418 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			418 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | #include "btMultiBodyConstraint.h"
 | ||
|  | #include "BulletDynamics/Dynamics/btRigidBody.h"
 | ||
|  | #include "btMultiBodyPoint2Point.h"				//for testing (BTMBP2PCONSTRAINT_BLOCK_ANGULAR_MOTION_TEST macro)
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | btMultiBodyConstraint::btMultiBodyConstraint(btMultiBody* bodyA,btMultiBody* bodyB,int linkA, int linkB, int numRows, bool isUnilateral) | ||
|  | 	:m_bodyA(bodyA), | ||
|  | 	m_bodyB(bodyB), | ||
|  | 	m_linkA(linkA), | ||
|  | 	m_linkB(linkB), | ||
|  | 	m_numRows(numRows), | ||
|  | 	m_jacSizeA(0), | ||
|  | 	m_jacSizeBoth(0), | ||
|  | 	m_isUnilateral(isUnilateral), | ||
|  | 	m_numDofsFinalized(-1), | ||
|  | 	m_maxAppliedImpulse(100) | ||
|  | { | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | void btMultiBodyConstraint::updateJacobianSizes() | ||
|  | { | ||
|  |     if(m_bodyA) | ||
|  | 	{ | ||
|  | 		m_jacSizeA = (6 + m_bodyA->getNumDofs()); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if(m_bodyB) | ||
|  | 	{ | ||
|  | 		m_jacSizeBoth = m_jacSizeA + 6 + m_bodyB->getNumDofs(); | ||
|  | 	} | ||
|  | 	else | ||
|  | 		m_jacSizeBoth = m_jacSizeA; | ||
|  | } | ||
|  | 
 | ||
|  | void btMultiBodyConstraint::allocateJacobiansMultiDof() | ||
|  | { | ||
|  | 	updateJacobianSizes(); | ||
|  | 
 | ||
|  | 	m_posOffset = ((1 + m_jacSizeBoth)*m_numRows); | ||
|  | 	m_data.resize((2 + m_jacSizeBoth) * m_numRows); | ||
|  | } | ||
|  | 
 | ||
|  | btMultiBodyConstraint::~btMultiBodyConstraint() | ||
|  | { | ||
|  | } | ||
|  | 
 | ||
|  | void	btMultiBodyConstraint::applyDeltaVee(btMultiBodyJacobianData& data, btScalar* delta_vee, btScalar impulse, int velocityIndex, int ndof) | ||
|  | { | ||
|  | 	for (int i = 0; i < ndof; ++i) | ||
|  | 		data.m_deltaVelocities[velocityIndex+i] += delta_vee[i] * impulse; | ||
|  | } | ||
|  | 
 | ||
|  | btScalar btMultiBodyConstraint::fillMultiBodyConstraint(	btMultiBodySolverConstraint& solverConstraint, | ||
|  |                                                         btMultiBodyJacobianData& data, | ||
|  |                                                         btScalar* jacOrgA, btScalar* jacOrgB, | ||
|  |                                                         const btVector3& constraintNormalAng, | ||
|  |                                                         const btVector3& constraintNormalLin, | ||
|  |                                                         const btVector3& posAworld, const btVector3& posBworld, | ||
|  |                                                         btScalar posError, | ||
|  |                                                         const btContactSolverInfo& infoGlobal, | ||
|  |                                                         btScalar lowerLimit, btScalar upperLimit, | ||
|  |                                                         bool angConstraint, | ||
|  |                                                         btScalar relaxation, | ||
|  |                                                         bool isFriction, btScalar desiredVelocity, btScalar cfmSlip) | ||
|  | { | ||
|  |     solverConstraint.m_multiBodyA = m_bodyA; | ||
|  |     solverConstraint.m_multiBodyB = m_bodyB; | ||
|  |     solverConstraint.m_linkA = m_linkA; | ||
|  |     solverConstraint.m_linkB = m_linkB; | ||
|  |      | ||
|  |     btMultiBody* multiBodyA = solverConstraint.m_multiBodyA; | ||
|  |     btMultiBody* multiBodyB = solverConstraint.m_multiBodyB; | ||
|  |      | ||
|  |     btSolverBody* bodyA = multiBodyA ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdA); | ||
|  |     btSolverBody* bodyB = multiBodyB ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdB); | ||
|  |      | ||
|  |     btRigidBody* rb0 = multiBodyA ? 0 : bodyA->m_originalBody; | ||
|  |     btRigidBody* rb1 = multiBodyB ? 0 : bodyB->m_originalBody; | ||
|  |      | ||
|  |     btVector3 rel_pos1, rel_pos2;				//these two used to be inited to posAworld and posBworld (respectively) but it does not seem necessary
 | ||
|  |     if (bodyA) | ||
|  |         rel_pos1 = posAworld - bodyA->getWorldTransform().getOrigin(); | ||
|  |     if (bodyB) | ||
|  |         rel_pos2 = posBworld - bodyB->getWorldTransform().getOrigin(); | ||
|  |      | ||
|  |     if (multiBodyA) | ||
|  |     { | ||
|  |         if (solverConstraint.m_linkA<0) | ||
|  |         { | ||
|  |             rel_pos1 = posAworld - multiBodyA->getBasePos(); | ||
|  |         } else | ||
|  |         { | ||
|  |             rel_pos1 = posAworld - multiBodyA->getLink(solverConstraint.m_linkA).m_cachedWorldTransform.getOrigin(); | ||
|  |         } | ||
|  |          | ||
|  |         const int ndofA  = multiBodyA->getNumDofs() + 6; | ||
|  |          | ||
|  |         solverConstraint.m_deltaVelAindex = multiBodyA->getCompanionId(); | ||
|  |          | ||
|  |         if (solverConstraint.m_deltaVelAindex <0) | ||
|  |         { | ||
|  |             solverConstraint.m_deltaVelAindex = data.m_deltaVelocities.size(); | ||
|  |             multiBodyA->setCompanionId(solverConstraint.m_deltaVelAindex); | ||
|  |             data.m_deltaVelocities.resize(data.m_deltaVelocities.size()+ndofA); | ||
|  |         } else | ||
|  |         { | ||
|  |             btAssert(data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex+ndofA); | ||
|  |         } | ||
|  |          | ||
|  |         //determine jacobian of this 1D constraint in terms of multibodyA's degrees of freedom
 | ||
|  |         //resize..
 | ||
|  |         solverConstraint.m_jacAindex = data.m_jacobians.size(); | ||
|  |         data.m_jacobians.resize(data.m_jacobians.size()+ndofA); | ||
|  |         //copy/determine
 | ||
|  |         if(jacOrgA) | ||
|  |         { | ||
|  |             for (int i=0;i<ndofA;i++) | ||
|  |                 data.m_jacobians[solverConstraint.m_jacAindex+i] = jacOrgA[i]; | ||
|  |         } | ||
|  |         else | ||
|  |         { | ||
|  |             btScalar* jac1=&data.m_jacobians[solverConstraint.m_jacAindex]; | ||
|  |             //multiBodyA->fillContactJacobianMultiDof(solverConstraint.m_linkA, posAworld, constraintNormalLin, jac1, data.scratch_r, data.scratch_v, data.scratch_m);
 | ||
|  |             multiBodyA->fillConstraintJacobianMultiDof(solverConstraint.m_linkA, posAworld, constraintNormalAng, constraintNormalLin, jac1, data.scratch_r, data.scratch_v, data.scratch_m); | ||
|  |         } | ||
|  |          | ||
|  |         //determine the velocity response of multibodyA to reaction impulses of this constraint (i.e. A[i,i] for i=1,...n_con: multibody's inverse inertia with respect to this 1D constraint)
 | ||
|  |         //resize..
 | ||
|  |         data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size()+ndofA);		//=> each constraint row has the constrained tree dofs allocated in m_deltaVelocitiesUnitImpulse
 | ||
|  |         btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size()); | ||
|  |         btScalar* delta = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex]; | ||
|  |         //determine..
 | ||
|  |         multiBodyA->calcAccelerationDeltasMultiDof(&data.m_jacobians[solverConstraint.m_jacAindex],delta,data.scratch_r, data.scratch_v); | ||
|  |          | ||
|  |         btVector3 torqueAxis0; | ||
|  |         if (angConstraint) { | ||
|  |             torqueAxis0 = constraintNormalAng; | ||
|  |         } | ||
|  |         else { | ||
|  |             torqueAxis0 = rel_pos1.cross(constraintNormalLin); | ||
|  |              | ||
|  |         } | ||
|  |         solverConstraint.m_relpos1CrossNormal = torqueAxis0; | ||
|  |         solverConstraint.m_contactNormal1 = constraintNormalLin; | ||
|  |     } | ||
|  |     else //if(rb0)
 | ||
|  |     { | ||
|  |         btVector3 torqueAxis0; | ||
|  |         if (angConstraint) { | ||
|  |             torqueAxis0 = constraintNormalAng; | ||
|  |         } | ||
|  |         else { | ||
|  |             torqueAxis0 = rel_pos1.cross(constraintNormalLin); | ||
|  |         } | ||
|  |         solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0); | ||
|  |         solverConstraint.m_relpos1CrossNormal = torqueAxis0; | ||
|  |         solverConstraint.m_contactNormal1 = constraintNormalLin; | ||
|  |     } | ||
|  |      | ||
|  |     if (multiBodyB) | ||
|  |     { | ||
|  |         if (solverConstraint.m_linkB<0) | ||
|  |         { | ||
|  |             rel_pos2 = posBworld - multiBodyB->getBasePos(); | ||
|  |         } else | ||
|  |         { | ||
|  |             rel_pos2 = posBworld - multiBodyB->getLink(solverConstraint.m_linkB).m_cachedWorldTransform.getOrigin(); | ||
|  |         } | ||
|  |          | ||
|  |         const int ndofB  = multiBodyB->getNumDofs() + 6; | ||
|  |          | ||
|  |         solverConstraint.m_deltaVelBindex = multiBodyB->getCompanionId(); | ||
|  |         if (solverConstraint.m_deltaVelBindex <0) | ||
|  |         { | ||
|  |             solverConstraint.m_deltaVelBindex = data.m_deltaVelocities.size(); | ||
|  |             multiBodyB->setCompanionId(solverConstraint.m_deltaVelBindex); | ||
|  |             data.m_deltaVelocities.resize(data.m_deltaVelocities.size()+ndofB); | ||
|  |         } | ||
|  |          | ||
|  |         //determine jacobian of this 1D constraint in terms of multibodyB's degrees of freedom
 | ||
|  |         //resize..
 | ||
|  |         solverConstraint.m_jacBindex = data.m_jacobians.size(); | ||
|  |         data.m_jacobians.resize(data.m_jacobians.size()+ndofB); | ||
|  |         //copy/determine..
 | ||
|  |         if(jacOrgB) | ||
|  |         { | ||
|  |             for (int i=0;i<ndofB;i++) | ||
|  |                 data.m_jacobians[solverConstraint.m_jacBindex+i] = jacOrgB[i]; | ||
|  |         } | ||
|  |         else | ||
|  |         { | ||
|  |             //multiBodyB->fillContactJacobianMultiDof(solverConstraint.m_linkB, posBworld, -constraintNormalLin, &data.m_jacobians[solverConstraint.m_jacBindex], data.scratch_r, data.scratch_v, data.scratch_m);
 | ||
|  |             multiBodyB->fillConstraintJacobianMultiDof(solverConstraint.m_linkB, posBworld, -constraintNormalAng, -constraintNormalLin, &data.m_jacobians[solverConstraint.m_jacBindex], data.scratch_r, data.scratch_v, data.scratch_m); | ||
|  |         } | ||
|  |          | ||
|  |         //determine velocity response of multibodyB to reaction impulses of this constraint (i.e. A[i,i] for i=1,...n_con: multibody's inverse inertia with respect to this 1D constraint)
 | ||
|  |         //resize..
 | ||
|  |         data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size()+ndofB); | ||
|  |         btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size()); | ||
|  |         btScalar* delta = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex]; | ||
|  |         //determine..
 | ||
|  |         multiBodyB->calcAccelerationDeltasMultiDof(&data.m_jacobians[solverConstraint.m_jacBindex],delta,data.scratch_r, data.scratch_v); | ||
|  |          | ||
|  |         btVector3 torqueAxis1; | ||
|  |         if (angConstraint) { | ||
|  |             torqueAxis1 = constraintNormalAng; | ||
|  |         } | ||
|  |         else { | ||
|  |             torqueAxis1 = rel_pos2.cross(constraintNormalLin); | ||
|  |         } | ||
|  |         solverConstraint.m_relpos2CrossNormal = -torqueAxis1; | ||
|  |         solverConstraint.m_contactNormal2 = -constraintNormalLin; | ||
|  |     } | ||
|  |     else //if(rb1)
 | ||
|  |     { | ||
|  |         btVector3 torqueAxis1; | ||
|  |         if (angConstraint) { | ||
|  |             torqueAxis1 = constraintNormalAng; | ||
|  |         } | ||
|  |         else { | ||
|  |             torqueAxis1 = rel_pos2.cross(constraintNormalLin); | ||
|  |         } | ||
|  |         solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0); | ||
|  |         solverConstraint.m_relpos2CrossNormal = -torqueAxis1; | ||
|  |         solverConstraint.m_contactNormal2 = -constraintNormalLin; | ||
|  |     } | ||
|  |     { | ||
|  |          | ||
|  |         btVector3 vec; | ||
|  |         btScalar denom0 = 0.f; | ||
|  |         btScalar denom1 = 0.f; | ||
|  |         btScalar* jacB = 0; | ||
|  |         btScalar* jacA = 0; | ||
|  |         btScalar* deltaVelA = 0; | ||
|  |         btScalar* deltaVelB = 0; | ||
|  |         int ndofA  = 0; | ||
|  |         //determine the "effective mass" of the constrained multibodyA with respect to this 1D constraint (i.e. 1/A[i,i])
 | ||
|  |         if (multiBodyA) | ||
|  |         { | ||
|  |             ndofA = multiBodyA->getNumDofs() + 6; | ||
|  |             jacA = &data.m_jacobians[solverConstraint.m_jacAindex]; | ||
|  |             deltaVelA = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex]; | ||
|  |             for (int i = 0; i < ndofA; ++i) | ||
|  |             { | ||
|  |                 btScalar j = jacA[i] ; | ||
|  |                 btScalar l = deltaVelA[i]; | ||
|  |                 denom0 += j*l; | ||
|  |             } | ||
|  |         } | ||
|  |         else if(rb0) | ||
|  |         { | ||
|  |             vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1); | ||
|  |             if (angConstraint) { | ||
|  |                 denom0 = rb0->getInvMass() + constraintNormalAng.dot(vec); | ||
|  |             } | ||
|  |             else { | ||
|  |                 denom0 = rb0->getInvMass() + constraintNormalLin.dot(vec); | ||
|  |             } | ||
|  |         } | ||
|  |         //
 | ||
|  |         if (multiBodyB) | ||
|  |         { | ||
|  |             const int ndofB = multiBodyB->getNumDofs() + 6; | ||
|  |             jacB = &data.m_jacobians[solverConstraint.m_jacBindex]; | ||
|  |             deltaVelB = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex]; | ||
|  |             for (int i = 0; i < ndofB; ++i) | ||
|  |             { | ||
|  |                 btScalar j = jacB[i] ; | ||
|  |                 btScalar l = deltaVelB[i]; | ||
|  |                 denom1 += j*l; | ||
|  |             } | ||
|  |              | ||
|  |         } | ||
|  |         else if(rb1) | ||
|  |         { | ||
|  |             vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2); | ||
|  |             if (angConstraint) { | ||
|  |                 denom1 = rb1->getInvMass() + constraintNormalAng.dot(vec); | ||
|  |             } | ||
|  |             else { | ||
|  |                 denom1 = rb1->getInvMass() + constraintNormalLin.dot(vec); | ||
|  |             } | ||
|  |         } | ||
|  |          | ||
|  |         //
 | ||
|  |         btScalar d = denom0+denom1; | ||
|  |         if (d>SIMD_EPSILON) | ||
|  |         { | ||
|  |             solverConstraint.m_jacDiagABInv = relaxation/(d); | ||
|  |         } | ||
|  |         else | ||
|  |         { | ||
|  |             //disable the constraint row to handle singularity/redundant constraint
 | ||
|  |             solverConstraint.m_jacDiagABInv  = 0.f; | ||
|  |         } | ||
|  |     } | ||
|  |      | ||
|  |      | ||
|  |     //compute rhs and remaining solverConstraint fields
 | ||
|  |     btScalar penetration = isFriction? 0 : posError; | ||
|  |      | ||
|  |     btScalar rel_vel = 0.f; | ||
|  |     int ndofA  = 0; | ||
|  |     int ndofB  = 0; | ||
|  |     { | ||
|  |         btVector3 vel1,vel2; | ||
|  |         if (multiBodyA) | ||
|  |         { | ||
|  |             ndofA = multiBodyA->getNumDofs() + 6; | ||
|  |             btScalar* jacA = &data.m_jacobians[solverConstraint.m_jacAindex]; | ||
|  |             for (int i = 0; i < ndofA ; ++i) | ||
|  |                 rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i]; | ||
|  |         } | ||
|  |         else if(rb0) | ||
|  |         { | ||
|  |             rel_vel += rb0->getVelocityInLocalPoint(rel_pos1).dot(solverConstraint.m_contactNormal1); | ||
|  |         } | ||
|  |         if (multiBodyB) | ||
|  |         { | ||
|  |             ndofB = multiBodyB->getNumDofs() + 6; | ||
|  |             btScalar* jacB = &data.m_jacobians[solverConstraint.m_jacBindex]; | ||
|  |             for (int i = 0; i < ndofB ; ++i) | ||
|  |                 rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i]; | ||
|  |              | ||
|  |         } | ||
|  |         else if(rb1) | ||
|  |         { | ||
|  |             rel_vel += rb1->getVelocityInLocalPoint(rel_pos2).dot(solverConstraint.m_contactNormal2); | ||
|  |         } | ||
|  |          | ||
|  |         solverConstraint.m_friction = 0.f;//cp.m_combinedFriction;
 | ||
|  |     } | ||
|  |      | ||
|  |      | ||
|  |     ///warm starting (or zero if disabled)
 | ||
|  |     /*
 | ||
|  |      if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING) | ||
|  |      { | ||
|  |      solverConstraint.m_appliedImpulse = isFriction ? 0 : cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor; | ||
|  |       | ||
|  |      if (solverConstraint.m_appliedImpulse) | ||
|  |      { | ||
|  |      if (multiBodyA) | ||
|  |      { | ||
|  |      btScalar impulse = solverConstraint.m_appliedImpulse; | ||
|  |      btScalar* deltaV = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex]; | ||
|  |      multiBodyA->applyDeltaVee(deltaV,impulse); | ||
|  |      applyDeltaVee(data,deltaV,impulse,solverConstraint.m_deltaVelAindex,ndofA); | ||
|  |      } else | ||
|  |      { | ||
|  |      if (rb0) | ||
|  | 					bodyA->internalApplyImpulse(solverConstraint.m_contactNormal1*bodyA->internalGetInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse); | ||
|  |      } | ||
|  |      if (multiBodyB) | ||
|  |      { | ||
|  |      btScalar impulse = solverConstraint.m_appliedImpulse; | ||
|  |      btScalar* deltaV = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex]; | ||
|  |      multiBodyB->applyDeltaVee(deltaV,impulse); | ||
|  |      applyDeltaVee(data,deltaV,impulse,solverConstraint.m_deltaVelBindex,ndofB); | ||
|  |      } else | ||
|  |      { | ||
|  |      if (rb1) | ||
|  | 					bodyB->internalApplyImpulse(-solverConstraint.m_contactNormal2*bodyB->internalGetInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-(btScalar)solverConstraint.m_appliedImpulse); | ||
|  |      } | ||
|  |      } | ||
|  |      } else | ||
|  |      */ | ||
|  |      | ||
|  |     solverConstraint.m_appliedImpulse = 0.f; | ||
|  |     solverConstraint.m_appliedPushImpulse = 0.f; | ||
|  |      | ||
|  |     { | ||
|  |          | ||
|  |         btScalar positionalError = 0.f; | ||
|  |         btScalar	velocityError = desiredVelocity - rel_vel;// * damping;
 | ||
|  |          | ||
|  |          | ||
|  |         btScalar erp = infoGlobal.m_erp2; | ||
|  | 		 | ||
|  | 		//split impulse is not implemented yet for btMultiBody*
 | ||
|  | 		//if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
 | ||
|  |         { | ||
|  |             erp = infoGlobal.m_erp; | ||
|  |         } | ||
|  |          | ||
|  |         positionalError = -penetration * erp/infoGlobal.m_timeStep; | ||
|  |          | ||
|  |         btScalar  penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv; | ||
|  |         btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv; | ||
|  |          | ||
|  | 		//split impulse is not implemented yet for btMultiBody*
 | ||
|  | 
 | ||
|  |       //  if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
 | ||
|  |         { | ||
|  |             //combine position and velocity into rhs
 | ||
|  |             solverConstraint.m_rhs = penetrationImpulse+velocityImpulse; | ||
|  |             solverConstraint.m_rhsPenetration = 0.f; | ||
|  |              | ||
|  |         }  | ||
|  | 		/*else
 | ||
|  |         { | ||
|  |             //split position and velocity into rhs and m_rhsPenetration
 | ||
|  |             solverConstraint.m_rhs = velocityImpulse; | ||
|  |             solverConstraint.m_rhsPenetration = penetrationImpulse; | ||
|  |         } | ||
|  |         */ | ||
|  | 
 | ||
|  |         solverConstraint.m_cfm = 0.f; | ||
|  |         solverConstraint.m_lowerLimit = lowerLimit; | ||
|  |         solverConstraint.m_upperLimit = upperLimit; | ||
|  |     } | ||
|  |      | ||
|  |     return rel_vel; | ||
|  |      | ||
|  | } |