     MBEDTLS_MPI_CHK( f_rng( p_rng, (unsigned char *) X->p + overhead, n_bytes ) ); | ||
|  |     mpi_bigendian_to_host( X->p, limbs ); | ||
|  | 
 | ||
|  | cleanup: | ||
|  |     return( ret ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Fill X with size bytes of random. | ||
|  |  * | ||
|  |  * Use a temporary bytes representation to make sure the result is the same | ||
|  |  * regardless of the platform endianness (useful when f_rng is actually | ||
|  |  * deterministic, eg for tests). | ||
|  |  */ | ||
|  | int mbedtls_mpi_fill_random( mbedtls_mpi *X, size_t size, | ||
|  |                      int (*f_rng)(void *, unsigned char *, size_t), | ||
|  |                      void *p_rng ) | ||
|  | { | ||
|  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | ||
|  |     size_t const limbs = CHARS_TO_LIMBS( size ); | ||
|  | 
 | ||
|  |     MPI_VALIDATE_RET( X     != NULL ); | ||
|  |     MPI_VALIDATE_RET( f_rng != NULL ); | ||
|  | 
 | ||
|  |     /* Ensure that target MPI has exactly the necessary number of limbs */ | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) ); | ||
|  |     if( size == 0 ) | ||
|  |         return( 0 ); | ||
|  | 
 | ||
|  |     ret = mpi_fill_random_internal( X, size, f_rng, p_rng ); | ||
|  | 
 | ||
|  | cleanup: | ||
|  |     return( ret ); | ||
|  | } | ||
|  | 
 | ||
|  | int mbedtls_mpi_random( mbedtls_mpi *X, | ||
|  |                         mbedtls_mpi_sint min, | ||
|  |                         const mbedtls_mpi *N, | ||
|  |                         int (*f_rng)(void *, unsigned char *, size_t), | ||
|  |                         void *p_rng ) | ||
|  | { | ||
|  |     int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; | ||
|  |     int count; | ||
|  |     unsigned lt_lower = 1, lt_upper = 0; | ||
|  |     size_t n_bits = mbedtls_mpi_bitlen( N ); | ||
|  |     size_t n_bytes = ( n_bits + 7 ) / 8; | ||
|  |     mbedtls_mpi lower_bound; | ||
|  | 
 | ||
|  |     if( min < 0 ) | ||
|  |         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); | ||
|  |     if( mbedtls_mpi_cmp_int( N, min ) <= 0 ) | ||
|  |         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * When min == 0, each try has at worst a probability 1/2 of failing | ||
|  |      * (the msb has a probability 1/2 of being 0, and then the result will | ||
|  |      * be < N), so after 30 tries failure probability is a most 2**(-30). | ||
|  |      * | ||
|  |      * When N is just below a power of 2, as is the case when generating | ||
|  |      * a random scalar on most elliptic curves, 1 try is enough with | ||
|  |      * overwhelming probability. When N is just above a power of 2, | ||
|  |      * as when generating a random scalar on secp224k1, each try has | ||
|  |      * a probability of failing that is almost 1/2. | ||
|  |      * | ||
|  |      * The probabilities are almost the same if min is nonzero but negligible | ||
|  |      * compared to N. This is always the case when N is crypto-sized, but | ||
|  |      * it's convenient to support small N for testing purposes. When N | ||
|  |      * is small, use a higher repeat count, otherwise the probability of | ||
|  |      * failure is macroscopic. | ||
|  |      */ | ||
|  |     count = ( n_bytes > 4 ? 30 : 250 ); | ||
|  | 
 | ||
|  |     mbedtls_mpi_init( &lower_bound ); | ||
|  | 
 | ||
|  |     /* Ensure that target MPI has exactly the same number of limbs
 | ||
|  |      * as the upper bound, even if the upper bound has leading zeros. | ||
|  |      * This is necessary for the mbedtls_mpi_lt_mpi_ct() check. */ | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, N->n ) ); | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &lower_bound, N->n ) ); | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &lower_bound, min ) ); | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA) | ||
|  |      * when f_rng is a suitably parametrized instance of HMAC_DRBG: | ||
|  |      * - use the same byte ordering; | ||
|  |      * - keep the leftmost n_bits bits of the generated octet string; | ||
|  |      * - try until result is in the desired range. | ||
|  |      * This also avoids any bias, which is especially important for ECDSA. | ||
|  |      */ | ||
|  |     do | ||
|  |     { | ||
|  |         MBEDTLS_MPI_CHK( mpi_fill_random_internal( X, n_bytes, f_rng, p_rng ) ); | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, 8 * n_bytes - n_bits ) ); | ||
|  | 
 | ||
|  |         if( --count == 0 ) | ||
|  |         { | ||
|  |             ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; | ||
|  |             goto cleanup; | ||
|  |         } | ||
|  | 
 | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, &lower_bound, <_lower ) ); | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, N, <_upper ) ); | ||
|  |     } | ||
|  |     while( lt_lower != 0 || lt_upper == 0 ); | ||
|  | 
 | ||
|  | cleanup: | ||
|  |     mbedtls_mpi_free( &lower_bound ); | ||
|  |     return( ret ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Modular inverse: X = A^-1 mod N  (HAC 14.61 / 14.64) | ||
|  |  */ | ||
|  | int mbedtls_mpi_inv_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N ) | ||
|  | { | ||
|  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | ||
|  |     mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2; | ||
|  |     MPI_VALIDATE_RET( X != NULL ); | ||
|  |     MPI_VALIDATE_RET( A != NULL ); | ||
|  |     MPI_VALIDATE_RET( N != NULL ); | ||
|  | 
 | ||
|  |     if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 ) | ||
|  |         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); | ||
|  | 
 | ||
|  |     mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TU ); mbedtls_mpi_init( &U1 ); mbedtls_mpi_init( &U2 ); | ||
|  |     mbedtls_mpi_init( &G ); mbedtls_mpi_init( &TB ); mbedtls_mpi_init( &TV ); | ||
|  |     mbedtls_mpi_init( &V1 ); mbedtls_mpi_init( &V2 ); | ||
|  | 
 | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, A, N ) ); | ||
|  | 
 | ||
|  |     if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 ) | ||
|  |     { | ||
|  |         ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; | ||
|  |         goto cleanup; | ||
|  |     } | ||
|  | 
 | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &TA, A, N ) ); | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TU, &TA ) ); | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, N ) ); | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TV, N ) ); | ||
|  | 
 | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U1, 1 ) ); | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U2, 0 ) ); | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V1, 0 ) ); | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V2, 1 ) ); | ||
|  | 
 | ||
|  |     do | ||
|  |     { | ||
|  |         while( ( TU.p[0] & 1 ) == 0 ) | ||
|  |         { | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TU, 1 ) ); | ||
|  | 
 | ||
|  |             if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 ) | ||
|  |             { | ||
|  |                 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &U1, &U1, &TB ) ); | ||
|  |                 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &TA ) ); | ||
|  |             } | ||
|  | 
 | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U1, 1 ) ); | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U2, 1 ) ); | ||
|  |         } | ||
|  | 
 | ||
|  |         while( ( TV.p[0] & 1 ) == 0 ) | ||
|  |         { | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TV, 1 ) ); | ||
|  | 
 | ||
|  |             if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 ) | ||
|  |             { | ||
|  |                 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, &TB ) ); | ||
|  |                 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &TA ) ); | ||
|  |             } | ||
|  | 
 | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V1, 1 ) ); | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V2, 1 ) ); | ||
|  |         } | ||
|  | 
 | ||
|  |         if( mbedtls_mpi_cmp_mpi( &TU, &TV ) >= 0 ) | ||
|  |         { | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TU, &TU, &TV ) ); | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U1, &U1, &V1 ) ); | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &V2 ) ); | ||
|  |         } | ||
|  |         else | ||
|  |         { | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TV, &TV, &TU ) ); | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, &U1 ) ); | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &U2 ) ); | ||
|  |         } | ||
|  |     } | ||
|  |     while( mbedtls_mpi_cmp_int( &TU, 0 ) != 0 ); | ||
|  | 
 | ||
|  |     while( mbedtls_mpi_cmp_int( &V1, 0 ) < 0 ) | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, N ) ); | ||
|  | 
 | ||
|  |     while( mbedtls_mpi_cmp_mpi( &V1, N ) >= 0 ) | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, N ) ); | ||
|  | 
 | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &V1 ) ); | ||
|  | 
 | ||
|  | cleanup: | ||
|  | 
 | ||
|  |     mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TU ); mbedtls_mpi_free( &U1 ); mbedtls_mpi_free( &U2 ); | ||
|  |     mbedtls_mpi_free( &G ); mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TV ); | ||
|  |     mbedtls_mpi_free( &V1 ); mbedtls_mpi_free( &V2 ); | ||
|  | 
 | ||
|  |     return( ret ); | ||
|  | } | ||
|  | 
 | ||
|  | #if defined(MBEDTLS_GENPRIME)
 | ||
|  | 
 | ||
|  | static const int small_prime[] = | ||
|  | { | ||
|  |         3,    5,    7,   11,   13,   17,   19,   23, | ||
|  |        29,   31,   37,   41,   43,   47,   53,   59, | ||
|  |        61,   67,   71,   73,   79,   83,   89,   97, | ||
|  |       101,  103,  107,  109,  113,  127,  131,  137, | ||
|  |       139,  149,  151,  157,  163,  167,  173,  179, | ||
|  |       181,  191,  193,  197,  199,  211,  223,  227, | ||
|  |       229,  233,  239,  241,  251,  257,  263,  269, | ||
|  |       271,  277,  281,  283,  293,  307,  311,  313, | ||
|  |       317,  331,  337,  347,  349,  353,  359,  367, | ||
|  |       373,  379,  383,  389,  397,  401,  409,  419, | ||
|  |       421,  431,  433,  439,  443,  449,  457,  461, | ||
|  |       463,  467,  479,  487,  491,  499,  503,  509, | ||
|  |       521,  523,  541,  547,  557,  563,  569,  571, | ||
|  |       577,  587,  593,  599,  601,  607,  613,  617, | ||
|  |       619,  631,  641,  643,  647,  653,  659,  661, | ||
|  |       673,  677,  683,  691,  701,  709,  719,  727, | ||
|  |       733,  739,  743,  751,  757,  761,  769,  773, | ||
|  |       787,  797,  809,  811,  821,  823,  827,  829, | ||
|  |       839,  853,  857,  859,  863,  877,  881,  883, | ||
|  |       887,  907,  911,  919,  929,  937,  941,  947, | ||
|  |       953,  967,  971,  977,  983,  991,  997, -103 | ||
|  | }; | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Small divisors test (X must be positive) | ||
|  |  * | ||
|  |  * Return values: | ||
|  |  * 0: no small factor (possible prime, more tests needed) | ||
|  |  * 1: certain prime | ||
|  |  * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime | ||
|  |  * other negative: error | ||
|  |  */ | ||
|  | static int mpi_check_small_factors( const mbedtls_mpi *X ) | ||
|  | { | ||
|  |     int ret = 0; | ||
|  |     size_t i; | ||
|  |     mbedtls_mpi_uint r; | ||
|  | 
 | ||
|  |     if( ( X->p[0] & 1 ) == 0 ) | ||
|  |         return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE ); | ||
|  | 
 | ||
|  |     for( i = 0; small_prime[i] > 0; i++ ) | ||
|  |     { | ||
|  |         if( mbedtls_mpi_cmp_int( X, small_prime[i] ) <= 0 ) | ||
|  |             return( 1 ); | ||
|  | 
 | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, small_prime[i] ) ); | ||
|  | 
 | ||
|  |         if( r == 0 ) | ||
|  |             return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE ); | ||
|  |     } | ||
|  | 
 | ||
|  | cleanup: | ||
|  |     return( ret ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Miller-Rabin pseudo-primality test  (HAC 4.24) | ||
|  |  */ | ||
|  | static int mpi_miller_rabin( const mbedtls_mpi *X, size_t rounds, | ||
|  |                              int (*f_rng)(void *, unsigned char *, size_t), | ||
|  |                              void *p_rng ) | ||
|  | { | ||
|  |     int ret, count; | ||
|  |     size_t i, j, k, s; | ||
|  |     mbedtls_mpi W, R, T, A, RR; | ||
|  | 
 | ||
|  |     MPI_VALIDATE_RET( X     != NULL ); | ||
|  |     MPI_VALIDATE_RET( f_rng != NULL ); | ||
|  | 
 | ||
|  |     mbedtls_mpi_init( &W ); mbedtls_mpi_init( &R ); | ||
|  |     mbedtls_mpi_init( &T ); mbedtls_mpi_init( &A ); | ||
|  |     mbedtls_mpi_init( &RR ); | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * W = |X| - 1 | ||
|  |      * R = W >> lsb( W ) | ||
|  |      */ | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &W, X, 1 ) ); | ||
|  |     s = mbedtls_mpi_lsb( &W ); | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R, &W ) ); | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &R, s ) ); | ||
|  | 
 | ||
|  |     for( i = 0; i < rounds; i++ ) | ||
|  |     { | ||
|  |         /*
 | ||
|  |          * pick a random A, 1 < A < |X| - 1 | ||
|  |          */ | ||
|  |         count = 0; | ||
|  |         do { | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) ); | ||
|  | 
 | ||
|  |             j = mbedtls_mpi_bitlen( &A ); | ||
|  |             k = mbedtls_mpi_bitlen( &W ); | ||
|  |             if (j > k) { | ||
|  |                 A.p[A.n - 1] &= ( (mbedtls_mpi_uint) 1 << ( k - ( A.n - 1 ) * biL - 1 ) ) - 1; | ||
|  |             } | ||
|  | 
 | ||
|  |             if (count++ > 30) { | ||
|  |                 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; | ||
|  |                 goto cleanup; | ||
|  |             } | ||
|  | 
 | ||
|  |         } while ( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 || | ||
|  |                   mbedtls_mpi_cmp_int( &A, 1 )  <= 0    ); | ||
|  | 
 | ||
|  |         /*
 | ||
|  |          * A = A^R mod |X| | ||
|  |          */ | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &A, &A, &R, X, &RR ) ); | ||
|  | 
 | ||
|  |         if( mbedtls_mpi_cmp_mpi( &A, &W ) == 0 || | ||
|  |             mbedtls_mpi_cmp_int( &A,  1 ) == 0 ) | ||
|  |             continue; | ||
|  | 
 | ||
|  |         j = 1; | ||
|  |         while( j < s && mbedtls_mpi_cmp_mpi( &A, &W ) != 0 ) | ||
|  |         { | ||
|  |             /*
 | ||
|  |              * A = A * A mod |X| | ||
|  |              */ | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &A, &A ) ); | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &A, &T, X  ) ); | ||
|  | 
 | ||
|  |             if( mbedtls_mpi_cmp_int( &A, 1 ) == 0 ) | ||
|  |                 break; | ||
|  | 
 | ||
|  |             j++; | ||
|  |         } | ||
|  | 
 | ||
|  |         /*
 | ||
|  |          * not prime if A != |X| - 1 or A == 1 | ||
|  |          */ | ||
|  |         if( mbedtls_mpi_cmp_mpi( &A, &W ) != 0 || | ||
|  |             mbedtls_mpi_cmp_int( &A,  1 ) == 0 ) | ||
|  |         { | ||
|  |             ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; | ||
|  |             break; | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  | cleanup: | ||
|  |     mbedtls_mpi_free( &W ); mbedtls_mpi_free( &R ); | ||
|  |     mbedtls_mpi_free( &T ); mbedtls_mpi_free( &A ); | ||
|  |     mbedtls_mpi_free( &RR ); | ||
|  | 
 | ||
|  |     return( ret ); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Pseudo-primality test: small factors, then Miller-Rabin | ||
|  |  */ | ||
|  | int mbedtls_mpi_is_prime_ext( const mbedtls_mpi *X, int rounds, | ||
|  |                               int (*f_rng)(void *, unsigned char *, size_t), | ||
|  |                               void *p_rng ) | ||
|  | { | ||
|  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | ||
|  |     mbedtls_mpi XX; | ||
|  |     MPI_VALIDATE_RET( X     != NULL ); | ||
|  |     MPI_VALIDATE_RET( f_rng != NULL ); | ||
|  | 
 | ||
|  |     XX.s = 1; | ||
|  |     XX.n = X->n; | ||
|  |     XX.p = X->p; | ||
|  | 
 | ||
|  |     if( mbedtls_mpi_cmp_int( &XX, 0 ) == 0 || | ||
|  |         mbedtls_mpi_cmp_int( &XX, 1 ) == 0 ) | ||
|  |         return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE ); | ||
|  | 
 | ||
|  |     if( mbedtls_mpi_cmp_int( &XX, 2 ) == 0 ) | ||
|  |         return( 0 ); | ||
|  | 
 | ||
|  |     if( ( ret = mpi_check_small_factors( &XX ) ) != 0 ) | ||
|  |     { | ||
|  |         if( ret == 1 ) | ||
|  |             return( 0 ); | ||
|  | 
 | ||
|  |         return( ret ); | ||
|  |     } | ||
|  | 
 | ||
|  |     return( mpi_miller_rabin( &XX, rounds, f_rng, p_rng ) ); | ||
|  | } | ||
|  | 
 | ||
|  | #if !defined(MBEDTLS_DEPRECATED_REMOVED)
 | ||
|  | /*
 | ||
|  |  * Pseudo-primality test, error probability 2^-80 | ||
|  |  */ | ||
|  | int mbedtls_mpi_is_prime( const mbedtls_mpi *X, | ||
|  |                   int (*f_rng)(void *, unsigned char *, size_t), | ||
|  |                   void *p_rng ) | ||
|  | { | ||
|  |     MPI_VALIDATE_RET( X     != NULL ); | ||
|  |     MPI_VALIDATE_RET( f_rng != NULL ); | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * In the past our key generation aimed for an error rate of at most | ||
|  |      * 2^-80. Since this function is deprecated, aim for the same certainty | ||
|  |      * here as well. | ||
|  |      */ | ||
|  |     return( mbedtls_mpi_is_prime_ext( X, 40, f_rng, p_rng ) ); | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Prime number generation | ||
|  |  * | ||
|  |  * To generate an RSA key in a way recommended by FIPS 186-4, both primes must | ||
|  |  * be either 1024 bits or 1536 bits long, and flags must contain | ||
|  |  * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR. | ||
|  |  */ | ||
|  | int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int flags, | ||
|  |                    int (*f_rng)(void *, unsigned char *, size_t), | ||
|  |                    void *p_rng ) | ||
|  | { | ||
|  | #ifdef MBEDTLS_HAVE_INT64
 | ||
|  | // ceil(2^63.5)
 | ||
|  | #define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
 | ||
|  | #else
 | ||
|  | // ceil(2^31.5)
 | ||
|  | #define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
 | ||
|  | #endif
 | ||
|  |     int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; | ||
|  |     size_t k, n; | ||
|  |     int rounds; | ||
|  |     mbedtls_mpi_uint r; | ||
|  |     mbedtls_mpi Y; | ||
|  | 
 | ||
|  |     MPI_VALIDATE_RET( X     != NULL ); | ||
|  |     MPI_VALIDATE_RET( f_rng != NULL ); | ||
|  | 
 | ||
|  |     if( nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS ) | ||
|  |         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); | ||
|  | 
 | ||
|  |     mbedtls_mpi_init( &Y ); | ||
|  | 
 | ||
|  |     n = BITS_TO_LIMBS( nbits ); | ||
|  | 
 | ||
|  |     if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR ) == 0 ) | ||
|  |     { | ||
|  |         /*
 | ||
|  |          * 2^-80 error probability, number of rounds chosen per HAC, table 4.4 | ||
|  |          */ | ||
|  |         rounds = ( ( nbits >= 1300 ) ?  2 : ( nbits >=  850 ) ?  3 : | ||
|  |                    ( nbits >=  650 ) ?  4 : ( nbits >=  350 ) ?  8 : | ||
|  |                    ( nbits >=  250 ) ? 12 : ( nbits >=  150 ) ? 18 : 27 ); | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |         /*
 | ||
|  |          * 2^-100 error probability, number of rounds computed based on HAC, | ||
|  |          * fact 4.48 | ||
|  |          */ | ||
|  |         rounds = ( ( nbits >= 1450 ) ?  4 : ( nbits >=  1150 ) ?  5 : | ||
|  |                    ( nbits >= 1000 ) ?  6 : ( nbits >=   850 ) ?  7 : | ||
|  |                    ( nbits >=  750 ) ?  8 : ( nbits >=   500 ) ? 13 : | ||
|  |                    ( nbits >=  250 ) ? 28 : ( nbits >=   150 ) ? 40 : 51 ); | ||
|  |     } | ||
|  | 
 | ||
|  |     while( 1 ) | ||
|  |     { | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) ); | ||
|  |         /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */ | ||
|  |         if( X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2 ) continue; | ||
|  | 
 | ||
|  |         k = n * biL; | ||
|  |         if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits ) ); | ||
|  |         X->p[0] |= 1; | ||
|  | 
 | ||
|  |         if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH ) == 0 ) | ||
|  |         { | ||
|  |             ret = mbedtls_mpi_is_prime_ext( X, rounds, f_rng, p_rng ); | ||
|  | 
 | ||
|  |             if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE ) | ||
|  |                 goto cleanup; | ||
|  |         } | ||
|  |         else | ||
|  |         { | ||
|  |             /*
 | ||
|  |              * A necessary condition for Y and X = 2Y + 1 to be prime | ||
|  |              * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3). | ||
|  |              * Make sure it is satisfied, while keeping X = 3 mod 4 | ||
|  |              */ | ||
|  | 
 | ||
|  |             X->p[0] |= 2; | ||
|  | 
 | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) ); | ||
|  |             if( r == 0 ) | ||
|  |                 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) ); | ||
|  |             else if( r == 1 ) | ||
|  |                 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) ); | ||
|  | 
 | ||
|  |             /* Set Y = (X-1) / 2, which is X / 2 because X is odd */ | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) ); | ||
|  |             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) ); | ||
|  | 
 | ||
|  |             while( 1 ) | ||
|  |             { | ||
|  |                 /*
 | ||
|  |                  * First, check small factors for X and Y | ||
|  |                  * before doing Miller-Rabin on any of them | ||
|  |                  */ | ||
|  |                 if( ( ret = mpi_check_small_factors(  X         ) ) == 0 && | ||
|  |                     ( ret = mpi_check_small_factors( &Y         ) ) == 0 && | ||
|  |                     ( ret = mpi_miller_rabin(  X, rounds, f_rng, p_rng  ) ) | ||
|  |                                                                     == 0 && | ||
|  |                     ( ret = mpi_miller_rabin( &Y, rounds, f_rng, p_rng  ) ) | ||
|  |                                                                     == 0 ) | ||
|  |                     goto cleanup; | ||
|  | 
 | ||
|  |                 if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE ) | ||
|  |                     goto cleanup; | ||
|  | 
 | ||
|  |                 /*
 | ||
|  |                  * Next candidates. We want to preserve Y = (X-1) / 2 and | ||
|  |                  * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3) | ||
|  |                  * so up Y by 6 and X by 12. | ||
|  |                  */ | ||
|  |                 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int(  X,  X, 12 ) ); | ||
|  |                 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6  ) ); | ||
|  |             } | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  | cleanup: | ||
|  | 
 | ||
|  |     mbedtls_mpi_free( &Y ); | ||
|  | 
 | ||
|  |     return( ret ); | ||
|  | } | ||
|  | 
 | ||
|  | #endif /* MBEDTLS_GENPRIME */
 | ||
|  | 
 | ||
|  | #if defined(MBEDTLS_SELF_TEST)
 | ||
|  | 
 | ||
|  | #define GCD_PAIR_COUNT  3
 | ||
|  | 
 | ||
|  | static const int gcd_pairs[GCD_PAIR_COUNT][3] = | ||
|  | { | ||
|  |     { 693, 609, 21 }, | ||
|  |     { 1764, 868, 28 }, | ||
|  |     { 768454923, 542167814, 1 } | ||
|  | }; | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Checkup routine | ||
|  |  */ | ||
|  | int mbedtls_mpi_self_test( int verbose ) | ||
|  | { | ||
|  |     int ret, i; | ||
|  |     mbedtls_mpi A, E, N, X, Y, U, V; | ||
|  | 
 | ||
|  |     mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &X ); | ||
|  |     mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &U ); mbedtls_mpi_init( &V ); | ||
|  | 
 | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &A, 16, | ||
|  |         "EFE021C2645FD1DC586E69184AF4A31E" \ | ||
|  |         "D5F53E93B5F123FA41680867BA110131" \ | ||
|  |         "944FE7952E2517337780CB0DB80E61AA" \ | ||
|  |         "E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) ); | ||
|  | 
 | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &E, 16, | ||
|  |         "B2E7EFD37075B9F03FF989C7C5051C20" \ | ||
|  |         "34D2A323810251127E7BF8625A4F49A5" \ | ||
|  |         "F3E27F4DA8BD59C47D6DAABA4C8127BD" \ | ||
|  |         "5B5C25763222FEFCCFC38B832366C29E" ) ); | ||
|  | 
 | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &N, 16, | ||
|  |         "0066A198186C18C10B2F5ED9B522752A" \ | ||
|  |         "9830B69916E535C8F047518A889A43A5" \ | ||
|  |         "94B6BED27A168D31D4A52F88925AA8F5" ) ); | ||
|  | 
 | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &A, &N ) ); | ||
|  | 
 | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16, | ||
|  |         "602AB7ECA597A3D6B56FF9829A5E8B85" \ | ||
|  |         "9E857EA95A03512E2BAE7391688D264A" \ | ||
|  |         "A5663B0341DB9CCFD2C4C5F421FEC814" \ | ||
|  |         "8001B72E848A38CAE1C65F78E56ABDEF" \ | ||
|  |         "E12D3C039B8A02D6BE593F0BBBDA56F1" \ | ||
|  |         "ECF677152EF804370C1A305CAF3B5BF1" \ | ||
|  |         "30879B56C61DE584A0F53A2447A51E" ) ); | ||
|  | 
 | ||
|  |     if( verbose != 0 ) | ||
|  |         mbedtls_printf( "  MPI test #1 (mul_mpi): " ); | ||
|  | 
 | ||
|  |     if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ) | ||
|  |     { | ||
|  |         if( verbose != 0 ) | ||
|  |             mbedtls_printf( "failed\n" ); | ||
|  | 
 | ||
|  |         ret = 1; | ||
|  |         goto cleanup; | ||
|  |     } | ||
|  | 
 | ||
|  |     if( verbose != 0 ) | ||
|  |         mbedtls_printf( "passed\n" ); | ||
|  | 
 | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &X, &Y, &A, &N ) ); | ||
|  | 
 | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16, | ||
|  |         "256567336059E52CAE22925474705F39A94" ) ); | ||
|  | 
 | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &V, 16, | ||
|  |         "6613F26162223DF488E9CD48CC132C7A" \ | ||
|  |         "0AC93C701B001B092E4E5B9F73BCD27B" \ | ||
|  |         "9EE50D0657C77F374E903CDFA4C642" ) ); | ||
|  | 
 | ||
|  |     if( verbose != 0 ) | ||
|  |         mbedtls_printf( "  MPI test #2 (div_mpi): " ); | ||
|  | 
 | ||
|  |     if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 || | ||
|  |         mbedtls_mpi_cmp_mpi( &Y, &V ) != 0 ) | ||
|  |     { | ||
|  |         if( verbose != 0 ) | ||
|  |             mbedtls_printf( "failed\n" ); | ||
|  | 
 | ||
|  |         ret = 1; | ||
|  |         goto cleanup; | ||
|  |     } | ||
|  | 
 | ||
|  |     if( verbose != 0 ) | ||
|  |         mbedtls_printf( "passed\n" ); | ||
|  | 
 | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &X, &A, &E, &N, NULL ) ); | ||
|  | 
 | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16, | ||
|  |         "36E139AEA55215609D2816998ED020BB" \ | ||
|  |         "BD96C37890F65171D948E9BC7CBAA4D9" \ | ||
|  |         "325D24D6A3C12710F10A09FA08AB87" ) ); | ||
|  | 
 | ||
|  |     if( verbose != 0 ) | ||
|  |         mbedtls_printf( "  MPI test #3 (exp_mod): " ); | ||
|  | 
 | ||
|  |     if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ) | ||
|  |     { | ||
|  |         if( verbose != 0 ) | ||
|  |             mbedtls_printf( "failed\n" ); | ||
|  | 
 | ||
|  |         ret = 1; | ||
|  |         goto cleanup; | ||
|  |     } | ||
|  | 
 | ||
|  |     if( verbose != 0 ) | ||
|  |         mbedtls_printf( "passed\n" ); | ||
|  | 
 | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &X, &A, &N ) ); | ||
|  | 
 | ||
|  |     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16, | ||
|  |         "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \ | ||
|  |         "C3DBA76456363A10869622EAC2DD84EC" \ | ||
|  |         "C5B8A74DAC4D09E03B5E0BE779F2DF61" ) ); | ||
|  | 
 | ||
|  |     if( verbose != 0 ) | ||
|  |         mbedtls_printf( "  MPI test #4 (inv_mod): " ); | ||
|  | 
 | ||
|  |     if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ) | ||
|  |     { | ||
|  |         if( verbose != 0 ) | ||
|  |             mbedtls_printf( "failed\n" ); | ||
|  | 
 | ||
|  |         ret = 1; | ||
|  |         goto cleanup; | ||
|  |     } | ||
|  | 
 | ||
|  |     if( verbose != 0 ) | ||
|  |         mbedtls_printf( "passed\n" ); | ||
|  | 
 | ||
|  |     if( verbose != 0 ) | ||
|  |         mbedtls_printf( "  MPI test #5 (simple gcd): " ); | ||
|  | 
 | ||
|  |     for( i = 0; i < GCD_PAIR_COUNT; i++ ) | ||
|  |     { | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &X, gcd_pairs[i][0] ) ); | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Y, gcd_pairs[i][1] ) ); | ||
|  | 
 | ||
|  |         MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &A, &X, &Y ) ); | ||
|  | 
 | ||
|  |         if( mbedtls_mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 ) | ||
|  |         { | ||
|  |             if( verbose != 0 ) | ||
|  |                 mbedtls_printf( "failed at %d\n", i ); | ||
|  | 
 | ||
|  |             ret = 1; | ||
|  |             goto cleanup; | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     if( verbose != 0 ) | ||
|  |         mbedtls_printf( "passed\n" ); | ||
|  | 
 | ||
|  | cleanup: | ||
|  | 
 | ||
|  |     if( ret != 0 && verbose != 0 ) | ||
|  |         mbedtls_printf( "Unexpected error, return code = %08X\n", (unsigned int) ret ); | ||
|  | 
 | ||
|  |     mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &X ); | ||
|  |     mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &U ); mbedtls_mpi_free( &V ); | ||
|  | 
 | ||
|  |     if( verbose != 0 ) | ||
|  |         mbedtls_printf( "\n" ); | ||
|  | 
 | ||
|  |     return( ret ); | ||
|  | } | ||
|  | 
 | ||
|  | #endif /* MBEDTLS_SELF_TEST */
 | ||
|  | 
 | ||
|  | #endif /* MBEDTLS_BIGNUM_C */
 |