620 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			620 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|  | /*
 | ||
|  | Bullet Continuous Collision Detection and Physics Library | ||
|  | Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | ||
|  | 
 | ||
|  | This software is provided 'as-is', without any express or implied warranty. | ||
|  | In no event will the authors be held liable for any damages arising from the use of this software. | ||
|  | Permission is granted to anyone to use this software for any purpose,  | ||
|  | including commercial applications, and to alter it and redistribute it freely,  | ||
|  | subject to the following restrictions: | ||
|  | 
 | ||
|  | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | ||
|  | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | ||
|  | 3. This notice may not be removed or altered from any source distribution. | ||
|  | */ | ||
|  | 
 | ||
|  | #ifndef BT_RIGIDBODY_H
 | ||
|  | #define BT_RIGIDBODY_H
 | ||
|  | 
 | ||
|  | #include "LinearMath/btAlignedObjectArray.h"
 | ||
|  | #include "LinearMath/btTransform.h"
 | ||
|  | #include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
 | ||
|  | #include "BulletCollision/CollisionDispatch/btCollisionObject.h"
 | ||
|  | 
 | ||
|  | class btCollisionShape; | ||
|  | class btMotionState; | ||
|  | class btTypedConstraint; | ||
|  | 
 | ||
|  | 
 | ||
|  | extern btScalar gDeactivationTime; | ||
|  | extern bool gDisableDeactivation; | ||
|  | 
 | ||
|  | #ifdef BT_USE_DOUBLE_PRECISION
 | ||
|  | #define btRigidBodyData	btRigidBodyDoubleData
 | ||
|  | #define btRigidBodyDataName	"btRigidBodyDoubleData"
 | ||
|  | #else
 | ||
|  | #define btRigidBodyData	btRigidBodyFloatData
 | ||
|  | #define btRigidBodyDataName	"btRigidBodyFloatData"
 | ||
|  | #endif //BT_USE_DOUBLE_PRECISION
 | ||
|  | 
 | ||
|  | 
 | ||
|  | enum	btRigidBodyFlags | ||
|  | { | ||
|  | 	BT_DISABLE_WORLD_GRAVITY = 1, | ||
|  | 	///BT_ENABLE_GYROPSCOPIC_FORCE flags is enabled by default in Bullet 2.83 and onwards.
 | ||
|  | 	///and it BT_ENABLE_GYROPSCOPIC_FORCE becomes equivalent to BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY
 | ||
|  | 	///See Demos/GyroscopicDemo and computeGyroscopicImpulseImplicit
 | ||
|  | 	BT_ENABLE_GYROSCOPIC_FORCE_EXPLICIT = 2, | ||
|  | 	BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_WORLD=4, | ||
|  | 	BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY=8, | ||
|  | 	BT_ENABLE_GYROPSCOPIC_FORCE = BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY, | ||
|  | }; | ||
|  | 
 | ||
|  | 
 | ||
|  | ///The btRigidBody is the main class for rigid body objects. It is derived from btCollisionObject, so it keeps a pointer to a btCollisionShape.
 | ||
|  | ///It is recommended for performance and memory use to share btCollisionShape objects whenever possible.
 | ||
|  | ///There are 3 types of rigid bodies: 
 | ||
|  | ///- A) Dynamic rigid bodies, with positive mass. Motion is controlled by rigid body dynamics.
 | ||
|  | ///- B) Fixed objects with zero mass. They are not moving (basically collision objects)
 | ||
|  | ///- C) Kinematic objects, which are objects without mass, but the user can move them. There is on-way interaction, and Bullet calculates a velocity based on the timestep and previous and current world transform.
 | ||
|  | ///Bullet automatically deactivates dynamic rigid bodies, when the velocity is below a threshold for a given time.
 | ||
|  | ///Deactivated (sleeping) rigid bodies don't take any processing time, except a minor broadphase collision detection impact (to allow active objects to activate/wake up sleeping objects)
 | ||
|  | class btRigidBody  : public btCollisionObject | ||
|  | { | ||
|  | 
 | ||
|  | 	btMatrix3x3	m_invInertiaTensorWorld; | ||
|  | 	btVector3		m_linearVelocity; | ||
|  | 	btVector3		m_angularVelocity; | ||
|  | 	btScalar		m_inverseMass; | ||
|  | 	btVector3		m_linearFactor; | ||
|  | 
 | ||
|  | 	btVector3		m_gravity;	 | ||
|  | 	btVector3		m_gravity_acceleration; | ||
|  | 	btVector3		m_invInertiaLocal; | ||
|  | 	btVector3		m_totalForce; | ||
|  | 	btVector3		m_totalTorque; | ||
|  | 	 | ||
|  | 	btScalar		m_linearDamping; | ||
|  | 	btScalar		m_angularDamping; | ||
|  | 
 | ||
|  | 	bool			m_additionalDamping; | ||
|  | 	btScalar		m_additionalDampingFactor; | ||
|  | 	btScalar		m_additionalLinearDampingThresholdSqr; | ||
|  | 	btScalar		m_additionalAngularDampingThresholdSqr; | ||
|  | 	btScalar		m_additionalAngularDampingFactor; | ||
|  | 
 | ||
|  | 
 | ||
|  | 	btScalar		m_linearSleepingThreshold; | ||
|  | 	btScalar		m_angularSleepingThreshold; | ||
|  | 
 | ||
|  | 	//m_optionalMotionState allows to automatic synchronize the world transform for active objects
 | ||
|  | 	btMotionState*	m_optionalMotionState; | ||
|  | 
 | ||
|  | 	//keep track of typed constraints referencing this rigid body, to disable collision between linked bodies
 | ||
|  | 	btAlignedObjectArray<btTypedConstraint*> m_constraintRefs; | ||
|  | 
 | ||
|  | 	int				m_rigidbodyFlags; | ||
|  | 	 | ||
|  | 	int				m_debugBodyId; | ||
|  | 	 | ||
|  | 
 | ||
|  | protected: | ||
|  | 
 | ||
|  | 	ATTRIBUTE_ALIGNED16(btVector3		m_deltaLinearVelocity); | ||
|  | 	btVector3		m_deltaAngularVelocity; | ||
|  | 	btVector3		m_angularFactor; | ||
|  | 	btVector3		m_invMass; | ||
|  | 	btVector3		m_pushVelocity; | ||
|  | 	btVector3		m_turnVelocity; | ||
|  | 
 | ||
|  | 
 | ||
|  | public: | ||
|  | 
 | ||
|  | 
 | ||
|  | 	///The btRigidBodyConstructionInfo structure provides information to create a rigid body. Setting mass to zero creates a fixed (non-dynamic) rigid body.
 | ||
|  | 	///For dynamic objects, you can use the collision shape to approximate the local inertia tensor, otherwise use the zero vector (default argument)
 | ||
|  | 	///You can use the motion state to synchronize the world transform between physics and graphics objects. 
 | ||
|  | 	///And if the motion state is provided, the rigid body will initialize its initial world transform from the motion state,
 | ||
|  | 	///m_startWorldTransform is only used when you don't provide a motion state.
 | ||
|  | 	struct	btRigidBodyConstructionInfo | ||
|  | 	{ | ||
|  | 		btScalar			m_mass; | ||
|  | 
 | ||
|  | 		///When a motionState is provided, the rigid body will initialize its world transform from the motion state
 | ||
|  | 		///In this case, m_startWorldTransform is ignored.
 | ||
|  | 		btMotionState*		m_motionState; | ||
|  | 		btTransform	m_startWorldTransform; | ||
|  | 
 | ||
|  | 		btCollisionShape*	m_collisionShape; | ||
|  | 		btVector3			m_localInertia; | ||
|  | 		btScalar			m_linearDamping; | ||
|  | 		btScalar			m_angularDamping; | ||
|  | 
 | ||
|  | 		///best simulation results when friction is non-zero
 | ||
|  | 		btScalar			m_friction; | ||
|  | 		///the m_rollingFriction prevents rounded shapes, such as spheres, cylinders and capsules from rolling forever.
 | ||
|  | 		///See Bullet/Demos/RollingFrictionDemo for usage
 | ||
|  | 		btScalar			m_rollingFriction; | ||
|  |         btScalar			m_spinningFriction;//torsional friction around contact normal
 | ||
|  |          | ||
|  | 		///best simulation results using zero restitution.
 | ||
|  | 		btScalar			m_restitution; | ||
|  | 
 | ||
|  | 		btScalar			m_linearSleepingThreshold; | ||
|  | 		btScalar			m_angularSleepingThreshold; | ||
|  | 
 | ||
|  | 		//Additional damping can help avoiding lowpass jitter motion, help stability for ragdolls etc.
 | ||
|  | 		//Such damping is undesirable, so once the overall simulation quality of the rigid body dynamics system has improved, this should become obsolete
 | ||
|  | 		bool				m_additionalDamping; | ||
|  | 		btScalar			m_additionalDampingFactor; | ||
|  | 		btScalar			m_additionalLinearDampingThresholdSqr; | ||
|  | 		btScalar			m_additionalAngularDampingThresholdSqr; | ||
|  | 		btScalar			m_additionalAngularDampingFactor; | ||
|  | 
 | ||
|  | 		btRigidBodyConstructionInfo(	btScalar mass, btMotionState* motionState, btCollisionShape* collisionShape, const btVector3& localInertia=btVector3(0,0,0)): | ||
|  | 		m_mass(mass), | ||
|  | 			m_motionState(motionState), | ||
|  | 			m_collisionShape(collisionShape), | ||
|  | 			m_localInertia(localInertia), | ||
|  | 			m_linearDamping(btScalar(0.)), | ||
|  | 			m_angularDamping(btScalar(0.)), | ||
|  | 			m_friction(btScalar(0.5)), | ||
|  | 			m_rollingFriction(btScalar(0)), | ||
|  |             m_spinningFriction(btScalar(0)), | ||
|  | 			m_restitution(btScalar(0.)), | ||
|  | 			m_linearSleepingThreshold(btScalar(0.8)), | ||
|  | 			m_angularSleepingThreshold(btScalar(1.f)), | ||
|  | 			m_additionalDamping(false), | ||
|  | 			m_additionalDampingFactor(btScalar(0.005)), | ||
|  | 			m_additionalLinearDampingThresholdSqr(btScalar(0.01)), | ||
|  | 			m_additionalAngularDampingThresholdSqr(btScalar(0.01)), | ||
|  | 			m_additionalAngularDampingFactor(btScalar(0.01)) | ||
|  | 		{ | ||
|  | 			m_startWorldTransform.setIdentity(); | ||
|  | 		} | ||
|  | 	}; | ||
|  | 
 | ||
|  | 	///btRigidBody constructor using construction info
 | ||
|  | 	btRigidBody(	const btRigidBodyConstructionInfo& constructionInfo); | ||
|  | 
 | ||
|  | 	///btRigidBody constructor for backwards compatibility. 
 | ||
|  | 	///To specify friction (etc) during rigid body construction, please use the other constructor (using btRigidBodyConstructionInfo)
 | ||
|  | 	btRigidBody(	btScalar mass, btMotionState* motionState, btCollisionShape* collisionShape, const btVector3& localInertia=btVector3(0,0,0)); | ||
|  | 
 | ||
|  | 
 | ||
|  | 	virtual ~btRigidBody() | ||
|  |         {  | ||
|  |                 //No constraints should point to this rigidbody
 | ||
|  | 		//Remove constraints from the dynamics world before you delete the related rigidbodies. 
 | ||
|  |                 btAssert(m_constraintRefs.size()==0);  | ||
|  |         } | ||
|  | 
 | ||
|  | protected: | ||
|  | 
 | ||
|  | 	///setupRigidBody is only used internally by the constructor
 | ||
|  | 	void	setupRigidBody(const btRigidBodyConstructionInfo& constructionInfo); | ||
|  | 
 | ||
|  | public: | ||
|  | 
 | ||
|  | 	void			proceedToTransform(const btTransform& newTrans);  | ||
|  | 	 | ||
|  | 	///to keep collision detection and dynamics separate we don't store a rigidbody pointer
 | ||
|  | 	///but a rigidbody is derived from btCollisionObject, so we can safely perform an upcast
 | ||
|  | 	static const btRigidBody*	upcast(const btCollisionObject* colObj) | ||
|  | 	{ | ||
|  | 		if (colObj->getInternalType()&btCollisionObject::CO_RIGID_BODY) | ||
|  | 			return (const btRigidBody*)colObj; | ||
|  | 		return 0; | ||
|  | 	} | ||
|  | 	static btRigidBody*	upcast(btCollisionObject* colObj) | ||
|  | 	{ | ||
|  | 		if (colObj->getInternalType()&btCollisionObject::CO_RIGID_BODY) | ||
|  | 			return (btRigidBody*)colObj; | ||
|  | 		return 0; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	/// continuous collision detection needs prediction
 | ||
|  | 	void			predictIntegratedTransform(btScalar step, btTransform& predictedTransform) ; | ||
|  | 	 | ||
|  | 	void			saveKinematicState(btScalar step); | ||
|  | 	 | ||
|  | 	void			applyGravity(); | ||
|  | 	 | ||
|  | 	void			setGravity(const btVector3& acceleration);   | ||
|  | 
 | ||
|  | 	const btVector3&	getGravity() const | ||
|  | 	{ | ||
|  | 		return m_gravity_acceleration; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	void			setDamping(btScalar lin_damping, btScalar ang_damping); | ||
|  | 
 | ||
|  | 	btScalar getLinearDamping() const | ||
|  | 	{ | ||
|  | 		return m_linearDamping; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	btScalar getAngularDamping() const | ||
|  | 	{ | ||
|  | 		return m_angularDamping; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	btScalar getLinearSleepingThreshold() const | ||
|  | 	{ | ||
|  | 		return m_linearSleepingThreshold; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	btScalar getAngularSleepingThreshold() const | ||
|  | 	{ | ||
|  | 		return m_angularSleepingThreshold; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	void			applyDamping(btScalar timeStep); | ||
|  | 
 | ||
|  | 	SIMD_FORCE_INLINE const btCollisionShape*	getCollisionShape() const { | ||
|  | 		return m_collisionShape; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	SIMD_FORCE_INLINE btCollisionShape*	getCollisionShape() { | ||
|  | 			return m_collisionShape; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	void			setMassProps(btScalar mass, const btVector3& inertia); | ||
|  | 	 | ||
|  | 	const btVector3& getLinearFactor() const | ||
|  | 	{ | ||
|  | 		return m_linearFactor; | ||
|  | 	} | ||
|  | 	void setLinearFactor(const btVector3& linearFactor) | ||
|  | 	{ | ||
|  | 		m_linearFactor = linearFactor; | ||
|  | 		m_invMass = m_linearFactor*m_inverseMass; | ||
|  | 	} | ||
|  | 	btScalar		getInvMass() const { return m_inverseMass; } | ||
|  | 	const btMatrix3x3& getInvInertiaTensorWorld() const {  | ||
|  | 		return m_invInertiaTensorWorld;  | ||
|  | 	} | ||
|  | 		 | ||
|  | 	void			integrateVelocities(btScalar step); | ||
|  | 
 | ||
|  | 	void			setCenterOfMassTransform(const btTransform& xform); | ||
|  | 
 | ||
|  | 	void			applyCentralForce(const btVector3& force) | ||
|  | 	{ | ||
|  | 		m_totalForce += force*m_linearFactor; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	const btVector3& getTotalForce() const | ||
|  | 	{ | ||
|  | 		return m_totalForce; | ||
|  | 	}; | ||
|  | 
 | ||
|  | 	const btVector3& getTotalTorque() const | ||
|  | 	{ | ||
|  | 		return m_totalTorque; | ||
|  | 	}; | ||
|  |      | ||
|  | 	const btVector3& getInvInertiaDiagLocal() const | ||
|  | 	{ | ||
|  | 		return m_invInertiaLocal; | ||
|  | 	}; | ||
|  | 
 | ||
|  | 	void	setInvInertiaDiagLocal(const btVector3& diagInvInertia) | ||
|  | 	{ | ||
|  | 		m_invInertiaLocal = diagInvInertia; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	void	setSleepingThresholds(btScalar linear,btScalar angular) | ||
|  | 	{ | ||
|  | 		m_linearSleepingThreshold = linear; | ||
|  | 		m_angularSleepingThreshold = angular; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	void	applyTorque(const btVector3& torque) | ||
|  | 	{ | ||
|  | 		m_totalTorque += torque*m_angularFactor; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	void	applyForce(const btVector3& force, const btVector3& rel_pos)  | ||
|  | 	{ | ||
|  | 		applyCentralForce(force); | ||
|  | 		applyTorque(rel_pos.cross(force*m_linearFactor)); | ||
|  | 	} | ||
|  | 	 | ||
|  | 	void applyCentralImpulse(const btVector3& impulse) | ||
|  | 	{ | ||
|  | 		m_linearVelocity += impulse *m_linearFactor * m_inverseMass; | ||
|  | 	} | ||
|  | 	 | ||
|  |   	void applyTorqueImpulse(const btVector3& torque) | ||
|  | 	{ | ||
|  | 			m_angularVelocity += m_invInertiaTensorWorld * torque * m_angularFactor; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	void applyImpulse(const btVector3& impulse, const btVector3& rel_pos)  | ||
|  | 	{ | ||
|  | 		if (m_inverseMass != btScalar(0.)) | ||
|  | 		{ | ||
|  | 			applyCentralImpulse(impulse); | ||
|  | 			if (m_angularFactor) | ||
|  | 			{ | ||
|  | 				applyTorqueImpulse(rel_pos.cross(impulse*m_linearFactor)); | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	void clearForces()  | ||
|  | 	{ | ||
|  | 		m_totalForce.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0)); | ||
|  | 		m_totalTorque.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0)); | ||
|  | 	} | ||
|  | 	 | ||
|  | 	void updateInertiaTensor();     | ||
|  | 	 | ||
|  | 	const btVector3&     getCenterOfMassPosition() const {  | ||
|  | 		return m_worldTransform.getOrigin();  | ||
|  | 	} | ||
|  | 	btQuaternion getOrientation() const; | ||
|  | 	 | ||
|  | 	const btTransform&  getCenterOfMassTransform() const {  | ||
|  | 		return m_worldTransform;  | ||
|  | 	} | ||
|  | 	const btVector3&   getLinearVelocity() const {  | ||
|  | 		return m_linearVelocity;  | ||
|  | 	} | ||
|  | 	const btVector3&    getAngularVelocity() const {  | ||
|  | 		return m_angularVelocity;  | ||
|  | 	} | ||
|  | 	 | ||
|  | 
 | ||
|  | 	inline void setLinearVelocity(const btVector3& lin_vel) | ||
|  | 	{  | ||
|  | 		m_updateRevision++; | ||
|  | 		m_linearVelocity = lin_vel;  | ||
|  | 	} | ||
|  | 
 | ||
|  | 	inline void setAngularVelocity(const btVector3& ang_vel)  | ||
|  | 	{  | ||
|  | 		m_updateRevision++; | ||
|  | 		m_angularVelocity = ang_vel;  | ||
|  | 	} | ||
|  | 
 | ||
|  | 	btVector3 getVelocityInLocalPoint(const btVector3& rel_pos) const | ||
|  | 	{ | ||
|  | 		//we also calculate lin/ang velocity for kinematic objects
 | ||
|  | 		return m_linearVelocity + m_angularVelocity.cross(rel_pos); | ||
|  | 
 | ||
|  | 		//for kinematic objects, we could also use use:
 | ||
|  | 		//		return 	(m_worldTransform(rel_pos) - m_interpolationWorldTransform(rel_pos)) / m_kinematicTimeStep;
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	void translate(const btVector3& v)  | ||
|  | 	{ | ||
|  | 		m_worldTransform.getOrigin() += v;  | ||
|  | 	} | ||
|  | 
 | ||
|  | 	 | ||
|  | 	void	getAabb(btVector3& aabbMin,btVector3& aabbMax) const; | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	 | ||
|  | 	SIMD_FORCE_INLINE btScalar computeImpulseDenominator(const btVector3& pos, const btVector3& normal) const | ||
|  | 	{ | ||
|  | 		btVector3 r0 = pos - getCenterOfMassPosition(); | ||
|  | 
 | ||
|  | 		btVector3 c0 = (r0).cross(normal); | ||
|  | 
 | ||
|  | 		btVector3 vec = (c0 * getInvInertiaTensorWorld()).cross(r0); | ||
|  | 
 | ||
|  | 		return m_inverseMass + normal.dot(vec); | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	SIMD_FORCE_INLINE btScalar computeAngularImpulseDenominator(const btVector3& axis) const | ||
|  | 	{ | ||
|  | 		btVector3 vec = axis * getInvInertiaTensorWorld(); | ||
|  | 		return axis.dot(vec); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	SIMD_FORCE_INLINE void	updateDeactivation(btScalar timeStep) | ||
|  | 	{ | ||
|  | 		if ( (getActivationState() == ISLAND_SLEEPING) || (getActivationState() == DISABLE_DEACTIVATION)) | ||
|  | 			return; | ||
|  | 
 | ||
|  | 		if ((getLinearVelocity().length2() < m_linearSleepingThreshold*m_linearSleepingThreshold) && | ||
|  | 			(getAngularVelocity().length2() < m_angularSleepingThreshold*m_angularSleepingThreshold)) | ||
|  | 		{ | ||
|  | 			m_deactivationTime += timeStep; | ||
|  | 		} else | ||
|  | 		{ | ||
|  | 			m_deactivationTime=btScalar(0.); | ||
|  | 			setActivationState(0); | ||
|  | 		} | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	SIMD_FORCE_INLINE bool	wantsSleeping() | ||
|  | 	{ | ||
|  | 
 | ||
|  | 		if (getActivationState() == DISABLE_DEACTIVATION) | ||
|  | 			return false; | ||
|  | 
 | ||
|  | 		//disable deactivation
 | ||
|  | 		if (gDisableDeactivation || (gDeactivationTime == btScalar(0.))) | ||
|  | 			return false; | ||
|  | 
 | ||
|  | 		if ( (getActivationState() == ISLAND_SLEEPING) || (getActivationState() == WANTS_DEACTIVATION)) | ||
|  | 			return true; | ||
|  | 
 | ||
|  | 		if (m_deactivationTime> gDeactivationTime) | ||
|  | 		{ | ||
|  | 			return true; | ||
|  | 		} | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 
 | ||
|  | 
 | ||
|  | 	 | ||
|  | 	const btBroadphaseProxy*	getBroadphaseProxy() const | ||
|  | 	{ | ||
|  | 		return m_broadphaseHandle; | ||
|  | 	} | ||
|  | 	btBroadphaseProxy*	getBroadphaseProxy()  | ||
|  | 	{ | ||
|  | 		return m_broadphaseHandle; | ||
|  | 	} | ||
|  | 	void	setNewBroadphaseProxy(btBroadphaseProxy* broadphaseProxy) | ||
|  | 	{ | ||
|  | 		m_broadphaseHandle = broadphaseProxy; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	//btMotionState allows to automatic synchronize the world transform for active objects
 | ||
|  | 	btMotionState*	getMotionState() | ||
|  | 	{ | ||
|  | 		return m_optionalMotionState; | ||
|  | 	} | ||
|  | 	const btMotionState*	getMotionState() const | ||
|  | 	{ | ||
|  | 		return m_optionalMotionState; | ||
|  | 	} | ||
|  | 	void	setMotionState(btMotionState* motionState) | ||
|  | 	{ | ||
|  | 		m_optionalMotionState = motionState; | ||
|  | 		if (m_optionalMotionState) | ||
|  | 			motionState->getWorldTransform(m_worldTransform); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	//for experimental overriding of friction/contact solver func
 | ||
|  | 	int	m_contactSolverType; | ||
|  | 	int	m_frictionSolverType; | ||
|  | 
 | ||
|  | 	void	setAngularFactor(const btVector3& angFac) | ||
|  | 	{ | ||
|  | 		m_updateRevision++; | ||
|  | 		m_angularFactor = angFac; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	void	setAngularFactor(btScalar angFac) | ||
|  | 	{ | ||
|  | 		m_updateRevision++; | ||
|  | 		m_angularFactor.setValue(angFac,angFac,angFac); | ||
|  | 	} | ||
|  | 	const btVector3&	getAngularFactor() const | ||
|  | 	{ | ||
|  | 		return m_angularFactor; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	//is this rigidbody added to a btCollisionWorld/btDynamicsWorld/btBroadphase?
 | ||
|  | 	bool	isInWorld() const | ||
|  | 	{ | ||
|  | 		return (getBroadphaseProxy() != 0); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	void addConstraintRef(btTypedConstraint* c); | ||
|  | 	void removeConstraintRef(btTypedConstraint* c); | ||
|  | 
 | ||
|  | 	btTypedConstraint* getConstraintRef(int index) | ||
|  | 	{ | ||
|  | 		return m_constraintRefs[index]; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	int getNumConstraintRefs() const | ||
|  | 	{ | ||
|  | 		return m_constraintRefs.size(); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	void	setFlags(int flags) | ||
|  | 	{ | ||
|  | 		m_rigidbodyFlags = flags; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	int getFlags() const | ||
|  | 	{ | ||
|  | 		return m_rigidbodyFlags; | ||
|  | 	} | ||
|  | 
 | ||
|  | 
 | ||
|  | 	 | ||
|  | 
 | ||
|  | 	///perform implicit force computation in world space
 | ||
|  | 	btVector3 computeGyroscopicImpulseImplicit_World(btScalar dt) const; | ||
|  | 	 | ||
|  | 	///perform implicit force computation in body space (inertial frame)
 | ||
|  | 	btVector3 computeGyroscopicImpulseImplicit_Body(btScalar step) const; | ||
|  | 
 | ||
|  | 	///explicit version is best avoided, it gains energy
 | ||
|  | 	btVector3 computeGyroscopicForceExplicit(btScalar maxGyroscopicForce) const; | ||
|  | 	btVector3 getLocalInertia() const; | ||
|  | 
 | ||
|  | 	///////////////////////////////////////////////
 | ||
|  | 
 | ||
|  | 	virtual	int	calculateSerializeBufferSize()	const; | ||
|  | 
 | ||
|  | 	///fills the dataBuffer and returns the struct name (and 0 on failure)
 | ||
|  | 	virtual	const char*	serialize(void* dataBuffer,  class btSerializer* serializer) const; | ||
|  | 
 | ||
|  | 	virtual void serializeSingleObject(class btSerializer* serializer) const; | ||
|  | 
 | ||
|  | }; | ||
|  | 
 | ||
|  | //@todo add m_optionalMotionState and m_constraintRefs to btRigidBodyData
 | ||
|  | ///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
 | ||
|  | struct	btRigidBodyFloatData | ||
|  | { | ||
|  | 	btCollisionObjectFloatData	m_collisionObjectData; | ||
|  | 	btMatrix3x3FloatData		m_invInertiaTensorWorld; | ||
|  | 	btVector3FloatData		m_linearVelocity; | ||
|  | 	btVector3FloatData		m_angularVelocity; | ||
|  | 	btVector3FloatData		m_angularFactor; | ||
|  | 	btVector3FloatData		m_linearFactor; | ||
|  | 	btVector3FloatData		m_gravity;	 | ||
|  | 	btVector3FloatData		m_gravity_acceleration; | ||
|  | 	btVector3FloatData		m_invInertiaLocal; | ||
|  | 	btVector3FloatData		m_totalForce; | ||
|  | 	btVector3FloatData		m_totalTorque; | ||
|  | 	float					m_inverseMass; | ||
|  | 	float					m_linearDamping; | ||
|  | 	float					m_angularDamping; | ||
|  | 	float					m_additionalDampingFactor; | ||
|  | 	float					m_additionalLinearDampingThresholdSqr; | ||
|  | 	float					m_additionalAngularDampingThresholdSqr; | ||
|  | 	float					m_additionalAngularDampingFactor; | ||
|  | 	float					m_linearSleepingThreshold; | ||
|  | 	float					m_angularSleepingThreshold; | ||
|  | 	int						m_additionalDamping; | ||
|  | }; | ||
|  | 
 | ||
|  | ///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
 | ||
|  | struct	btRigidBodyDoubleData | ||
|  | { | ||
|  | 	btCollisionObjectDoubleData	m_collisionObjectData; | ||
|  | 	btMatrix3x3DoubleData		m_invInertiaTensorWorld; | ||
|  | 	btVector3DoubleData		m_linearVelocity; | ||
|  | 	btVector3DoubleData		m_angularVelocity; | ||
|  | 	btVector3DoubleData		m_angularFactor; | ||
|  | 	btVector3DoubleData		m_linearFactor; | ||
|  | 	btVector3DoubleData		m_gravity;	 | ||
|  | 	btVector3DoubleData		m_gravity_acceleration; | ||
|  | 	btVector3DoubleData		m_invInertiaLocal; | ||
|  | 	btVector3DoubleData		m_totalForce; | ||
|  | 	btVector3DoubleData		m_totalTorque; | ||
|  | 	double					m_inverseMass; | ||
|  | 	double					m_linearDamping; | ||
|  | 	double					m_angularDamping; | ||
|  | 	double					m_additionalDampingFactor; | ||
|  | 	double					m_additionalLinearDampingThresholdSqr; | ||
|  | 	double					m_additionalAngularDampingThresholdSqr; | ||
|  | 	double					m_additionalAngularDampingFactor; | ||
|  | 	double					m_linearSleepingThreshold; | ||
|  | 	double					m_angularSleepingThreshold; | ||
|  | 	int						m_additionalDamping; | ||
|  | 	char	m_padding[4]; | ||
|  | }; | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #endif //BT_RIGIDBODY_H
 | ||
|  | 
 |