890 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			890 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|  | /*
 | ||
|  | *  xxHash - Fast Hash algorithm | ||
|  | *  Copyright (C) 2012-2016, Yann Collet | ||
|  | * | ||
|  | *  BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
 | ||
|  | * | ||
|  | *  Redistribution and use in source and binary forms, with or without | ||
|  | *  modification, are permitted provided that the following conditions are | ||
|  | *  met: | ||
|  | * | ||
|  | *  * Redistributions of source code must retain the above copyright | ||
|  | *  notice, this list of conditions and the following disclaimer. | ||
|  | *  * Redistributions in binary form must reproduce the above | ||
|  | *  copyright notice, this list of conditions and the following disclaimer | ||
|  | *  in the documentation and/or other materials provided with the | ||
|  | *  distribution. | ||
|  | * | ||
|  | *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | ||
|  | *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | ||
|  | *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | ||
|  | *  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | ||
|  | *  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
|  | *  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | ||
|  | *  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | ||
|  | *  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | ||
|  | *  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
|  | *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
|  | *  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
|  | * | ||
|  | *  You can contact the author at : | ||
|  | *  - xxHash homepage: http://www.xxhash.com
 | ||
|  | *  - xxHash source repository : https://github.com/Cyan4973/xxHash
 | ||
|  | */ | ||
|  | 
 | ||
|  | 
 | ||
|  | /* *************************************
 | ||
|  | *  Tuning parameters | ||
|  | ***************************************/ | ||
|  | /*!XXH_FORCE_MEMORY_ACCESS :
 | ||
|  |  * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable. | ||
|  |  * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal. | ||
|  |  * The below switch allow to select different access method for improved performance. | ||
|  |  * Method 0 (default) : use `memcpy()`. Safe and portable. | ||
|  |  * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable). | ||
|  |  *            This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`. | ||
|  |  * Method 2 : direct access. This method doesn't depend on compiler but violate C standard. | ||
|  |  *            It can generate buggy code on targets which do not support unaligned memory accesses. | ||
|  |  *            But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6) | ||
|  |  * See http://stackoverflow.com/a/32095106/646947 for details.
 | ||
|  |  * Prefer these methods in priority order (0 > 1 > 2) | ||
|  |  */ | ||
|  | #ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
 | ||
|  | #  if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
 | ||
|  | #    define XXH_FORCE_MEMORY_ACCESS 2
 | ||
|  | #  elif defined(__INTEL_COMPILER) || \
 | ||
|  |   (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) )) | ||
|  | #    define XXH_FORCE_MEMORY_ACCESS 1
 | ||
|  | #  endif
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /*!XXH_ACCEPT_NULL_INPUT_POINTER :
 | ||
|  |  * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer. | ||
|  |  * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input. | ||
|  |  * By default, this option is disabled. To enable it, uncomment below define : | ||
|  |  */ | ||
|  | /* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */ | ||
|  | 
 | ||
|  | /*!XXH_FORCE_NATIVE_FORMAT :
 | ||
|  |  * By default, xxHash library provides endian-independent Hash values, based on little-endian convention. | ||
|  |  * Results are therefore identical for little-endian and big-endian CPU. | ||
|  |  * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format. | ||
|  |  * Should endian-independence be of no importance for your application, you may set the #define below to 1, | ||
|  |  * to improve speed for Big-endian CPU. | ||
|  |  * This option has no impact on Little_Endian CPU. | ||
|  |  */ | ||
|  | #ifndef XXH_FORCE_NATIVE_FORMAT   /* can be defined externally */
 | ||
|  | #  define XXH_FORCE_NATIVE_FORMAT 0
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /*!XXH_FORCE_ALIGN_CHECK :
 | ||
|  |  * This is a minor performance trick, only useful with lots of very small keys. | ||
|  |  * It means : check for aligned/unaligned input. | ||
|  |  * The check costs one initial branch per hash; set to 0 when the input data | ||
|  |  * is guaranteed to be aligned. | ||
|  |  */ | ||
|  | #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
 | ||
|  | #  if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
 | ||
|  | #    define XXH_FORCE_ALIGN_CHECK 0
 | ||
|  | #  else
 | ||
|  | #    define XXH_FORCE_ALIGN_CHECK 1
 | ||
|  | #  endif
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* *************************************
 | ||
|  | *  Includes & Memory related functions | ||
|  | ***************************************/ | ||
|  | /*! Modify the local functions below should you wish to use some other memory routines
 | ||
|  | *   for malloc(), free() */ | ||
|  | #include <stdlib.h>
 | ||
|  | static void* XXH_malloc(size_t s) { return malloc(s); } | ||
|  | static void  XXH_free  (void* p)  { free(p); } | ||
|  | /*! and for memcpy() */ | ||
|  | #include <string.h>
 | ||
|  | static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); } | ||
|  | 
 | ||
|  | #define XXH_STATIC_LINKING_ONLY
 | ||
|  | #include "xxhash.h"
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* *************************************
 | ||
|  | *  Compiler Specific Options | ||
|  | ***************************************/ | ||
|  | #ifdef _MSC_VER    /* Visual Studio */
 | ||
|  | #  pragma warning(disable : 4127)      /* disable: C4127: conditional expression is constant */
 | ||
|  | #  define FORCE_INLINE static __forceinline
 | ||
|  | #else
 | ||
|  | #  if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */
 | ||
|  | #    ifdef __GNUC__
 | ||
|  | #      define FORCE_INLINE static inline __attribute__((always_inline))
 | ||
|  | #    else
 | ||
|  | #      define FORCE_INLINE static inline
 | ||
|  | #    endif
 | ||
|  | #  else
 | ||
|  | #    define FORCE_INLINE static
 | ||
|  | #  endif /* __STDC_VERSION__ */
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* *************************************
 | ||
|  | *  Basic Types | ||
|  | ***************************************/ | ||
|  | #ifndef MEM_MODULE
 | ||
|  | # if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
 | ||
|  | #   include <stdint.h>
 | ||
|  |     typedef uint8_t  BYTE; | ||
|  |     typedef uint16_t U16; | ||
|  |     typedef uint32_t U32; | ||
|  |     typedef  int32_t S32; | ||
|  | # else
 | ||
|  |     typedef unsigned char      BYTE; | ||
|  |     typedef unsigned short     U16; | ||
|  |     typedef unsigned int       U32; | ||
|  |     typedef   signed int       S32; | ||
|  | # endif
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
 | ||
|  | 
 | ||
|  | /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ | ||
|  | static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; } | ||
|  | 
 | ||
|  | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
 | ||
|  | 
 | ||
|  | /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ | ||
|  | /* currently only defined for gcc and icc */ | ||
|  | typedef union { U32 u32; } __attribute__((packed)) unalign; | ||
|  | static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; } | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* portable and safe solution. Generally efficient.
 | ||
|  |  * see : http://stackoverflow.com/a/32095106/646947
 | ||
|  |  */ | ||
|  | static U32 XXH_read32(const void* memPtr) | ||
|  | { | ||
|  |     U32 val; | ||
|  |     memcpy(&val, memPtr, sizeof(val)); | ||
|  |     return val; | ||
|  | } | ||
|  | 
 | ||
|  | #endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* ****************************************
 | ||
|  | *  Compiler-specific Functions and Macros | ||
|  | ******************************************/ | ||
|  | #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
 | ||
|  | 
 | ||
|  | /* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */ | ||
|  | #if defined(_MSC_VER)
 | ||
|  | #  define XXH_rotl32(x,r) _rotl(x,r)
 | ||
|  | #  define XXH_rotl64(x,r) _rotl64(x,r)
 | ||
|  | #else
 | ||
|  | #  define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
 | ||
|  | #  define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if defined(_MSC_VER)     /* Visual Studio */
 | ||
|  | #  define XXH_swap32 _byteswap_ulong
 | ||
|  | #elif XXH_GCC_VERSION >= 403
 | ||
|  | #  define XXH_swap32 __builtin_bswap32
 | ||
|  | #else
 | ||
|  | static U32 XXH_swap32 (U32 x) | ||
|  | { | ||
|  |     return  ((x << 24) & 0xff000000 ) | | ||
|  |             ((x <<  8) & 0x00ff0000 ) | | ||
|  |             ((x >>  8) & 0x0000ff00 ) | | ||
|  |             ((x >> 24) & 0x000000ff ); | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* *************************************
 | ||
|  | *  Architecture Macros | ||
|  | ***************************************/ | ||
|  | typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess; | ||
|  | 
 | ||
|  | /* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */ | ||
|  | #ifndef XXH_CPU_LITTLE_ENDIAN
 | ||
|  |     static const int g_one = 1; | ||
|  | #   define XXH_CPU_LITTLE_ENDIAN   (*(const char*)(&g_one))
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* ***************************
 | ||
|  | *  Memory reads | ||
|  | *****************************/ | ||
|  | typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment; | ||
|  | 
 | ||
|  | FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align) | ||
|  | { | ||
|  |     if (align==XXH_unaligned) | ||
|  |         return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); | ||
|  |     else | ||
|  |         return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr); | ||
|  | } | ||
|  | 
 | ||
|  | FORCE_INLINE U32 XXH_readLE32(const void* ptr, XXH_endianess endian) | ||
|  | { | ||
|  |     return XXH_readLE32_align(ptr, endian, XXH_unaligned); | ||
|  | } | ||
|  | 
 | ||
|  | static U32 XXH_readBE32(const void* ptr) | ||
|  | { | ||
|  |     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* *************************************
 | ||
|  | *  Macros | ||
|  | ***************************************/ | ||
|  | #define XXH_STATIC_ASSERT(c)   { enum { XXH_static_assert = 1/(int)(!!(c)) }; }    /* use only *after* variable declarations */
 | ||
|  | XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* *******************************************************************
 | ||
|  | *  32-bits hash functions | ||
|  | *********************************************************************/ | ||
|  | static const U32 PRIME32_1 = 2654435761U; | ||
|  | static const U32 PRIME32_2 = 2246822519U; | ||
|  | static const U32 PRIME32_3 = 3266489917U; | ||
|  | static const U32 PRIME32_4 =  668265263U; | ||
|  | static const U32 PRIME32_5 =  374761393U; | ||
|  | 
 | ||
|  | static U32 XXH32_round(U32 seed, U32 input) | ||
|  | { | ||
|  |     seed += input * PRIME32_2; | ||
|  |     seed  = XXH_rotl32(seed, 13); | ||
|  |     seed *= PRIME32_1; | ||
|  |     return seed; | ||
|  | } | ||
|  | 
 | ||
|  | FORCE_INLINE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align) | ||
|  | { | ||
|  |     const BYTE* p = (const BYTE*)input; | ||
|  |     const BYTE* bEnd = p + len; | ||
|  |     U32 h32; | ||
|  | #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
 | ||
|  | 
 | ||
|  | #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
 | ||
|  |     if (p==NULL) { | ||
|  |         len=0; | ||
|  |         bEnd=p=(const BYTE*)(size_t)16; | ||
|  |     } | ||
|  | #endif
 | ||
|  | 
 | ||
|  |     if (len>=16) { | ||
|  |         const BYTE* const limit = bEnd - 16; | ||
|  |         U32 v1 = seed + PRIME32_1 + PRIME32_2; | ||
|  |         U32 v2 = seed + PRIME32_2; | ||
|  |         U32 v3 = seed + 0; | ||
|  |         U32 v4 = seed - PRIME32_1; | ||
|  | 
 | ||
|  |         do { | ||
|  |             v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4; | ||
|  |             v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4; | ||
|  |             v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4; | ||
|  |             v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4; | ||
|  |         } while (p<=limit); | ||
|  | 
 | ||
|  |         h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); | ||
|  |     } else { | ||
|  |         h32  = seed + PRIME32_5; | ||
|  |     } | ||
|  | 
 | ||
|  |     h32 += (U32) len; | ||
|  | 
 | ||
|  |     while (p+4<=bEnd) { | ||
|  |         h32 += XXH_get32bits(p) * PRIME32_3; | ||
|  |         h32  = XXH_rotl32(h32, 17) * PRIME32_4 ; | ||
|  |         p+=4; | ||
|  |     } | ||
|  | 
 | ||
|  |     while (p<bEnd) { | ||
|  |         h32 += (*p) * PRIME32_5; | ||
|  |         h32 = XXH_rotl32(h32, 11) * PRIME32_1 ; | ||
|  |         p++; | ||
|  |     } | ||
|  | 
 | ||
|  |     h32 ^= h32 >> 15; | ||
|  |     h32 *= PRIME32_2; | ||
|  |     h32 ^= h32 >> 13; | ||
|  |     h32 *= PRIME32_3; | ||
|  |     h32 ^= h32 >> 16; | ||
|  | 
 | ||
|  |     return h32; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed) | ||
|  | { | ||
|  | #if 0
 | ||
|  |     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ | ||
|  |     XXH32_state_t state; | ||
|  |     XXH32_reset(&state, seed); | ||
|  |     XXH32_update(&state, input, len); | ||
|  |     return XXH32_digest(&state); | ||
|  | #else
 | ||
|  |     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; | ||
|  | 
 | ||
|  |     if (XXH_FORCE_ALIGN_CHECK) { | ||
|  |         if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */ | ||
|  |             if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | ||
|  |                 return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); | ||
|  |             else | ||
|  |                 return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); | ||
|  |     }   } | ||
|  | 
 | ||
|  |     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | ||
|  |         return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); | ||
|  |     else | ||
|  |         return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /*======   Hash streaming   ======*/ | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void) | ||
|  | { | ||
|  |     return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t)); | ||
|  | } | ||
|  | XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr) | ||
|  | { | ||
|  |     XXH_free(statePtr); | ||
|  |     return XXH_OK; | ||
|  | } | ||
|  | 
 | ||
|  | XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState) | ||
|  | { | ||
|  |     memcpy(dstState, srcState, sizeof(*dstState)); | ||
|  | } | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed) | ||
|  | { | ||
|  |     XXH32_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ | ||
|  |     memset(&state, 0, sizeof(state)-4);   /* do not write into reserved, for future removal */ | ||
|  |     state.v1 = seed + PRIME32_1 + PRIME32_2; | ||
|  |     state.v2 = seed + PRIME32_2; | ||
|  |     state.v3 = seed + 0; | ||
|  |     state.v4 = seed - PRIME32_1; | ||
|  |     memcpy(statePtr, &state, sizeof(state)); | ||
|  |     return XXH_OK; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | FORCE_INLINE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian) | ||
|  | { | ||
|  |     const BYTE* p = (const BYTE*)input; | ||
|  |     const BYTE* const bEnd = p + len; | ||
|  | 
 | ||
|  | #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
 | ||
|  |     if (input==NULL) return XXH_ERROR; | ||
|  | #endif
 | ||
|  | 
 | ||
|  |     state->total_len_32 += (unsigned)len; | ||
|  |     state->large_len |= (len>=16) | (state->total_len_32>=16); | ||
|  | 
 | ||
|  |     if (state->memsize + len < 16)  {   /* fill in tmp buffer */ | ||
|  |         XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len); | ||
|  |         state->memsize += (unsigned)len; | ||
|  |         return XXH_OK; | ||
|  |     } | ||
|  | 
 | ||
|  |     if (state->memsize) {   /* some data left from previous update */ | ||
|  |         XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize); | ||
|  |         {   const U32* p32 = state->mem32; | ||
|  |             state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++; | ||
|  |             state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++; | ||
|  |             state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++; | ||
|  |             state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++; | ||
|  |         } | ||
|  |         p += 16-state->memsize; | ||
|  |         state->memsize = 0; | ||
|  |     } | ||
|  | 
 | ||
|  |     if (p <= bEnd-16) { | ||
|  |         const BYTE* const limit = bEnd - 16; | ||
|  |         U32 v1 = state->v1; | ||
|  |         U32 v2 = state->v2; | ||
|  |         U32 v3 = state->v3; | ||
|  |         U32 v4 = state->v4; | ||
|  | 
 | ||
|  |         do { | ||
|  |             v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4; | ||
|  |             v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4; | ||
|  |             v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4; | ||
|  |             v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4; | ||
|  |         } while (p<=limit); | ||
|  | 
 | ||
|  |         state->v1 = v1; | ||
|  |         state->v2 = v2; | ||
|  |         state->v3 = v3; | ||
|  |         state->v4 = v4; | ||
|  |     } | ||
|  | 
 | ||
|  |     if (p < bEnd) { | ||
|  |         XXH_memcpy(state->mem32, p, (size_t)(bEnd-p)); | ||
|  |         state->memsize = (unsigned)(bEnd-p); | ||
|  |     } | ||
|  | 
 | ||
|  |     return XXH_OK; | ||
|  | } | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len) | ||
|  | { | ||
|  |     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; | ||
|  | 
 | ||
|  |     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | ||
|  |         return XXH32_update_endian(state_in, input, len, XXH_littleEndian); | ||
|  |     else | ||
|  |         return XXH32_update_endian(state_in, input, len, XXH_bigEndian); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | FORCE_INLINE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian) | ||
|  | { | ||
|  |     const BYTE * p = (const BYTE*)state->mem32; | ||
|  |     const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize; | ||
|  |     U32 h32; | ||
|  | 
 | ||
|  |     if (state->large_len) { | ||
|  |         h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18); | ||
|  |     } else { | ||
|  |         h32 = state->v3 /* == seed */ + PRIME32_5; | ||
|  |     } | ||
|  | 
 | ||
|  |     h32 += state->total_len_32; | ||
|  | 
 | ||
|  |     while (p+4<=bEnd) { | ||
|  |         h32 += XXH_readLE32(p, endian) * PRIME32_3; | ||
|  |         h32  = XXH_rotl32(h32, 17) * PRIME32_4; | ||
|  |         p+=4; | ||
|  |     } | ||
|  | 
 | ||
|  |     while (p<bEnd) { | ||
|  |         h32 += (*p) * PRIME32_5; | ||
|  |         h32  = XXH_rotl32(h32, 11) * PRIME32_1; | ||
|  |         p++; | ||
|  |     } | ||
|  | 
 | ||
|  |     h32 ^= h32 >> 15; | ||
|  |     h32 *= PRIME32_2; | ||
|  |     h32 ^= h32 >> 13; | ||
|  |     h32 *= PRIME32_3; | ||
|  |     h32 ^= h32 >> 16; | ||
|  | 
 | ||
|  |     return h32; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in) | ||
|  | { | ||
|  |     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; | ||
|  | 
 | ||
|  |     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | ||
|  |         return XXH32_digest_endian(state_in, XXH_littleEndian); | ||
|  |     else | ||
|  |         return XXH32_digest_endian(state_in, XXH_bigEndian); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*======   Canonical representation   ======*/ | ||
|  | 
 | ||
|  | /*! Default XXH result types are basic unsigned 32 and 64 bits.
 | ||
|  | *   The canonical representation follows human-readable write convention, aka big-endian (large digits first). | ||
|  | *   These functions allow transformation of hash result into and from its canonical format. | ||
|  | *   This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs. | ||
|  | */ | ||
|  | 
 | ||
|  | XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash) | ||
|  | { | ||
|  |     XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); | ||
|  |     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash); | ||
|  |     memcpy(dst, &hash, sizeof(*dst)); | ||
|  | } | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src) | ||
|  | { | ||
|  |     return XXH_readBE32(src); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | #ifndef XXH_NO_LONG_LONG
 | ||
|  | 
 | ||
|  | /* *******************************************************************
 | ||
|  | *  64-bits hash functions | ||
|  | *********************************************************************/ | ||
|  | 
 | ||
|  | /*======   Memory access   ======*/ | ||
|  | 
 | ||
|  | #ifndef MEM_MODULE
 | ||
|  | # define MEM_MODULE
 | ||
|  | # if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
 | ||
|  | #   include <stdint.h>
 | ||
|  |     typedef uint64_t U64; | ||
|  | # else
 | ||
|  |     typedef unsigned long long U64;   /* if your compiler doesn't support unsigned long long, replace by another 64-bit type here. Note that xxhash.h will also need to be updated. */ | ||
|  | # endif
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
 | ||
|  | 
 | ||
|  | /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ | ||
|  | static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; } | ||
|  | 
 | ||
|  | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
 | ||
|  | 
 | ||
|  | /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ | ||
|  | /* currently only defined for gcc and icc */ | ||
|  | typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign64; | ||
|  | static U64 XXH_read64(const void* ptr) { return ((const unalign64*)ptr)->u64; } | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* portable and safe solution. Generally efficient.
 | ||
|  |  * see : http://stackoverflow.com/a/32095106/646947
 | ||
|  |  */ | ||
|  | 
 | ||
|  | static U64 XXH_read64(const void* memPtr) | ||
|  | { | ||
|  |     U64 val; | ||
|  |     memcpy(&val, memPtr, sizeof(val)); | ||
|  |     return val; | ||
|  | } | ||
|  | 
 | ||
|  | #endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
 | ||
|  | 
 | ||
|  | #if defined(_MSC_VER)     /* Visual Studio */
 | ||
|  | #  define XXH_swap64 _byteswap_uint64
 | ||
|  | #elif XXH_GCC_VERSION >= 403
 | ||
|  | #  define XXH_swap64 __builtin_bswap64
 | ||
|  | #else
 | ||
|  | static U64 XXH_swap64 (U64 x) | ||
|  | { | ||
|  |     return  ((x << 56) & 0xff00000000000000ULL) | | ||
|  |             ((x << 40) & 0x00ff000000000000ULL) | | ||
|  |             ((x << 24) & 0x0000ff0000000000ULL) | | ||
|  |             ((x << 8)  & 0x000000ff00000000ULL) | | ||
|  |             ((x >> 8)  & 0x00000000ff000000ULL) | | ||
|  |             ((x >> 24) & 0x0000000000ff0000ULL) | | ||
|  |             ((x >> 40) & 0x000000000000ff00ULL) | | ||
|  |             ((x >> 56) & 0x00000000000000ffULL); | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align) | ||
|  | { | ||
|  |     if (align==XXH_unaligned) | ||
|  |         return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); | ||
|  |     else | ||
|  |         return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr); | ||
|  | } | ||
|  | 
 | ||
|  | FORCE_INLINE U64 XXH_readLE64(const void* ptr, XXH_endianess endian) | ||
|  | { | ||
|  |     return XXH_readLE64_align(ptr, endian, XXH_unaligned); | ||
|  | } | ||
|  | 
 | ||
|  | static U64 XXH_readBE64(const void* ptr) | ||
|  | { | ||
|  |     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*======   xxh64   ======*/ | ||
|  | 
 | ||
|  | static const U64 PRIME64_1 = 11400714785074694791ULL; | ||
|  | static const U64 PRIME64_2 = 14029467366897019727ULL; | ||
|  | static const U64 PRIME64_3 =  1609587929392839161ULL; | ||
|  | static const U64 PRIME64_4 =  9650029242287828579ULL; | ||
|  | static const U64 PRIME64_5 =  2870177450012600261ULL; | ||
|  | 
 | ||
|  | static U64 XXH64_round(U64 acc, U64 input) | ||
|  | { | ||
|  |     acc += input * PRIME64_2; | ||
|  |     acc  = XXH_rotl64(acc, 31); | ||
|  |     acc *= PRIME64_1; | ||
|  |     return acc; | ||
|  | } | ||
|  | 
 | ||
|  | static U64 XXH64_mergeRound(U64 acc, U64 val) | ||
|  | { | ||
|  |     val  = XXH64_round(0, val); | ||
|  |     acc ^= val; | ||
|  |     acc  = acc * PRIME64_1 + PRIME64_4; | ||
|  |     return acc; | ||
|  | } | ||
|  | 
 | ||
|  | FORCE_INLINE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align) | ||
|  | { | ||
|  |     const BYTE* p = (const BYTE*)input; | ||
|  |     const BYTE* const bEnd = p + len; | ||
|  |     U64 h64; | ||
|  | #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
 | ||
|  | 
 | ||
|  | #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
 | ||
|  |     if (p==NULL) { | ||
|  |         len=0; | ||
|  |         bEnd=p=(const BYTE*)(size_t)32; | ||
|  |     } | ||
|  | #endif
 | ||
|  | 
 | ||
|  |     if (len>=32) { | ||
|  |         const BYTE* const limit = bEnd - 32; | ||
|  |         U64 v1 = seed + PRIME64_1 + PRIME64_2; | ||
|  |         U64 v2 = seed + PRIME64_2; | ||
|  |         U64 v3 = seed + 0; | ||
|  |         U64 v4 = seed - PRIME64_1; | ||
|  | 
 | ||
|  |         do { | ||
|  |             v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8; | ||
|  |             v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8; | ||
|  |             v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8; | ||
|  |             v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8; | ||
|  |         } while (p<=limit); | ||
|  | 
 | ||
|  |         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); | ||
|  |         h64 = XXH64_mergeRound(h64, v1); | ||
|  |         h64 = XXH64_mergeRound(h64, v2); | ||
|  |         h64 = XXH64_mergeRound(h64, v3); | ||
|  |         h64 = XXH64_mergeRound(h64, v4); | ||
|  | 
 | ||
|  |     } else { | ||
|  |         h64  = seed + PRIME64_5; | ||
|  |     } | ||
|  | 
 | ||
|  |     h64 += (U64) len; | ||
|  | 
 | ||
|  |     while (p+8<=bEnd) { | ||
|  |         U64 const k1 = XXH64_round(0, XXH_get64bits(p)); | ||
|  |         h64 ^= k1; | ||
|  |         h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; | ||
|  |         p+=8; | ||
|  |     } | ||
|  | 
 | ||
|  |     if (p+4<=bEnd) { | ||
|  |         h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1; | ||
|  |         h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; | ||
|  |         p+=4; | ||
|  |     } | ||
|  | 
 | ||
|  |     while (p<bEnd) { | ||
|  |         h64 ^= (*p) * PRIME64_5; | ||
|  |         h64 = XXH_rotl64(h64, 11) * PRIME64_1; | ||
|  |         p++; | ||
|  |     } | ||
|  | 
 | ||
|  |     h64 ^= h64 >> 33; | ||
|  |     h64 *= PRIME64_2; | ||
|  |     h64 ^= h64 >> 29; | ||
|  |     h64 *= PRIME64_3; | ||
|  |     h64 ^= h64 >> 32; | ||
|  | 
 | ||
|  |     return h64; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed) | ||
|  | { | ||
|  | #if 0
 | ||
|  |     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ | ||
|  |     XXH64_state_t state; | ||
|  |     XXH64_reset(&state, seed); | ||
|  |     XXH64_update(&state, input, len); | ||
|  |     return XXH64_digest(&state); | ||
|  | #else
 | ||
|  |     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; | ||
|  | 
 | ||
|  |     if (XXH_FORCE_ALIGN_CHECK) { | ||
|  |         if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */ | ||
|  |             if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | ||
|  |                 return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); | ||
|  |             else | ||
|  |                 return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); | ||
|  |     }   } | ||
|  | 
 | ||
|  |     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | ||
|  |         return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); | ||
|  |     else | ||
|  |         return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | /*======   Hash Streaming   ======*/ | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void) | ||
|  | { | ||
|  |     return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); | ||
|  | } | ||
|  | XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) | ||
|  | { | ||
|  |     XXH_free(statePtr); | ||
|  |     return XXH_OK; | ||
|  | } | ||
|  | 
 | ||
|  | XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState) | ||
|  | { | ||
|  |     memcpy(dstState, srcState, sizeof(*dstState)); | ||
|  | } | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed) | ||
|  | { | ||
|  |     XXH64_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ | ||
|  |     memset(&state, 0, sizeof(state)-8);   /* do not write into reserved, for future removal */ | ||
|  |     state.v1 = seed + PRIME64_1 + PRIME64_2; | ||
|  |     state.v2 = seed + PRIME64_2; | ||
|  |     state.v3 = seed + 0; | ||
|  |     state.v4 = seed - PRIME64_1; | ||
|  |     memcpy(statePtr, &state, sizeof(state)); | ||
|  |     return XXH_OK; | ||
|  | } | ||
|  | 
 | ||
|  | FORCE_INLINE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian) | ||
|  | { | ||
|  |     const BYTE* p = (const BYTE*)input; | ||
|  |     const BYTE* const bEnd = p + len; | ||
|  | 
 | ||
|  | #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
 | ||
|  |     if (input==NULL) return XXH_ERROR; | ||
|  | #endif
 | ||
|  | 
 | ||
|  |     state->total_len += len; | ||
|  | 
 | ||
|  |     if (state->memsize + len < 32) {  /* fill in tmp buffer */ | ||
|  |         XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len); | ||
|  |         state->memsize += (U32)len; | ||
|  |         return XXH_OK; | ||
|  |     } | ||
|  | 
 | ||
|  |     if (state->memsize) {   /* tmp buffer is full */ | ||
|  |         XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize); | ||
|  |         state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian)); | ||
|  |         state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian)); | ||
|  |         state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian)); | ||
|  |         state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian)); | ||
|  |         p += 32-state->memsize; | ||
|  |         state->memsize = 0; | ||
|  |     } | ||
|  | 
 | ||
|  |     if (p+32 <= bEnd) { | ||
|  |         const BYTE* const limit = bEnd - 32; | ||
|  |         U64 v1 = state->v1; | ||
|  |         U64 v2 = state->v2; | ||
|  |         U64 v3 = state->v3; | ||
|  |         U64 v4 = state->v4; | ||
|  | 
 | ||
|  |         do { | ||
|  |             v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8; | ||
|  |             v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8; | ||
|  |             v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8; | ||
|  |             v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8; | ||
|  |         } while (p<=limit); | ||
|  | 
 | ||
|  |         state->v1 = v1; | ||
|  |         state->v2 = v2; | ||
|  |         state->v3 = v3; | ||
|  |         state->v4 = v4; | ||
|  |     } | ||
|  | 
 | ||
|  |     if (p < bEnd) { | ||
|  |         XXH_memcpy(state->mem64, p, (size_t)(bEnd-p)); | ||
|  |         state->memsize = (unsigned)(bEnd-p); | ||
|  |     } | ||
|  | 
 | ||
|  |     return XXH_OK; | ||
|  | } | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len) | ||
|  | { | ||
|  |     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; | ||
|  | 
 | ||
|  |     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | ||
|  |         return XXH64_update_endian(state_in, input, len, XXH_littleEndian); | ||
|  |     else | ||
|  |         return XXH64_update_endian(state_in, input, len, XXH_bigEndian); | ||
|  | } | ||
|  | 
 | ||
|  | FORCE_INLINE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian) | ||
|  | { | ||
|  |     const BYTE * p = (const BYTE*)state->mem64; | ||
|  |     const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize; | ||
|  |     U64 h64; | ||
|  | 
 | ||
|  |     if (state->total_len >= 32) { | ||
|  |         U64 const v1 = state->v1; | ||
|  |         U64 const v2 = state->v2; | ||
|  |         U64 const v3 = state->v3; | ||
|  |         U64 const v4 = state->v4; | ||
|  | 
 | ||
|  |         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); | ||
|  |         h64 = XXH64_mergeRound(h64, v1); | ||
|  |         h64 = XXH64_mergeRound(h64, v2); | ||
|  |         h64 = XXH64_mergeRound(h64, v3); | ||
|  |         h64 = XXH64_mergeRound(h64, v4); | ||
|  |     } else { | ||
|  |         h64  = state->v3 + PRIME64_5; | ||
|  |     } | ||
|  | 
 | ||
|  |     h64 += (U64) state->total_len; | ||
|  | 
 | ||
|  |     while (p+8<=bEnd) { | ||
|  |         U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian)); | ||
|  |         h64 ^= k1; | ||
|  |         h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; | ||
|  |         p+=8; | ||
|  |     } | ||
|  | 
 | ||
|  |     if (p+4<=bEnd) { | ||
|  |         h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1; | ||
|  |         h64  = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; | ||
|  |         p+=4; | ||
|  |     } | ||
|  | 
 | ||
|  |     while (p<bEnd) { | ||
|  |         h64 ^= (*p) * PRIME64_5; | ||
|  |         h64  = XXH_rotl64(h64, 11) * PRIME64_1; | ||
|  |         p++; | ||
|  |     } | ||
|  | 
 | ||
|  |     h64 ^= h64 >> 33; | ||
|  |     h64 *= PRIME64_2; | ||
|  |     h64 ^= h64 >> 29; | ||
|  |     h64 *= PRIME64_3; | ||
|  |     h64 ^= h64 >> 32; | ||
|  | 
 | ||
|  |     return h64; | ||
|  | } | ||
|  | 
 | ||
|  | XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in) | ||
|  | { | ||
|  |     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; | ||
|  | 
 | ||
|  |     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | ||
|  |         return XXH64_digest_endian(state_in, XXH_littleEndian); | ||
|  |     else | ||
|  |         return XXH64_digest_endian(state_in, XXH_bigEndian); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*====== Canonical representation   ======*/ | ||
|  | 
 | ||
|  | XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash) | ||
|  | { | ||
|  |     XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); | ||
|  |     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); | ||
|  |     memcpy(dst, &hash, sizeof(*dst)); | ||
|  | } | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src) | ||
|  | { | ||
|  |     return XXH_readBE64(src); | ||
|  | } | ||
|  | 
 | ||
|  | #endif  /* XXH_NO_LONG_LONG */
 |