2251 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			2251 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// This software is provided 'as-is', without any express or implied
							 | 
						||
| 
								 | 
							
								// warranty.  In no event will the authors be held liable for any damages
							 | 
						||
| 
								 | 
							
								// arising from the use of this software.
							 | 
						||
| 
								 | 
							
								// Permission is granted to anyone to use this software for any purpose,
							 | 
						||
| 
								 | 
							
								// including commercial applications, and to alter it and redistribute it
							 | 
						||
| 
								 | 
							
								// freely, subject to the following restrictions:
							 | 
						||
| 
								 | 
							
								// 1. The origin of this software must not be misrepresented; you must not
							 | 
						||
| 
								 | 
							
								//    claim that you wrote the original software. If you use this software
							 | 
						||
| 
								 | 
							
								//    in a product, an acknowledgment in the product documentation would be
							 | 
						||
| 
								 | 
							
								//    appreciated but is not required.
							 | 
						||
| 
								 | 
							
								// 2. Altered source versions must be plainly marked as such, and must not be
							 | 
						||
| 
								 | 
							
								//    misrepresented as being the original software.
							 | 
						||
| 
								 | 
							
								// 3. This notice may not be removed or altered from any source distribution.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "DetourCommon.h"
							 | 
						||
| 
								 | 
							
								#include "DetourMath.h"
							 | 
						||
| 
								 | 
							
								#include "DetourStatus.h"
							 | 
						||
| 
								 | 
							
								#include "DetourAssert.h"
							 | 
						||
| 
								 | 
							
								#include "DetourTileCacheBuilder.h"
							 | 
						||
| 
								 | 
							
								#include <string.h>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template<class T> class dtFixedArray
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									dtTileCacheAlloc* m_alloc;
							 | 
						||
| 
								 | 
							
									T* m_ptr;
							 | 
						||
| 
								 | 
							
									const int m_size;
							 | 
						||
| 
								 | 
							
									inline void operator=(dtFixedArray<T>& p);
							 | 
						||
| 
								 | 
							
								public:
							 | 
						||
| 
								 | 
							
									inline dtFixedArray(dtTileCacheAlloc* a, const int s) : m_alloc(a), m_ptr((T*)a->alloc(sizeof(T)*s)), m_size(s) {}
							 | 
						||
| 
								 | 
							
									inline ~dtFixedArray() { if (m_alloc) m_alloc->free(m_ptr); }
							 | 
						||
| 
								 | 
							
									inline operator T*() { return m_ptr; }
							 | 
						||
| 
								 | 
							
									inline int size() const { return m_size; }
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline int getDirOffsetX(int dir)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const int offset[4] = { -1, 0, 1, 0, };
							 | 
						||
| 
								 | 
							
									return offset[dir&0x03];
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline int getDirOffsetY(int dir)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const int offset[4] = { 0, 1, 0, -1 };
							 | 
						||
| 
								 | 
							
									return offset[dir&0x03];
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static const int MAX_VERTS_PER_POLY = 6;	// TODO: use the DT_VERTS_PER_POLYGON
							 | 
						||
| 
								 | 
							
								static const int MAX_REM_EDGES = 48;		// TODO: make this an expression.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								dtTileCacheContourSet* dtAllocTileCacheContourSet(dtTileCacheAlloc* alloc)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									dtAssert(alloc);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									dtTileCacheContourSet* cset = (dtTileCacheContourSet*)alloc->alloc(sizeof(dtTileCacheContourSet));
							 | 
						||
| 
								 | 
							
									memset(cset, 0, sizeof(dtTileCacheContourSet));
							 | 
						||
| 
								 | 
							
									return cset;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void dtFreeTileCacheContourSet(dtTileCacheAlloc* alloc, dtTileCacheContourSet* cset)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									dtAssert(alloc);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									if (!cset) return;
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < cset->nconts; ++i)
							 | 
						||
| 
								 | 
							
										alloc->free(cset->conts[i].verts);
							 | 
						||
| 
								 | 
							
									alloc->free(cset->conts);
							 | 
						||
| 
								 | 
							
									alloc->free(cset);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								dtTileCachePolyMesh* dtAllocTileCachePolyMesh(dtTileCacheAlloc* alloc)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									dtAssert(alloc);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									dtTileCachePolyMesh* lmesh = (dtTileCachePolyMesh*)alloc->alloc(sizeof(dtTileCachePolyMesh));
							 | 
						||
| 
								 | 
							
									memset(lmesh, 0, sizeof(dtTileCachePolyMesh));
							 | 
						||
| 
								 | 
							
									return lmesh;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void dtFreeTileCachePolyMesh(dtTileCacheAlloc* alloc, dtTileCachePolyMesh* lmesh)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									dtAssert(alloc);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									if (!lmesh) return;
							 | 
						||
| 
								 | 
							
									alloc->free(lmesh->verts);
							 | 
						||
| 
								 | 
							
									alloc->free(lmesh->polys);
							 | 
						||
| 
								 | 
							
									alloc->free(lmesh->flags);
							 | 
						||
| 
								 | 
							
									alloc->free(lmesh->areas);
							 | 
						||
| 
								 | 
							
									alloc->free(lmesh);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								struct dtLayerSweepSpan
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									unsigned short ns;	// number samples
							 | 
						||
| 
								 | 
							
									unsigned char id;	// region id
							 | 
						||
| 
								 | 
							
									unsigned char nei;	// neighbour id
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static const int DT_LAYER_MAX_NEIS = 16;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								struct dtLayerMonotoneRegion
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									int area;
							 | 
						||
| 
								 | 
							
									unsigned char neis[DT_LAYER_MAX_NEIS];
							 | 
						||
| 
								 | 
							
									unsigned char nneis;
							 | 
						||
| 
								 | 
							
									unsigned char regId;
							 | 
						||
| 
								 | 
							
									unsigned char areaId;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								struct dtTempContour
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									inline dtTempContour(unsigned char* vbuf, const int nvbuf,
							 | 
						||
| 
								 | 
							
														 unsigned short* pbuf, const int npbuf) :
							 | 
						||
| 
								 | 
							
										verts(vbuf), nverts(0), cverts(nvbuf),
							 | 
						||
| 
								 | 
							
										poly(pbuf), npoly(0), cpoly(npbuf) 
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									unsigned char* verts;
							 | 
						||
| 
								 | 
							
									int nverts;
							 | 
						||
| 
								 | 
							
									int cverts;
							 | 
						||
| 
								 | 
							
									unsigned short* poly;
							 | 
						||
| 
								 | 
							
									int npoly;
							 | 
						||
| 
								 | 
							
									int cpoly;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline bool overlapRangeExl(const unsigned short amin, const unsigned short amax,
							 | 
						||
| 
								 | 
							
															const unsigned short bmin, const unsigned short bmax)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return (amin >= bmax || amax <= bmin) ? false : true;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void addUniqueLast(unsigned char* a, unsigned char& an, unsigned char v)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const int n = (int)an;
							 | 
						||
| 
								 | 
							
									if (n > 0 && a[n-1] == v) return;
							 | 
						||
| 
								 | 
							
									a[an] = v;
							 | 
						||
| 
								 | 
							
									an++;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline bool isConnected(const dtTileCacheLayer& layer,
							 | 
						||
| 
								 | 
							
														const int ia, const int ib, const int walkableClimb)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									if (layer.areas[ia] != layer.areas[ib]) return false;
							 | 
						||
| 
								 | 
							
									if (dtAbs((int)layer.heights[ia] - (int)layer.heights[ib]) > walkableClimb) return false;
							 | 
						||
| 
								 | 
							
									return true;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static bool canMerge(unsigned char oldRegId, unsigned char newRegId, const dtLayerMonotoneRegion* regs, const int nregs)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									int count = 0;
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nregs; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const dtLayerMonotoneRegion& reg = regs[i];
							 | 
						||
| 
								 | 
							
										if (reg.regId != oldRegId) continue;
							 | 
						||
| 
								 | 
							
										const int nnei = (int)reg.nneis;
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < nnei; ++j)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											if (regs[reg.neis[j]].regId == newRegId)
							 | 
						||
| 
								 | 
							
												count++;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									return count == 1;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								dtStatus dtBuildTileCacheRegions(dtTileCacheAlloc* alloc,
							 | 
						||
| 
								 | 
							
																 dtTileCacheLayer& layer,
							 | 
						||
| 
								 | 
							
																 const int walkableClimb)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									dtAssert(alloc);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									const int w = (int)layer.header->width;
							 | 
						||
| 
								 | 
							
									const int h = (int)layer.header->height;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									memset(layer.regs,0xff,sizeof(unsigned char)*w*h);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									const int nsweeps = w;
							 | 
						||
| 
								 | 
							
									dtFixedArray<dtLayerSweepSpan> sweeps(alloc, nsweeps);
							 | 
						||
| 
								 | 
							
									if (!sweeps)
							 | 
						||
| 
								 | 
							
										return DT_FAILURE | DT_OUT_OF_MEMORY;
							 | 
						||
| 
								 | 
							
									memset(sweeps,0,sizeof(dtLayerSweepSpan)*nsweeps);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Partition walkable area into monotone regions.
							 | 
						||
| 
								 | 
							
									unsigned char prevCount[256];
							 | 
						||
| 
								 | 
							
									unsigned char regId = 0;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int y = 0; y < h; ++y)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										if (regId > 0)
							 | 
						||
| 
								 | 
							
											memset(prevCount,0,sizeof(unsigned char)*regId);
							 | 
						||
| 
								 | 
							
										unsigned char sweepId = 0;
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										for (int x = 0; x < w; ++x)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											const int idx = x + y*w;
							 | 
						||
| 
								 | 
							
											if (layer.areas[idx] == DT_TILECACHE_NULL_AREA) continue;
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											unsigned char sid = 0xff;
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											// -x
							 | 
						||
| 
								 | 
							
											const int xidx = (x-1)+y*w;
							 | 
						||
| 
								 | 
							
											if (x > 0 && isConnected(layer, idx, xidx, walkableClimb))
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												if (layer.regs[xidx] != 0xff)
							 | 
						||
| 
								 | 
							
													sid = layer.regs[xidx];
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											if (sid == 0xff)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												sid = sweepId++;
							 | 
						||
| 
								 | 
							
												sweeps[sid].nei = 0xff;
							 | 
						||
| 
								 | 
							
												sweeps[sid].ns = 0;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											// -y
							 | 
						||
| 
								 | 
							
											const int yidx = x+(y-1)*w;
							 | 
						||
| 
								 | 
							
											if (y > 0 && isConnected(layer, idx, yidx, walkableClimb))
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												const unsigned char nr = layer.regs[yidx];
							 | 
						||
| 
								 | 
							
												if (nr != 0xff)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													// Set neighbour when first valid neighbour is encoutered.
							 | 
						||
| 
								 | 
							
													if (sweeps[sid].ns == 0)
							 | 
						||
| 
								 | 
							
														sweeps[sid].nei = nr;
							 | 
						||
| 
								 | 
							
													
							 | 
						||
| 
								 | 
							
													if (sweeps[sid].nei == nr)
							 | 
						||
| 
								 | 
							
													{
							 | 
						||
| 
								 | 
							
														// Update existing neighbour
							 | 
						||
| 
								 | 
							
														sweeps[sid].ns++;
							 | 
						||
| 
								 | 
							
														prevCount[nr]++;
							 | 
						||
| 
								 | 
							
													}
							 | 
						||
| 
								 | 
							
													else
							 | 
						||
| 
								 | 
							
													{
							 | 
						||
| 
								 | 
							
														// This is hit if there is nore than one neighbour.
							 | 
						||
| 
								 | 
							
														// Invalidate the neighbour.
							 | 
						||
| 
								 | 
							
														sweeps[sid].nei = 0xff;
							 | 
						||
| 
								 | 
							
													}
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											layer.regs[idx] = sid;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Create unique ID.
							 | 
						||
| 
								 | 
							
										for (int i = 0; i < sweepId; ++i)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											// If the neighbour is set and there is only one continuous connection to it,
							 | 
						||
| 
								 | 
							
											// the sweep will be merged with the previous one, else new region is created.
							 | 
						||
| 
								 | 
							
											if (sweeps[i].nei != 0xff && (unsigned short)prevCount[sweeps[i].nei] == sweeps[i].ns)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												sweeps[i].id = sweeps[i].nei;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											else
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												if (regId == 255)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													// Region ID's overflow.
							 | 
						||
| 
								 | 
							
													return DT_FAILURE | DT_BUFFER_TOO_SMALL;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
												sweeps[i].id = regId++;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Remap local sweep ids to region ids.
							 | 
						||
| 
								 | 
							
										for (int x = 0; x < w; ++x)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											const int idx = x+y*w;
							 | 
						||
| 
								 | 
							
											if (layer.regs[idx] != 0xff)
							 | 
						||
| 
								 | 
							
												layer.regs[idx] = sweeps[layer.regs[idx]].id;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Allocate and init layer regions.
							 | 
						||
| 
								 | 
							
									const int nregs = (int)regId;
							 | 
						||
| 
								 | 
							
									dtFixedArray<dtLayerMonotoneRegion> regs(alloc, nregs);
							 | 
						||
| 
								 | 
							
									if (!regs)
							 | 
						||
| 
								 | 
							
										return DT_FAILURE | DT_OUT_OF_MEMORY;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									memset(regs, 0, sizeof(dtLayerMonotoneRegion)*nregs);
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nregs; ++i)
							 | 
						||
| 
								 | 
							
										regs[i].regId = 0xff;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Find region neighbours.
							 | 
						||
| 
								 | 
							
									for (int y = 0; y < h; ++y)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										for (int x = 0; x < w; ++x)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											const int idx = x+y*w;
							 | 
						||
| 
								 | 
							
											const unsigned char ri = layer.regs[idx];
							 | 
						||
| 
								 | 
							
											if (ri == 0xff)
							 | 
						||
| 
								 | 
							
												continue;
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											// Update area.
							 | 
						||
| 
								 | 
							
											regs[ri].area++;
							 | 
						||
| 
								 | 
							
											regs[ri].areaId = layer.areas[idx];
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											// Update neighbours
							 | 
						||
| 
								 | 
							
											const int ymi = x+(y-1)*w;
							 | 
						||
| 
								 | 
							
											if (y > 0 && isConnected(layer, idx, ymi, walkableClimb))
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												const unsigned char rai = layer.regs[ymi];
							 | 
						||
| 
								 | 
							
												if (rai != 0xff && rai != ri)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													addUniqueLast(regs[ri].neis, regs[ri].nneis, rai);
							 | 
						||
| 
								 | 
							
													addUniqueLast(regs[rai].neis, regs[rai].nneis, ri);
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nregs; ++i)
							 | 
						||
| 
								 | 
							
										regs[i].regId = (unsigned char)i;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nregs; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										dtLayerMonotoneRegion& reg = regs[i];
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										int merge = -1;
							 | 
						||
| 
								 | 
							
										int mergea = 0;
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < (int)reg.nneis; ++j)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											const unsigned char nei = reg.neis[j];
							 | 
						||
| 
								 | 
							
											dtLayerMonotoneRegion& regn = regs[nei];
							 | 
						||
| 
								 | 
							
											if (reg.regId == regn.regId)
							 | 
						||
| 
								 | 
							
												continue;
							 | 
						||
| 
								 | 
							
											if (reg.areaId != regn.areaId)
							 | 
						||
| 
								 | 
							
												continue;
							 | 
						||
| 
								 | 
							
											if (regn.area > mergea)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												if (canMerge(reg.regId, regn.regId, regs, nregs))
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													mergea = regn.area;
							 | 
						||
| 
								 | 
							
													merge = (int)nei;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										if (merge != -1)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											const unsigned char oldId = reg.regId;
							 | 
						||
| 
								 | 
							
											const unsigned char newId = regs[merge].regId;
							 | 
						||
| 
								 | 
							
											for (int j = 0; j < nregs; ++j)
							 | 
						||
| 
								 | 
							
												if (regs[j].regId == oldId)
							 | 
						||
| 
								 | 
							
													regs[j].regId = newId;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Compact ids.
							 | 
						||
| 
								 | 
							
									unsigned char remap[256];
							 | 
						||
| 
								 | 
							
									memset(remap, 0, 256);
							 | 
						||
| 
								 | 
							
									// Find number of unique regions.
							 | 
						||
| 
								 | 
							
									regId = 0;
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nregs; ++i)
							 | 
						||
| 
								 | 
							
										remap[regs[i].regId] = 1;
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < 256; ++i)
							 | 
						||
| 
								 | 
							
										if (remap[i])
							 | 
						||
| 
								 | 
							
											remap[i] = regId++;
							 | 
						||
| 
								 | 
							
									// Remap ids.
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nregs; ++i)
							 | 
						||
| 
								 | 
							
										regs[i].regId = remap[regs[i].regId];
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									layer.regCount = regId;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < w*h; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										if (layer.regs[i] != 0xff)
							 | 
						||
| 
								 | 
							
											layer.regs[i] = regs[layer.regs[i]].regId;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return DT_SUCCESS;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static bool appendVertex(dtTempContour& cont, const int x, const int y, const int z, const int r)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									// Try to merge with existing segments.
							 | 
						||
| 
								 | 
							
									if (cont.nverts > 1)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										unsigned char* pa = &cont.verts[(cont.nverts-2)*4];
							 | 
						||
| 
								 | 
							
										unsigned char* pb = &cont.verts[(cont.nverts-1)*4];
							 | 
						||
| 
								 | 
							
										if ((int)pb[3] == r)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											if (pa[0] == pb[0] && (int)pb[0] == x)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// The verts are aligned aling x-axis, update z.
							 | 
						||
| 
								 | 
							
												pb[1] = (unsigned char)y;
							 | 
						||
| 
								 | 
							
												pb[2] = (unsigned char)z;
							 | 
						||
| 
								 | 
							
												return true;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											else if (pa[2] == pb[2] && (int)pb[2] == z)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// The verts are aligned aling z-axis, update x.
							 | 
						||
| 
								 | 
							
												pb[0] = (unsigned char)x;
							 | 
						||
| 
								 | 
							
												pb[1] = (unsigned char)y;
							 | 
						||
| 
								 | 
							
												return true;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Add new point.
							 | 
						||
| 
								 | 
							
									if (cont.nverts+1 > cont.cverts)
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									unsigned char* v = &cont.verts[cont.nverts*4];
							 | 
						||
| 
								 | 
							
									v[0] = (unsigned char)x;
							 | 
						||
| 
								 | 
							
									v[1] = (unsigned char)y;
							 | 
						||
| 
								 | 
							
									v[2] = (unsigned char)z;
							 | 
						||
| 
								 | 
							
									v[3] = (unsigned char)r;
							 | 
						||
| 
								 | 
							
									cont.nverts++;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return true;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static unsigned char getNeighbourReg(dtTileCacheLayer& layer,
							 | 
						||
| 
								 | 
							
																	 const int ax, const int ay, const int dir)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const int w = (int)layer.header->width;
							 | 
						||
| 
								 | 
							
									const int ia = ax + ay*w;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									const unsigned char con = layer.cons[ia] & 0xf;
							 | 
						||
| 
								 | 
							
									const unsigned char portal = layer.cons[ia] >> 4;
							 | 
						||
| 
								 | 
							
									const unsigned char mask = (unsigned char)(1<<dir);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									if ((con & mask) == 0)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										// No connection, return portal or hard edge.
							 | 
						||
| 
								 | 
							
										if (portal & mask)
							 | 
						||
| 
								 | 
							
											return 0xf8 + (unsigned char)dir;
							 | 
						||
| 
								 | 
							
										return 0xff;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									const int bx = ax + getDirOffsetX(dir);
							 | 
						||
| 
								 | 
							
									const int by = ay + getDirOffsetY(dir);
							 | 
						||
| 
								 | 
							
									const int ib = bx + by*w;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return layer.regs[ib];
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static bool walkContour(dtTileCacheLayer& layer, int x, int y, dtTempContour& cont)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const int w = (int)layer.header->width;
							 | 
						||
| 
								 | 
							
									const int h = (int)layer.header->height;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									cont.nverts = 0;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									int startX = x;
							 | 
						||
| 
								 | 
							
									int startY = y;
							 | 
						||
| 
								 | 
							
									int startDir = -1;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < 4; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const int dir = (i+3)&3;
							 | 
						||
| 
								 | 
							
										unsigned char rn = getNeighbourReg(layer, x, y, dir);
							 | 
						||
| 
								 | 
							
										if (rn != layer.regs[x+y*w])
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											startDir = dir;
							 | 
						||
| 
								 | 
							
											break;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									if (startDir == -1)
							 | 
						||
| 
								 | 
							
										return true;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									int dir = startDir;
							 | 
						||
| 
								 | 
							
									const int maxIter = w*h;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									int iter = 0;
							 | 
						||
| 
								 | 
							
									while (iter < maxIter)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										unsigned char rn = getNeighbourReg(layer, x, y, dir);
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										int nx = x;
							 | 
						||
| 
								 | 
							
										int ny = y;
							 | 
						||
| 
								 | 
							
										int ndir = dir;
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										if (rn != layer.regs[x+y*w])
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											// Solid edge.
							 | 
						||
| 
								 | 
							
											int px = x;
							 | 
						||
| 
								 | 
							
											int pz = y;
							 | 
						||
| 
								 | 
							
											switch(dir)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												case 0: pz++; break;
							 | 
						||
| 
								 | 
							
												case 1: px++; pz++; break;
							 | 
						||
| 
								 | 
							
												case 2: px++; break;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											// Try to merge with previous vertex.
							 | 
						||
| 
								 | 
							
											if (!appendVertex(cont, px, (int)layer.heights[x+y*w], pz,rn))
							 | 
						||
| 
								 | 
							
												return false;
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											ndir = (dir+1) & 0x3;  // Rotate CW
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										else
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											// Move to next.
							 | 
						||
| 
								 | 
							
											nx = x + getDirOffsetX(dir);
							 | 
						||
| 
								 | 
							
											ny = y + getDirOffsetY(dir);
							 | 
						||
| 
								 | 
							
											ndir = (dir+3) & 0x3;	// Rotate CCW
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										if (iter > 0 && x == startX && y == startY && dir == startDir)
							 | 
						||
| 
								 | 
							
											break;
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										x = nx;
							 | 
						||
| 
								 | 
							
										y = ny;
							 | 
						||
| 
								 | 
							
										dir = ndir;
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										iter++;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Remove last vertex if it is duplicate of the first one.
							 | 
						||
| 
								 | 
							
									unsigned char* pa = &cont.verts[(cont.nverts-1)*4];
							 | 
						||
| 
								 | 
							
									unsigned char* pb = &cont.verts[0];
							 | 
						||
| 
								 | 
							
									if (pa[0] == pb[0] && pa[2] == pb[2])
							 | 
						||
| 
								 | 
							
										cont.nverts--;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return true;
							 | 
						||
| 
								 | 
							
								}	
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static float distancePtSeg(const int x, const int z,
							 | 
						||
| 
								 | 
							
														   const int px, const int pz,
							 | 
						||
| 
								 | 
							
														   const int qx, const int qz)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									float pqx = (float)(qx - px);
							 | 
						||
| 
								 | 
							
									float pqz = (float)(qz - pz);
							 | 
						||
| 
								 | 
							
									float dx = (float)(x - px);
							 | 
						||
| 
								 | 
							
									float dz = (float)(z - pz);
							 | 
						||
| 
								 | 
							
									float d = pqx*pqx + pqz*pqz;
							 | 
						||
| 
								 | 
							
									float t = pqx*dx + pqz*dz;
							 | 
						||
| 
								 | 
							
									if (d > 0)
							 | 
						||
| 
								 | 
							
										t /= d;
							 | 
						||
| 
								 | 
							
									if (t < 0)
							 | 
						||
| 
								 | 
							
										t = 0;
							 | 
						||
| 
								 | 
							
									else if (t > 1)
							 | 
						||
| 
								 | 
							
										t = 1;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									dx = px + t*pqx - x;
							 | 
						||
| 
								 | 
							
									dz = pz + t*pqz - z;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return dx*dx + dz*dz;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void simplifyContour(dtTempContour& cont, const float maxError)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									cont.npoly = 0;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < cont.nverts; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										int j = (i+1) % cont.nverts;
							 | 
						||
| 
								 | 
							
										// Check for start of a wall segment.
							 | 
						||
| 
								 | 
							
										unsigned char ra = cont.verts[j*4+3];
							 | 
						||
| 
								 | 
							
										unsigned char rb = cont.verts[i*4+3];
							 | 
						||
| 
								 | 
							
										if (ra != rb)
							 | 
						||
| 
								 | 
							
											cont.poly[cont.npoly++] = (unsigned short)i;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									if (cont.npoly < 2)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										// If there is no transitions at all,
							 | 
						||
| 
								 | 
							
										// create some initial points for the simplification process. 
							 | 
						||
| 
								 | 
							
										// Find lower-left and upper-right vertices of the contour.
							 | 
						||
| 
								 | 
							
										int llx = cont.verts[0];
							 | 
						||
| 
								 | 
							
										int llz = cont.verts[2];
							 | 
						||
| 
								 | 
							
										int lli = 0;
							 | 
						||
| 
								 | 
							
										int urx = cont.verts[0];
							 | 
						||
| 
								 | 
							
										int urz = cont.verts[2];
							 | 
						||
| 
								 | 
							
										int uri = 0;
							 | 
						||
| 
								 | 
							
										for (int i = 1; i < cont.nverts; ++i)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											int x = cont.verts[i*4+0];
							 | 
						||
| 
								 | 
							
											int z = cont.verts[i*4+2];
							 | 
						||
| 
								 | 
							
											if (x < llx || (x == llx && z < llz))
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												llx = x;
							 | 
						||
| 
								 | 
							
												llz = z;
							 | 
						||
| 
								 | 
							
												lli = i;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											if (x > urx || (x == urx && z > urz))
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												urx = x;
							 | 
						||
| 
								 | 
							
												urz = z;
							 | 
						||
| 
								 | 
							
												uri = i;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										cont.npoly = 0;
							 | 
						||
| 
								 | 
							
										cont.poly[cont.npoly++] = (unsigned short)lli;
							 | 
						||
| 
								 | 
							
										cont.poly[cont.npoly++] = (unsigned short)uri;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Add points until all raw points are within
							 | 
						||
| 
								 | 
							
									// error tolerance to the simplified shape.
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < cont.npoly; )
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										int ii = (i+1) % cont.npoly;
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										const int ai = (int)cont.poly[i];
							 | 
						||
| 
								 | 
							
										const int ax = (int)cont.verts[ai*4+0];
							 | 
						||
| 
								 | 
							
										const int az = (int)cont.verts[ai*4+2];
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										const int bi = (int)cont.poly[ii];
							 | 
						||
| 
								 | 
							
										const int bx = (int)cont.verts[bi*4+0];
							 | 
						||
| 
								 | 
							
										const int bz = (int)cont.verts[bi*4+2];
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Find maximum deviation from the segment.
							 | 
						||
| 
								 | 
							
										float maxd = 0;
							 | 
						||
| 
								 | 
							
										int maxi = -1;
							 | 
						||
| 
								 | 
							
										int ci, cinc, endi;
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Traverse the segment in lexilogical order so that the
							 | 
						||
| 
								 | 
							
										// max deviation is calculated similarly when traversing
							 | 
						||
| 
								 | 
							
										// opposite segments.
							 | 
						||
| 
								 | 
							
										if (bx > ax || (bx == ax && bz > az))
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											cinc = 1;
							 | 
						||
| 
								 | 
							
											ci = (ai+cinc) % cont.nverts;
							 | 
						||
| 
								 | 
							
											endi = bi;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										else
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											cinc = cont.nverts-1;
							 | 
						||
| 
								 | 
							
											ci = (bi+cinc) % cont.nverts;
							 | 
						||
| 
								 | 
							
											endi = ai;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Tessellate only outer edges or edges between areas.
							 | 
						||
| 
								 | 
							
										while (ci != endi)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											float d = distancePtSeg(cont.verts[ci*4+0], cont.verts[ci*4+2], ax, az, bx, bz);
							 | 
						||
| 
								 | 
							
											if (d > maxd)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												maxd = d;
							 | 
						||
| 
								 | 
							
												maxi = ci;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											ci = (ci+cinc) % cont.nverts;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// If the max deviation is larger than accepted error,
							 | 
						||
| 
								 | 
							
										// add new point, else continue to next segment.
							 | 
						||
| 
								 | 
							
										if (maxi != -1 && maxd > (maxError*maxError))
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											cont.npoly++;
							 | 
						||
| 
								 | 
							
											for (int j = cont.npoly-1; j > i; --j)
							 | 
						||
| 
								 | 
							
												cont.poly[j] = cont.poly[j-1];
							 | 
						||
| 
								 | 
							
											cont.poly[i+1] = (unsigned short)maxi;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										else
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											++i;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Remap vertices
							 | 
						||
| 
								 | 
							
									int start = 0;
							 | 
						||
| 
								 | 
							
									for (int i = 1; i < cont.npoly; ++i)
							 | 
						||
| 
								 | 
							
										if (cont.poly[i] < cont.poly[start])
							 | 
						||
| 
								 | 
							
											start = i;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									cont.nverts = 0;
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < cont.npoly; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const int j = (start+i) % cont.npoly;
							 | 
						||
| 
								 | 
							
										unsigned char* src = &cont.verts[cont.poly[j]*4];
							 | 
						||
| 
								 | 
							
										unsigned char* dst = &cont.verts[cont.nverts*4];
							 | 
						||
| 
								 | 
							
										dst[0] = src[0];
							 | 
						||
| 
								 | 
							
										dst[1] = src[1];
							 | 
						||
| 
								 | 
							
										dst[2] = src[2];
							 | 
						||
| 
								 | 
							
										dst[3] = src[3];
							 | 
						||
| 
								 | 
							
										cont.nverts++;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static unsigned char getCornerHeight(dtTileCacheLayer& layer,
							 | 
						||
| 
								 | 
							
																	 const int x, const int y, const int z,
							 | 
						||
| 
								 | 
							
																	 const int walkableClimb,
							 | 
						||
| 
								 | 
							
																	 bool& shouldRemove)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const int w = (int)layer.header->width;
							 | 
						||
| 
								 | 
							
									const int h = (int)layer.header->height;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									int n = 0;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									unsigned char portal = 0xf;
							 | 
						||
| 
								 | 
							
									unsigned char height = 0;
							 | 
						||
| 
								 | 
							
									unsigned char preg = 0xff;
							 | 
						||
| 
								 | 
							
									bool allSameReg = true;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int dz = -1; dz <= 0; ++dz)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										for (int dx = -1; dx <= 0; ++dx)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											const int px = x+dx;
							 | 
						||
| 
								 | 
							
											const int pz = z+dz;
							 | 
						||
| 
								 | 
							
											if (px >= 0 && pz >= 0 && px < w && pz < h)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												const int idx  = px + pz*w;
							 | 
						||
| 
								 | 
							
												const int lh = (int)layer.heights[idx];
							 | 
						||
| 
								 | 
							
												if (dtAbs(lh-y) <= walkableClimb && layer.areas[idx] != DT_TILECACHE_NULL_AREA)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													height = dtMax(height, (unsigned char)lh);
							 | 
						||
| 
								 | 
							
													portal &= (layer.cons[idx] >> 4);
							 | 
						||
| 
								 | 
							
													if (preg != 0xff && preg != layer.regs[idx])
							 | 
						||
| 
								 | 
							
														allSameReg = false;
							 | 
						||
| 
								 | 
							
													preg = layer.regs[idx]; 
							 | 
						||
| 
								 | 
							
													n++;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									int portalCount = 0;
							 | 
						||
| 
								 | 
							
									for (int dir = 0; dir < 4; ++dir)
							 | 
						||
| 
								 | 
							
										if (portal & (1<<dir))
							 | 
						||
| 
								 | 
							
											portalCount++;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									shouldRemove = false;
							 | 
						||
| 
								 | 
							
									if (n > 1 && portalCount == 1 && allSameReg)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										shouldRemove = true;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return height;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// TODO: move this somewhere else, once the layer meshing is done.
							 | 
						||
| 
								 | 
							
								dtStatus dtBuildTileCacheContours(dtTileCacheAlloc* alloc,
							 | 
						||
| 
								 | 
							
																  dtTileCacheLayer& layer,
							 | 
						||
| 
								 | 
							
																  const int walkableClimb, 	const float maxError,
							 | 
						||
| 
								 | 
							
																  dtTileCacheContourSet& lcset)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									dtAssert(alloc);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									const int w = (int)layer.header->width;
							 | 
						||
| 
								 | 
							
									const int h = (int)layer.header->height;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									lcset.nconts = layer.regCount;
							 | 
						||
| 
								 | 
							
									lcset.conts = (dtTileCacheContour*)alloc->alloc(sizeof(dtTileCacheContour)*lcset.nconts);
							 | 
						||
| 
								 | 
							
									if (!lcset.conts)
							 | 
						||
| 
								 | 
							
										return DT_FAILURE | DT_OUT_OF_MEMORY;
							 | 
						||
| 
								 | 
							
									memset(lcset.conts, 0, sizeof(dtTileCacheContour)*lcset.nconts);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Allocate temp buffer for contour tracing.
							 | 
						||
| 
								 | 
							
									const int maxTempVerts = (w+h)*2 * 2; // Twice around the layer.
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									dtFixedArray<unsigned char> tempVerts(alloc, maxTempVerts*4);
							 | 
						||
| 
								 | 
							
									if (!tempVerts)
							 | 
						||
| 
								 | 
							
										return DT_FAILURE | DT_OUT_OF_MEMORY;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									dtFixedArray<unsigned short> tempPoly(alloc, maxTempVerts);
							 | 
						||
| 
								 | 
							
									if (!tempPoly)
							 | 
						||
| 
								 | 
							
										return DT_FAILURE | DT_OUT_OF_MEMORY;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									dtTempContour temp(tempVerts, maxTempVerts, tempPoly, maxTempVerts);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Find contours.
							 | 
						||
| 
								 | 
							
									for (int y = 0; y < h; ++y)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										for (int x = 0; x < w; ++x)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											const int idx = x+y*w;
							 | 
						||
| 
								 | 
							
											const unsigned char ri = layer.regs[idx];
							 | 
						||
| 
								 | 
							
											if (ri == 0xff)
							 | 
						||
| 
								 | 
							
												continue;
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											dtTileCacheContour& cont = lcset.conts[ri];
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											if (cont.nverts > 0)
							 | 
						||
| 
								 | 
							
												continue;
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											cont.reg = ri;
							 | 
						||
| 
								 | 
							
											cont.area = layer.areas[idx];
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											if (!walkContour(layer, x, y, temp))
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// Too complex contour.
							 | 
						||
| 
								 | 
							
												// Note: If you hit here ofte, try increasing 'maxTempVerts'.
							 | 
						||
| 
								 | 
							
												return DT_FAILURE | DT_BUFFER_TOO_SMALL;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											simplifyContour(temp, maxError);
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											// Store contour.
							 | 
						||
| 
								 | 
							
											cont.nverts = temp.nverts;
							 | 
						||
| 
								 | 
							
											if (cont.nverts > 0)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												cont.verts = (unsigned char*)alloc->alloc(sizeof(unsigned char)*4*temp.nverts);
							 | 
						||
| 
								 | 
							
												if (!cont.verts)
							 | 
						||
| 
								 | 
							
													return DT_FAILURE | DT_OUT_OF_MEMORY;
							 | 
						||
| 
								 | 
							
												
							 | 
						||
| 
								 | 
							
												for (int i = 0, j = temp.nverts-1; i < temp.nverts; j=i++)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													unsigned char* dst = &cont.verts[j*4];
							 | 
						||
| 
								 | 
							
													unsigned char* v = &temp.verts[j*4];
							 | 
						||
| 
								 | 
							
													unsigned char* vn = &temp.verts[i*4];
							 | 
						||
| 
								 | 
							
													unsigned char nei = vn[3]; // The neighbour reg is stored at segment vertex of a segment. 
							 | 
						||
| 
								 | 
							
													bool shouldRemove = false;
							 | 
						||
| 
								 | 
							
													unsigned char lh = getCornerHeight(layer, (int)v[0], (int)v[1], (int)v[2],
							 | 
						||
| 
								 | 
							
																					   walkableClimb, shouldRemove);
							 | 
						||
| 
								 | 
							
													
							 | 
						||
| 
								 | 
							
													dst[0] = v[0];
							 | 
						||
| 
								 | 
							
													dst[1] = lh;
							 | 
						||
| 
								 | 
							
													dst[2] = v[2];
							 | 
						||
| 
								 | 
							
													
							 | 
						||
| 
								 | 
							
													// Store portal direction and remove status to the fourth component.
							 | 
						||
| 
								 | 
							
													dst[3] = 0x0f;
							 | 
						||
| 
								 | 
							
													if (nei != 0xff && nei >= 0xf8)
							 | 
						||
| 
								 | 
							
														dst[3] = nei - 0xf8;
							 | 
						||
| 
								 | 
							
													if (shouldRemove)
							 | 
						||
| 
								 | 
							
														dst[3] |= 0x80;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return DT_SUCCESS;
							 | 
						||
| 
								 | 
							
								}	
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static const int VERTEX_BUCKET_COUNT2 = (1<<8);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline int computeVertexHash2(int x, int y, int z)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const unsigned int h1 = 0x8da6b343; // Large multiplicative constants;
							 | 
						||
| 
								 | 
							
									const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes
							 | 
						||
| 
								 | 
							
									const unsigned int h3 = 0xcb1ab31f;
							 | 
						||
| 
								 | 
							
									unsigned int n = h1 * x + h2 * y + h3 * z;
							 | 
						||
| 
								 | 
							
									return (int)(n & (VERTEX_BUCKET_COUNT2-1));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static unsigned short addVertex(unsigned short x, unsigned short y, unsigned short z,
							 | 
						||
| 
								 | 
							
																unsigned short* verts, unsigned short* firstVert, unsigned short* nextVert, int& nv)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									int bucket = computeVertexHash2(x, 0, z);
							 | 
						||
| 
								 | 
							
									unsigned short i = firstVert[bucket];
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									while (i != DT_TILECACHE_NULL_IDX)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const unsigned short* v = &verts[i*3];
							 | 
						||
| 
								 | 
							
										if (v[0] == x && v[2] == z && (dtAbs(v[1] - y) <= 2))
							 | 
						||
| 
								 | 
							
											return i;
							 | 
						||
| 
								 | 
							
										i = nextVert[i]; // next
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Could not find, create new.
							 | 
						||
| 
								 | 
							
									i = (unsigned short)nv; nv++;
							 | 
						||
| 
								 | 
							
									unsigned short* v = &verts[i*3];
							 | 
						||
| 
								 | 
							
									v[0] = x;
							 | 
						||
| 
								 | 
							
									v[1] = y;
							 | 
						||
| 
								 | 
							
									v[2] = z;
							 | 
						||
| 
								 | 
							
									nextVert[i] = firstVert[bucket];
							 | 
						||
| 
								 | 
							
									firstVert[bucket] = i;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return (unsigned short)i;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								struct rcEdge
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									unsigned short vert[2];
							 | 
						||
| 
								 | 
							
									unsigned short polyEdge[2];
							 | 
						||
| 
								 | 
							
									unsigned short poly[2];
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static bool buildMeshAdjacency(dtTileCacheAlloc* alloc,
							 | 
						||
| 
								 | 
							
															   unsigned short* polys, const int npolys,
							 | 
						||
| 
								 | 
							
															   const unsigned short* verts, const int nverts,
							 | 
						||
| 
								 | 
							
															   const dtTileCacheContourSet& lcset)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									// Based on code by Eric Lengyel from:
							 | 
						||
| 
								 | 
							
									// http://www.terathon.com/code/edges.php
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									const int maxEdgeCount = npolys*MAX_VERTS_PER_POLY;
							 | 
						||
| 
								 | 
							
									dtFixedArray<unsigned short> firstEdge(alloc, nverts + maxEdgeCount);
							 | 
						||
| 
								 | 
							
									if (!firstEdge)
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									unsigned short* nextEdge = firstEdge + nverts;
							 | 
						||
| 
								 | 
							
									int edgeCount = 0;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									dtFixedArray<rcEdge> edges(alloc, maxEdgeCount);
							 | 
						||
| 
								 | 
							
									if (!edges)
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nverts; i++)
							 | 
						||
| 
								 | 
							
										firstEdge[i] = DT_TILECACHE_NULL_IDX;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < npolys; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										unsigned short* t = &polys[i*MAX_VERTS_PER_POLY*2];
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < MAX_VERTS_PER_POLY; ++j)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											if (t[j] == DT_TILECACHE_NULL_IDX) break;
							 | 
						||
| 
								 | 
							
											unsigned short v0 = t[j];
							 | 
						||
| 
								 | 
							
											unsigned short v1 = (j+1 >= MAX_VERTS_PER_POLY || t[j+1] == DT_TILECACHE_NULL_IDX) ? t[0] : t[j+1];
							 | 
						||
| 
								 | 
							
											if (v0 < v1)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												rcEdge& edge = edges[edgeCount];
							 | 
						||
| 
								 | 
							
												edge.vert[0] = v0;
							 | 
						||
| 
								 | 
							
												edge.vert[1] = v1;
							 | 
						||
| 
								 | 
							
												edge.poly[0] = (unsigned short)i;
							 | 
						||
| 
								 | 
							
												edge.polyEdge[0] = (unsigned short)j;
							 | 
						||
| 
								 | 
							
												edge.poly[1] = (unsigned short)i;
							 | 
						||
| 
								 | 
							
												edge.polyEdge[1] = 0xff;
							 | 
						||
| 
								 | 
							
												// Insert edge
							 | 
						||
| 
								 | 
							
												nextEdge[edgeCount] = firstEdge[v0];
							 | 
						||
| 
								 | 
							
												firstEdge[v0] = (unsigned short)edgeCount;
							 | 
						||
| 
								 | 
							
												edgeCount++;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < npolys; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										unsigned short* t = &polys[i*MAX_VERTS_PER_POLY*2];
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < MAX_VERTS_PER_POLY; ++j)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											if (t[j] == DT_TILECACHE_NULL_IDX) break;
							 | 
						||
| 
								 | 
							
											unsigned short v0 = t[j];
							 | 
						||
| 
								 | 
							
											unsigned short v1 = (j+1 >= MAX_VERTS_PER_POLY || t[j+1] == DT_TILECACHE_NULL_IDX) ? t[0] : t[j+1];
							 | 
						||
| 
								 | 
							
											if (v0 > v1)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												bool found = false;
							 | 
						||
| 
								 | 
							
												for (unsigned short e = firstEdge[v1]; e != DT_TILECACHE_NULL_IDX; e = nextEdge[e])
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													rcEdge& edge = edges[e];
							 | 
						||
| 
								 | 
							
													if (edge.vert[1] == v0 && edge.poly[0] == edge.poly[1])
							 | 
						||
| 
								 | 
							
													{
							 | 
						||
| 
								 | 
							
														edge.poly[1] = (unsigned short)i;
							 | 
						||
| 
								 | 
							
														edge.polyEdge[1] = (unsigned short)j;
							 | 
						||
| 
								 | 
							
														found = true;
							 | 
						||
| 
								 | 
							
														break;
							 | 
						||
| 
								 | 
							
													}
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
												if (!found)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													// Matching edge not found, it is an open edge, add it.
							 | 
						||
| 
								 | 
							
													rcEdge& edge = edges[edgeCount];
							 | 
						||
| 
								 | 
							
													edge.vert[0] = v1;
							 | 
						||
| 
								 | 
							
													edge.vert[1] = v0;
							 | 
						||
| 
								 | 
							
													edge.poly[0] = (unsigned short)i;
							 | 
						||
| 
								 | 
							
													edge.polyEdge[0] = (unsigned short)j;
							 | 
						||
| 
								 | 
							
													edge.poly[1] = (unsigned short)i;
							 | 
						||
| 
								 | 
							
													edge.polyEdge[1] = 0xff;
							 | 
						||
| 
								 | 
							
													// Insert edge
							 | 
						||
| 
								 | 
							
													nextEdge[edgeCount] = firstEdge[v1];
							 | 
						||
| 
								 | 
							
													firstEdge[v1] = (unsigned short)edgeCount;
							 | 
						||
| 
								 | 
							
													edgeCount++;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Mark portal edges.
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < lcset.nconts; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										dtTileCacheContour& cont = lcset.conts[i];
							 | 
						||
| 
								 | 
							
										if (cont.nverts < 3)
							 | 
						||
| 
								 | 
							
											continue;
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										for (int j = 0, k = cont.nverts-1; j < cont.nverts; k=j++)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											const unsigned char* va = &cont.verts[k*4];
							 | 
						||
| 
								 | 
							
											const unsigned char* vb = &cont.verts[j*4];
							 | 
						||
| 
								 | 
							
											const unsigned char dir = va[3] & 0xf;
							 | 
						||
| 
								 | 
							
											if (dir == 0xf)
							 | 
						||
| 
								 | 
							
												continue;
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											if (dir == 0 || dir == 2)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// Find matching vertical edge
							 | 
						||
| 
								 | 
							
												const unsigned short x = (unsigned short)va[0];
							 | 
						||
| 
								 | 
							
												unsigned short zmin = (unsigned short)va[2];
							 | 
						||
| 
								 | 
							
												unsigned short zmax = (unsigned short)vb[2];
							 | 
						||
| 
								 | 
							
												if (zmin > zmax)
							 | 
						||
| 
								 | 
							
													dtSwap(zmin, zmax);
							 | 
						||
| 
								 | 
							
												
							 | 
						||
| 
								 | 
							
												for (int m = 0; m < edgeCount; ++m)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													rcEdge& e = edges[m];
							 | 
						||
| 
								 | 
							
													// Skip connected edges.
							 | 
						||
| 
								 | 
							
													if (e.poly[0] != e.poly[1])
							 | 
						||
| 
								 | 
							
														continue;
							 | 
						||
| 
								 | 
							
													const unsigned short* eva = &verts[e.vert[0]*3];
							 | 
						||
| 
								 | 
							
													const unsigned short* evb = &verts[e.vert[1]*3];
							 | 
						||
| 
								 | 
							
													if (eva[0] == x && evb[0] == x)
							 | 
						||
| 
								 | 
							
													{
							 | 
						||
| 
								 | 
							
														unsigned short ezmin = eva[2];
							 | 
						||
| 
								 | 
							
														unsigned short ezmax = evb[2];
							 | 
						||
| 
								 | 
							
														if (ezmin > ezmax)
							 | 
						||
| 
								 | 
							
															dtSwap(ezmin, ezmax);
							 | 
						||
| 
								 | 
							
														if (overlapRangeExl(zmin,zmax, ezmin, ezmax))
							 | 
						||
| 
								 | 
							
														{
							 | 
						||
| 
								 | 
							
															// Reuse the other polyedge to store dir.
							 | 
						||
| 
								 | 
							
															e.polyEdge[1] = dir;
							 | 
						||
| 
								 | 
							
														}
							 | 
						||
| 
								 | 
							
													}
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											else
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// Find matching vertical edge
							 | 
						||
| 
								 | 
							
												const unsigned short z = (unsigned short)va[2];
							 | 
						||
| 
								 | 
							
												unsigned short xmin = (unsigned short)va[0];
							 | 
						||
| 
								 | 
							
												unsigned short xmax = (unsigned short)vb[0];
							 | 
						||
| 
								 | 
							
												if (xmin > xmax)
							 | 
						||
| 
								 | 
							
													dtSwap(xmin, xmax);
							 | 
						||
| 
								 | 
							
												for (int m = 0; m < edgeCount; ++m)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													rcEdge& e = edges[m];
							 | 
						||
| 
								 | 
							
													// Skip connected edges.
							 | 
						||
| 
								 | 
							
													if (e.poly[0] != e.poly[1])
							 | 
						||
| 
								 | 
							
														continue;
							 | 
						||
| 
								 | 
							
													const unsigned short* eva = &verts[e.vert[0]*3];
							 | 
						||
| 
								 | 
							
													const unsigned short* evb = &verts[e.vert[1]*3];
							 | 
						||
| 
								 | 
							
													if (eva[2] == z && evb[2] == z)
							 | 
						||
| 
								 | 
							
													{
							 | 
						||
| 
								 | 
							
														unsigned short exmin = eva[0];
							 | 
						||
| 
								 | 
							
														unsigned short exmax = evb[0];
							 | 
						||
| 
								 | 
							
														if (exmin > exmax)
							 | 
						||
| 
								 | 
							
															dtSwap(exmin, exmax);
							 | 
						||
| 
								 | 
							
														if (overlapRangeExl(xmin,xmax, exmin, exmax))
							 | 
						||
| 
								 | 
							
														{
							 | 
						||
| 
								 | 
							
															// Reuse the other polyedge to store dir.
							 | 
						||
| 
								 | 
							
															e.polyEdge[1] = dir;
							 | 
						||
| 
								 | 
							
														}
							 | 
						||
| 
								 | 
							
													}
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Store adjacency
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < edgeCount; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const rcEdge& e = edges[i];
							 | 
						||
| 
								 | 
							
										if (e.poly[0] != e.poly[1])
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											unsigned short* p0 = &polys[e.poly[0]*MAX_VERTS_PER_POLY*2];
							 | 
						||
| 
								 | 
							
											unsigned short* p1 = &polys[e.poly[1]*MAX_VERTS_PER_POLY*2];
							 | 
						||
| 
								 | 
							
											p0[MAX_VERTS_PER_POLY + e.polyEdge[0]] = e.poly[1];
							 | 
						||
| 
								 | 
							
											p1[MAX_VERTS_PER_POLY + e.polyEdge[1]] = e.poly[0];
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										else if (e.polyEdge[1] != 0xff)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											unsigned short* p0 = &polys[e.poly[0]*MAX_VERTS_PER_POLY*2];
							 | 
						||
| 
								 | 
							
											p0[MAX_VERTS_PER_POLY + e.polyEdge[0]] = 0x8000 | (unsigned short)e.polyEdge[1];
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return true;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv).
							 | 
						||
| 
								 | 
							
								inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
							 | 
						||
| 
								 | 
							
								inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline int area2(const unsigned char* a, const unsigned char* b, const unsigned char* c)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return ((int)b[0] - (int)a[0]) * ((int)c[2] - (int)a[2]) - ((int)c[0] - (int)a[0]) * ((int)b[2] - (int)a[2]);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//	Exclusive or: true iff exactly one argument is true.
							 | 
						||
| 
								 | 
							
								//	The arguments are negated to ensure that they are 0/1
							 | 
						||
| 
								 | 
							
								//	values.  Then the bitwise Xor operator may apply.
							 | 
						||
| 
								 | 
							
								//	(This idea is due to Michael Baldwin.)
							 | 
						||
| 
								 | 
							
								inline bool xorb(bool x, bool y)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return !x ^ !y;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Returns true iff c is strictly to the left of the directed
							 | 
						||
| 
								 | 
							
								// line through a to b.
							 | 
						||
| 
								 | 
							
								inline bool left(const unsigned char* a, const unsigned char* b, const unsigned char* c)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return area2(a, b, c) < 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline bool leftOn(const unsigned char* a, const unsigned char* b, const unsigned char* c)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return area2(a, b, c) <= 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline bool collinear(const unsigned char* a, const unsigned char* b, const unsigned char* c)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return area2(a, b, c) == 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//	Returns true iff ab properly intersects cd: they share
							 | 
						||
| 
								 | 
							
								//	a point interior to both segments.  The properness of the
							 | 
						||
| 
								 | 
							
								//	intersection is ensured by using strict leftness.
							 | 
						||
| 
								 | 
							
								static bool intersectProp(const unsigned char* a, const unsigned char* b,
							 | 
						||
| 
								 | 
							
														  const unsigned char* c, const unsigned char* d)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									// Eliminate improper cases.
							 | 
						||
| 
								 | 
							
									if (collinear(a,b,c) || collinear(a,b,d) ||
							 | 
						||
| 
								 | 
							
										collinear(c,d,a) || collinear(c,d,b))
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Returns T iff (a,b,c) are collinear and point c lies 
							 | 
						||
| 
								 | 
							
								// on the closed segement ab.
							 | 
						||
| 
								 | 
							
								static bool between(const unsigned char* a, const unsigned char* b, const unsigned char* c)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									if (!collinear(a, b, c))
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									// If ab not vertical, check betweenness on x; else on y.
							 | 
						||
| 
								 | 
							
									if (a[0] != b[0])
							 | 
						||
| 
								 | 
							
										return ((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0]));
							 | 
						||
| 
								 | 
							
									else
							 | 
						||
| 
								 | 
							
										return ((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2]));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Returns true iff segments ab and cd intersect, properly or improperly.
							 | 
						||
| 
								 | 
							
								static bool intersect(const unsigned char* a, const unsigned char* b,
							 | 
						||
| 
								 | 
							
													  const unsigned char* c, const unsigned char* d)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									if (intersectProp(a, b, c, d))
							 | 
						||
| 
								 | 
							
										return true;
							 | 
						||
| 
								 | 
							
									else if (between(a, b, c) || between(a, b, d) ||
							 | 
						||
| 
								 | 
							
											 between(c, d, a) || between(c, d, b))
							 | 
						||
| 
								 | 
							
										return true;
							 | 
						||
| 
								 | 
							
									else
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static bool vequal(const unsigned char* a, const unsigned char* b)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return a[0] == b[0] && a[2] == b[2];
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Returns T iff (v_i, v_j) is a proper internal *or* external
							 | 
						||
| 
								 | 
							
								// diagonal of P, *ignoring edges incident to v_i and v_j*.
							 | 
						||
| 
								 | 
							
								static bool diagonalie(int i, int j, int n, const unsigned char* verts, const unsigned short* indices)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const unsigned char* d0 = &verts[(indices[i] & 0x7fff) * 4];
							 | 
						||
| 
								 | 
							
									const unsigned char* d1 = &verts[(indices[j] & 0x7fff) * 4];
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// For each edge (k,k+1) of P
							 | 
						||
| 
								 | 
							
									for (int k = 0; k < n; k++)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										int k1 = next(k, n);
							 | 
						||
| 
								 | 
							
										// Skip edges incident to i or j
							 | 
						||
| 
								 | 
							
										if (!((k == i) || (k1 == i) || (k == j) || (k1 == j)))
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											const unsigned char* p0 = &verts[(indices[k] & 0x7fff) * 4];
							 | 
						||
| 
								 | 
							
											const unsigned char* p1 = &verts[(indices[k1] & 0x7fff) * 4];
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1))
							 | 
						||
| 
								 | 
							
												continue;
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											if (intersect(d0, d1, p0, p1))
							 | 
						||
| 
								 | 
							
												return false;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									return true;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Returns true iff the diagonal (i,j) is strictly internal to the 
							 | 
						||
| 
								 | 
							
								// polygon P in the neighborhood of the i endpoint.
							 | 
						||
| 
								 | 
							
								static bool	inCone(int i, int j, int n, const unsigned char* verts, const unsigned short* indices)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const unsigned char* pi = &verts[(indices[i] & 0x7fff) * 4];
							 | 
						||
| 
								 | 
							
									const unsigned char* pj = &verts[(indices[j] & 0x7fff) * 4];
							 | 
						||
| 
								 | 
							
									const unsigned char* pi1 = &verts[(indices[next(i, n)] & 0x7fff) * 4];
							 | 
						||
| 
								 | 
							
									const unsigned char* pin1 = &verts[(indices[prev(i, n)] & 0x7fff) * 4];
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// If P[i] is a convex vertex [ i+1 left or on (i-1,i) ].
							 | 
						||
| 
								 | 
							
									if (leftOn(pin1, pi, pi1))
							 | 
						||
| 
								 | 
							
										return left(pi, pj, pin1) && left(pj, pi, pi1);
							 | 
						||
| 
								 | 
							
									// Assume (i-1,i,i+1) not collinear.
							 | 
						||
| 
								 | 
							
									// else P[i] is reflex.
							 | 
						||
| 
								 | 
							
									return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Returns T iff (v_i, v_j) is a proper internal
							 | 
						||
| 
								 | 
							
								// diagonal of P.
							 | 
						||
| 
								 | 
							
								static bool diagonal(int i, int j, int n, const unsigned char* verts, const unsigned short* indices)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return inCone(i, j, n, verts, indices) && diagonalie(i, j, n, verts, indices);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int triangulate(int n, const unsigned char* verts, unsigned short* indices, unsigned short* tris)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									int ntris = 0;
							 | 
						||
| 
								 | 
							
									unsigned short* dst = tris;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// The last bit of the index is used to indicate if the vertex can be removed.
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < n; i++)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										int i1 = next(i, n);
							 | 
						||
| 
								 | 
							
										int i2 = next(i1, n);
							 | 
						||
| 
								 | 
							
										if (diagonal(i, i2, n, verts, indices))
							 | 
						||
| 
								 | 
							
											indices[i1] |= 0x8000;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									while (n > 3)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										int minLen = -1;
							 | 
						||
| 
								 | 
							
										int mini = -1;
							 | 
						||
| 
								 | 
							
										for (int i = 0; i < n; i++)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											int i1 = next(i, n);
							 | 
						||
| 
								 | 
							
											if (indices[i1] & 0x8000)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												const unsigned char* p0 = &verts[(indices[i] & 0x7fff) * 4];
							 | 
						||
| 
								 | 
							
												const unsigned char* p2 = &verts[(indices[next(i1, n)] & 0x7fff) * 4];
							 | 
						||
| 
								 | 
							
												
							 | 
						||
| 
								 | 
							
												const int dx = (int)p2[0] - (int)p0[0];
							 | 
						||
| 
								 | 
							
												const int dz = (int)p2[2] - (int)p0[2];
							 | 
						||
| 
								 | 
							
												const int len = dx*dx + dz*dz;
							 | 
						||
| 
								 | 
							
												if (minLen < 0 || len < minLen)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													minLen = len;
							 | 
						||
| 
								 | 
							
													mini = i;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										if (mini == -1)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											// Should not happen.
							 | 
						||
| 
								 | 
							
											/*			printf("mini == -1 ntris=%d n=%d\n", ntris, n);
							 | 
						||
| 
								 | 
							
											 for (int i = 0; i < n; i++)
							 | 
						||
| 
								 | 
							
											 {
							 | 
						||
| 
								 | 
							
											 printf("%d ", indices[i] & 0x0fffffff);
							 | 
						||
| 
								 | 
							
											 }
							 | 
						||
| 
								 | 
							
											 printf("\n");*/
							 | 
						||
| 
								 | 
							
											return -ntris;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										int i = mini;
							 | 
						||
| 
								 | 
							
										int i1 = next(i, n);
							 | 
						||
| 
								 | 
							
										int i2 = next(i1, n);
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										*dst++ = indices[i] & 0x7fff;
							 | 
						||
| 
								 | 
							
										*dst++ = indices[i1] & 0x7fff;
							 | 
						||
| 
								 | 
							
										*dst++ = indices[i2] & 0x7fff;
							 | 
						||
| 
								 | 
							
										ntris++;
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Removes P[i1] by copying P[i+1]...P[n-1] left one index.
							 | 
						||
| 
								 | 
							
										n--;
							 | 
						||
| 
								 | 
							
										for (int k = i1; k < n; k++)
							 | 
						||
| 
								 | 
							
											indices[k] = indices[k+1];
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										if (i1 >= n) i1 = 0;
							 | 
						||
| 
								 | 
							
										i = prev(i1,n);
							 | 
						||
| 
								 | 
							
										// Update diagonal flags.
							 | 
						||
| 
								 | 
							
										if (diagonal(prev(i, n), i1, n, verts, indices))
							 | 
						||
| 
								 | 
							
											indices[i] |= 0x8000;
							 | 
						||
| 
								 | 
							
										else
							 | 
						||
| 
								 | 
							
											indices[i] &= 0x7fff;
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										if (diagonal(i, next(i1, n), n, verts, indices))
							 | 
						||
| 
								 | 
							
											indices[i1] |= 0x8000;
							 | 
						||
| 
								 | 
							
										else
							 | 
						||
| 
								 | 
							
											indices[i1] &= 0x7fff;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Append the remaining triangle.
							 | 
						||
| 
								 | 
							
									*dst++ = indices[0] & 0x7fff;
							 | 
						||
| 
								 | 
							
									*dst++ = indices[1] & 0x7fff;
							 | 
						||
| 
								 | 
							
									*dst++ = indices[2] & 0x7fff;
							 | 
						||
| 
								 | 
							
									ntris++;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return ntris;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int countPolyVerts(const unsigned short* p)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < MAX_VERTS_PER_POLY; ++i)
							 | 
						||
| 
								 | 
							
										if (p[i] == DT_TILECACHE_NULL_IDX)
							 | 
						||
| 
								 | 
							
											return i;
							 | 
						||
| 
								 | 
							
									return MAX_VERTS_PER_POLY;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inline bool uleft(const unsigned short* a, const unsigned short* b, const unsigned short* c)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									return ((int)b[0] - (int)a[0]) * ((int)c[2] - (int)a[2]) -
							 | 
						||
| 
								 | 
							
									((int)c[0] - (int)a[0]) * ((int)b[2] - (int)a[2]) < 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int getPolyMergeValue(unsigned short* pa, unsigned short* pb,
							 | 
						||
| 
								 | 
							
															 const unsigned short* verts, int& ea, int& eb)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const int na = countPolyVerts(pa);
							 | 
						||
| 
								 | 
							
									const int nb = countPolyVerts(pb);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// If the merged polygon would be too big, do not merge.
							 | 
						||
| 
								 | 
							
									if (na+nb-2 > MAX_VERTS_PER_POLY)
							 | 
						||
| 
								 | 
							
										return -1;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Check if the polygons share an edge.
							 | 
						||
| 
								 | 
							
									ea = -1;
							 | 
						||
| 
								 | 
							
									eb = -1;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < na; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										unsigned short va0 = pa[i];
							 | 
						||
| 
								 | 
							
										unsigned short va1 = pa[(i+1) % na];
							 | 
						||
| 
								 | 
							
										if (va0 > va1)
							 | 
						||
| 
								 | 
							
											dtSwap(va0, va1);
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < nb; ++j)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											unsigned short vb0 = pb[j];
							 | 
						||
| 
								 | 
							
											unsigned short vb1 = pb[(j+1) % nb];
							 | 
						||
| 
								 | 
							
											if (vb0 > vb1)
							 | 
						||
| 
								 | 
							
												dtSwap(vb0, vb1);
							 | 
						||
| 
								 | 
							
											if (va0 == vb0 && va1 == vb1)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												ea = i;
							 | 
						||
| 
								 | 
							
												eb = j;
							 | 
						||
| 
								 | 
							
												break;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// No common edge, cannot merge.
							 | 
						||
| 
								 | 
							
									if (ea == -1 || eb == -1)
							 | 
						||
| 
								 | 
							
										return -1;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Check to see if the merged polygon would be convex.
							 | 
						||
| 
								 | 
							
									unsigned short va, vb, vc;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									va = pa[(ea+na-1) % na];
							 | 
						||
| 
								 | 
							
									vb = pa[ea];
							 | 
						||
| 
								 | 
							
									vc = pb[(eb+2) % nb];
							 | 
						||
| 
								 | 
							
									if (!uleft(&verts[va*3], &verts[vb*3], &verts[vc*3]))
							 | 
						||
| 
								 | 
							
										return -1;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									va = pb[(eb+nb-1) % nb];
							 | 
						||
| 
								 | 
							
									vb = pb[eb];
							 | 
						||
| 
								 | 
							
									vc = pa[(ea+2) % na];
							 | 
						||
| 
								 | 
							
									if (!uleft(&verts[va*3], &verts[vb*3], &verts[vc*3]))
							 | 
						||
| 
								 | 
							
										return -1;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									va = pa[ea];
							 | 
						||
| 
								 | 
							
									vb = pa[(ea+1)%na];
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									int dx = (int)verts[va*3+0] - (int)verts[vb*3+0];
							 | 
						||
| 
								 | 
							
									int dy = (int)verts[va*3+2] - (int)verts[vb*3+2];
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return dx*dx + dy*dy;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void mergePolys(unsigned short* pa, unsigned short* pb, int ea, int eb)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									unsigned short tmp[MAX_VERTS_PER_POLY*2];
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									const int na = countPolyVerts(pa);
							 | 
						||
| 
								 | 
							
									const int nb = countPolyVerts(pb);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Merge polygons.
							 | 
						||
| 
								 | 
							
									memset(tmp, 0xff, sizeof(unsigned short)*MAX_VERTS_PER_POLY*2);
							 | 
						||
| 
								 | 
							
									int n = 0;
							 | 
						||
| 
								 | 
							
									// Add pa
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < na-1; ++i)
							 | 
						||
| 
								 | 
							
										tmp[n++] = pa[(ea+1+i) % na];
							 | 
						||
| 
								 | 
							
									// Add pb
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nb-1; ++i)
							 | 
						||
| 
								 | 
							
										tmp[n++] = pb[(eb+1+i) % nb];
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									memcpy(pa, tmp, sizeof(unsigned short)*MAX_VERTS_PER_POLY);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void pushFront(unsigned short v, unsigned short* arr, int& an)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									an++;
							 | 
						||
| 
								 | 
							
									for (int i = an-1; i > 0; --i)
							 | 
						||
| 
								 | 
							
										arr[i] = arr[i-1];
							 | 
						||
| 
								 | 
							
									arr[0] = v;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void pushBack(unsigned short v, unsigned short* arr, int& an)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									arr[an] = v;
							 | 
						||
| 
								 | 
							
									an++;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static bool canRemoveVertex(dtTileCachePolyMesh& mesh, const unsigned short rem)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									// Count number of polygons to remove.
							 | 
						||
| 
								 | 
							
									int numRemovedVerts = 0;
							 | 
						||
| 
								 | 
							
									int numTouchedVerts = 0;
							 | 
						||
| 
								 | 
							
									int numRemainingEdges = 0;
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < mesh.npolys; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										unsigned short* p = &mesh.polys[i*MAX_VERTS_PER_POLY*2];
							 | 
						||
| 
								 | 
							
										const int nv = countPolyVerts(p);
							 | 
						||
| 
								 | 
							
										int numRemoved = 0;
							 | 
						||
| 
								 | 
							
										int numVerts = 0;
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < nv; ++j)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											if (p[j] == rem)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												numTouchedVerts++;
							 | 
						||
| 
								 | 
							
												numRemoved++;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											numVerts++;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										if (numRemoved)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											numRemovedVerts += numRemoved;
							 | 
						||
| 
								 | 
							
											numRemainingEdges += numVerts-(numRemoved+1);
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// There would be too few edges remaining to create a polygon.
							 | 
						||
| 
								 | 
							
									// This can happen for example when a tip of a triangle is marked
							 | 
						||
| 
								 | 
							
									// as deletion, but there are no other polys that share the vertex.
							 | 
						||
| 
								 | 
							
									// In this case, the vertex should not be removed.
							 | 
						||
| 
								 | 
							
									if (numRemainingEdges <= 2)
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Check that there is enough memory for the test.
							 | 
						||
| 
								 | 
							
									const int maxEdges = numTouchedVerts*2;
							 | 
						||
| 
								 | 
							
									if (maxEdges > MAX_REM_EDGES)
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Find edges which share the removed vertex.
							 | 
						||
| 
								 | 
							
									unsigned short edges[MAX_REM_EDGES];
							 | 
						||
| 
								 | 
							
									int nedges = 0;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < mesh.npolys; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										unsigned short* p = &mesh.polys[i*MAX_VERTS_PER_POLY*2];
							 | 
						||
| 
								 | 
							
										const int nv = countPolyVerts(p);
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Collect edges which touches the removed vertex.
							 | 
						||
| 
								 | 
							
										for (int j = 0, k = nv-1; j < nv; k = j++)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											if (p[j] == rem || p[k] == rem)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// Arrange edge so that a=rem.
							 | 
						||
| 
								 | 
							
												int a = p[j], b = p[k];
							 | 
						||
| 
								 | 
							
												if (b == rem)
							 | 
						||
| 
								 | 
							
													dtSwap(a,b);
							 | 
						||
| 
								 | 
							
												
							 | 
						||
| 
								 | 
							
												// Check if the edge exists
							 | 
						||
| 
								 | 
							
												bool exists = false;
							 | 
						||
| 
								 | 
							
												for (int m = 0; m < nedges; ++m)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													unsigned short* e = &edges[m*3];
							 | 
						||
| 
								 | 
							
													if (e[1] == b)
							 | 
						||
| 
								 | 
							
													{
							 | 
						||
| 
								 | 
							
														// Exists, increment vertex share count.
							 | 
						||
| 
								 | 
							
														e[2]++;
							 | 
						||
| 
								 | 
							
														exists = true;
							 | 
						||
| 
								 | 
							
													}
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
												// Add new edge.
							 | 
						||
| 
								 | 
							
												if (!exists)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													unsigned short* e = &edges[nedges*3];
							 | 
						||
| 
								 | 
							
													e[0] = (unsigned short)a;
							 | 
						||
| 
								 | 
							
													e[1] = (unsigned short)b;
							 | 
						||
| 
								 | 
							
													e[2] = 1;
							 | 
						||
| 
								 | 
							
													nedges++;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// There should be no more than 2 open edges.
							 | 
						||
| 
								 | 
							
									// This catches the case that two non-adjacent polygons
							 | 
						||
| 
								 | 
							
									// share the removed vertex. In that case, do not remove the vertex.
							 | 
						||
| 
								 | 
							
									int numOpenEdges = 0;
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nedges; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										if (edges[i*3+2] < 2)
							 | 
						||
| 
								 | 
							
											numOpenEdges++;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									if (numOpenEdges > 2)
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return true;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static dtStatus removeVertex(dtTileCachePolyMesh& mesh, const unsigned short rem, const int maxTris)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									// Count number of polygons to remove.
							 | 
						||
| 
								 | 
							
									int numRemovedVerts = 0;
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < mesh.npolys; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										unsigned short* p = &mesh.polys[i*MAX_VERTS_PER_POLY*2];
							 | 
						||
| 
								 | 
							
										const int nv = countPolyVerts(p);
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < nv; ++j)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											if (p[j] == rem)
							 | 
						||
| 
								 | 
							
												numRemovedVerts++;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									int nedges = 0;
							 | 
						||
| 
								 | 
							
									unsigned short edges[MAX_REM_EDGES*3];
							 | 
						||
| 
								 | 
							
									int nhole = 0;
							 | 
						||
| 
								 | 
							
									unsigned short hole[MAX_REM_EDGES];
							 | 
						||
| 
								 | 
							
									int nharea = 0;
							 | 
						||
| 
								 | 
							
									unsigned short harea[MAX_REM_EDGES];
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < mesh.npolys; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										unsigned short* p = &mesh.polys[i*MAX_VERTS_PER_POLY*2];
							 | 
						||
| 
								 | 
							
										const int nv = countPolyVerts(p);
							 | 
						||
| 
								 | 
							
										bool hasRem = false;
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < nv; ++j)
							 | 
						||
| 
								 | 
							
											if (p[j] == rem) hasRem = true;
							 | 
						||
| 
								 | 
							
										if (hasRem)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											// Collect edges which does not touch the removed vertex.
							 | 
						||
| 
								 | 
							
											for (int j = 0, k = nv-1; j < nv; k = j++)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												if (p[j] != rem && p[k] != rem)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													if (nedges >= MAX_REM_EDGES)
							 | 
						||
| 
								 | 
							
														return DT_FAILURE | DT_BUFFER_TOO_SMALL;
							 | 
						||
| 
								 | 
							
													unsigned short* e = &edges[nedges*3];
							 | 
						||
| 
								 | 
							
													e[0] = p[k];
							 | 
						||
| 
								 | 
							
													e[1] = p[j];
							 | 
						||
| 
								 | 
							
													e[2] = mesh.areas[i];
							 | 
						||
| 
								 | 
							
													nedges++;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											// Remove the polygon.
							 | 
						||
| 
								 | 
							
											unsigned short* p2 = &mesh.polys[(mesh.npolys-1)*MAX_VERTS_PER_POLY*2];
							 | 
						||
| 
								 | 
							
											memcpy(p,p2,sizeof(unsigned short)*MAX_VERTS_PER_POLY);
							 | 
						||
| 
								 | 
							
											memset(p+MAX_VERTS_PER_POLY,0xff,sizeof(unsigned short)*MAX_VERTS_PER_POLY);
							 | 
						||
| 
								 | 
							
											mesh.areas[i] = mesh.areas[mesh.npolys-1];
							 | 
						||
| 
								 | 
							
											mesh.npolys--;
							 | 
						||
| 
								 | 
							
											--i;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Remove vertex.
							 | 
						||
| 
								 | 
							
									for (int i = (int)rem; i < mesh.nverts; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										mesh.verts[i*3+0] = mesh.verts[(i+1)*3+0];
							 | 
						||
| 
								 | 
							
										mesh.verts[i*3+1] = mesh.verts[(i+1)*3+1];
							 | 
						||
| 
								 | 
							
										mesh.verts[i*3+2] = mesh.verts[(i+1)*3+2];
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									mesh.nverts--;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Adjust indices to match the removed vertex layout.
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < mesh.npolys; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										unsigned short* p = &mesh.polys[i*MAX_VERTS_PER_POLY*2];
							 | 
						||
| 
								 | 
							
										const int nv = countPolyVerts(p);
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < nv; ++j)
							 | 
						||
| 
								 | 
							
											if (p[j] > rem) p[j]--;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nedges; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										if (edges[i*3+0] > rem) edges[i*3+0]--;
							 | 
						||
| 
								 | 
							
										if (edges[i*3+1] > rem) edges[i*3+1]--;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									if (nedges == 0)
							 | 
						||
| 
								 | 
							
										return DT_SUCCESS;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Start with one vertex, keep appending connected
							 | 
						||
| 
								 | 
							
									// segments to the start and end of the hole.
							 | 
						||
| 
								 | 
							
									pushBack(edges[0], hole, nhole);
							 | 
						||
| 
								 | 
							
									pushBack(edges[2], harea, nharea);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									while (nedges)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										bool match = false;
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										for (int i = 0; i < nedges; ++i)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											const unsigned short ea = edges[i*3+0];
							 | 
						||
| 
								 | 
							
											const unsigned short eb = edges[i*3+1];
							 | 
						||
| 
								 | 
							
											const unsigned short a = edges[i*3+2];
							 | 
						||
| 
								 | 
							
											bool add = false;
							 | 
						||
| 
								 | 
							
											if (hole[0] == eb)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// The segment matches the beginning of the hole boundary.
							 | 
						||
| 
								 | 
							
												if (nhole >= MAX_REM_EDGES)
							 | 
						||
| 
								 | 
							
													return DT_FAILURE | DT_BUFFER_TOO_SMALL;
							 | 
						||
| 
								 | 
							
												pushFront(ea, hole, nhole);
							 | 
						||
| 
								 | 
							
												pushFront(a, harea, nharea);
							 | 
						||
| 
								 | 
							
												add = true;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											else if (hole[nhole-1] == ea)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// The segment matches the end of the hole boundary.
							 | 
						||
| 
								 | 
							
												if (nhole >= MAX_REM_EDGES)
							 | 
						||
| 
								 | 
							
													return DT_FAILURE | DT_BUFFER_TOO_SMALL;
							 | 
						||
| 
								 | 
							
												pushBack(eb, hole, nhole);
							 | 
						||
| 
								 | 
							
												pushBack(a, harea, nharea);
							 | 
						||
| 
								 | 
							
												add = true;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											if (add)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// The edge segment was added, remove it.
							 | 
						||
| 
								 | 
							
												edges[i*3+0] = edges[(nedges-1)*3+0];
							 | 
						||
| 
								 | 
							
												edges[i*3+1] = edges[(nedges-1)*3+1];
							 | 
						||
| 
								 | 
							
												edges[i*3+2] = edges[(nedges-1)*3+2];
							 | 
						||
| 
								 | 
							
												--nedges;
							 | 
						||
| 
								 | 
							
												match = true;
							 | 
						||
| 
								 | 
							
												--i;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										if (!match)
							 | 
						||
| 
								 | 
							
											break;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									unsigned short tris[MAX_REM_EDGES*3];
							 | 
						||
| 
								 | 
							
									unsigned char tverts[MAX_REM_EDGES*3];
							 | 
						||
| 
								 | 
							
									unsigned short tpoly[MAX_REM_EDGES*3];
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Generate temp vertex array for triangulation.
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < nhole; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										const unsigned short pi = hole[i];
							 | 
						||
| 
								 | 
							
										tverts[i*4+0] = (unsigned char)mesh.verts[pi*3+0];
							 | 
						||
| 
								 | 
							
										tverts[i*4+1] = (unsigned char)mesh.verts[pi*3+1];
							 | 
						||
| 
								 | 
							
										tverts[i*4+2] = (unsigned char)mesh.verts[pi*3+2];
							 | 
						||
| 
								 | 
							
										tverts[i*4+3] = 0;
							 | 
						||
| 
								 | 
							
										tpoly[i] = (unsigned short)i;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Triangulate the hole.
							 | 
						||
| 
								 | 
							
									int ntris = triangulate(nhole, tverts, tpoly, tris);
							 | 
						||
| 
								 | 
							
									if (ntris < 0)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										// TODO: issue warning!
							 | 
						||
| 
								 | 
							
										ntris = -ntris;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									if (ntris > MAX_REM_EDGES)
							 | 
						||
| 
								 | 
							
										return DT_FAILURE | DT_BUFFER_TOO_SMALL;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									unsigned short polys[MAX_REM_EDGES*MAX_VERTS_PER_POLY];
							 | 
						||
| 
								 | 
							
									unsigned char pareas[MAX_REM_EDGES];
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Build initial polygons.
							 | 
						||
| 
								 | 
							
									int npolys = 0;
							 | 
						||
| 
								 | 
							
									memset(polys, 0xff, ntris*MAX_VERTS_PER_POLY*sizeof(unsigned short));
							 | 
						||
| 
								 | 
							
									for (int j = 0; j < ntris; ++j)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										unsigned short* t = &tris[j*3];
							 | 
						||
| 
								 | 
							
										if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2])
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											polys[npolys*MAX_VERTS_PER_POLY+0] = hole[t[0]];
							 | 
						||
| 
								 | 
							
											polys[npolys*MAX_VERTS_PER_POLY+1] = hole[t[1]];
							 | 
						||
| 
								 | 
							
											polys[npolys*MAX_VERTS_PER_POLY+2] = hole[t[2]];
							 | 
						||
| 
								 | 
							
											pareas[npolys] = (unsigned char)harea[t[0]];
							 | 
						||
| 
								 | 
							
											npolys++;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									if (!npolys)
							 | 
						||
| 
								 | 
							
										return DT_SUCCESS;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Merge polygons.
							 | 
						||
| 
								 | 
							
									int maxVertsPerPoly = MAX_VERTS_PER_POLY;
							 | 
						||
| 
								 | 
							
									if (maxVertsPerPoly > 3)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										for (;;)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											// Find best polygons to merge.
							 | 
						||
| 
								 | 
							
											int bestMergeVal = 0;
							 | 
						||
| 
								 | 
							
											int bestPa = 0, bestPb = 0, bestEa = 0, bestEb = 0;
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											for (int j = 0; j < npolys-1; ++j)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												unsigned short* pj = &polys[j*MAX_VERTS_PER_POLY];
							 | 
						||
| 
								 | 
							
												for (int k = j+1; k < npolys; ++k)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													unsigned short* pk = &polys[k*MAX_VERTS_PER_POLY];
							 | 
						||
| 
								 | 
							
													int ea, eb;
							 | 
						||
| 
								 | 
							
													int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb);
							 | 
						||
| 
								 | 
							
													if (v > bestMergeVal)
							 | 
						||
| 
								 | 
							
													{
							 | 
						||
| 
								 | 
							
														bestMergeVal = v;
							 | 
						||
| 
								 | 
							
														bestPa = j;
							 | 
						||
| 
								 | 
							
														bestPb = k;
							 | 
						||
| 
								 | 
							
														bestEa = ea;
							 | 
						||
| 
								 | 
							
														bestEb = eb;
							 | 
						||
| 
								 | 
							
													}
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											
							 | 
						||
| 
								 | 
							
											if (bestMergeVal > 0)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// Found best, merge.
							 | 
						||
| 
								 | 
							
												unsigned short* pa = &polys[bestPa*MAX_VERTS_PER_POLY];
							 | 
						||
| 
								 | 
							
												unsigned short* pb = &polys[bestPb*MAX_VERTS_PER_POLY];
							 | 
						||
| 
								 | 
							
												mergePolys(pa, pb, bestEa, bestEb);
							 | 
						||
| 
								 | 
							
												memcpy(pb, &polys[(npolys-1)*MAX_VERTS_PER_POLY], sizeof(unsigned short)*MAX_VERTS_PER_POLY);
							 | 
						||
| 
								 | 
							
												pareas[bestPb] = pareas[npolys-1];
							 | 
						||
| 
								 | 
							
												npolys--;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											else
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// Could not merge any polygons, stop.
							 | 
						||
| 
								 | 
							
												break;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Store polygons.
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < npolys; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										if (mesh.npolys >= maxTris) break;
							 | 
						||
| 
								 | 
							
										unsigned short* p = &mesh.polys[mesh.npolys*MAX_VERTS_PER_POLY*2];
							 | 
						||
| 
								 | 
							
										memset(p,0xff,sizeof(unsigned short)*MAX_VERTS_PER_POLY*2);
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < MAX_VERTS_PER_POLY; ++j)
							 | 
						||
| 
								 | 
							
											p[j] = polys[i*MAX_VERTS_PER_POLY+j];
							 | 
						||
| 
								 | 
							
										mesh.areas[mesh.npolys] = pareas[i];
							 | 
						||
| 
								 | 
							
										mesh.npolys++;
							 | 
						||
| 
								 | 
							
										if (mesh.npolys > maxTris)
							 | 
						||
| 
								 | 
							
											return DT_FAILURE | DT_BUFFER_TOO_SMALL;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return DT_SUCCESS;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								dtStatus dtBuildTileCachePolyMesh(dtTileCacheAlloc* alloc,
							 | 
						||
| 
								 | 
							
																  dtTileCacheContourSet& lcset,
							 | 
						||
| 
								 | 
							
																  dtTileCachePolyMesh& mesh)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									dtAssert(alloc);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									int maxVertices = 0;
							 | 
						||
| 
								 | 
							
									int maxTris = 0;
							 | 
						||
| 
								 | 
							
									int maxVertsPerCont = 0;
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < lcset.nconts; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										// Skip null contours.
							 | 
						||
| 
								 | 
							
										if (lcset.conts[i].nverts < 3) continue;
							 | 
						||
| 
								 | 
							
										maxVertices += lcset.conts[i].nverts;
							 | 
						||
| 
								 | 
							
										maxTris += lcset.conts[i].nverts - 2;
							 | 
						||
| 
								 | 
							
										maxVertsPerCont = dtMax(maxVertsPerCont, lcset.conts[i].nverts);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									// TODO: warn about too many vertices?
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									mesh.nvp = MAX_VERTS_PER_POLY;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									dtFixedArray<unsigned char> vflags(alloc, maxVertices);
							 | 
						||
| 
								 | 
							
									if (!vflags)
							 | 
						||
| 
								 | 
							
										return DT_FAILURE | DT_OUT_OF_MEMORY;
							 | 
						||
| 
								 | 
							
									memset(vflags, 0, maxVertices);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									mesh.verts = (unsigned short*)alloc->alloc(sizeof(unsigned short)*maxVertices*3);
							 | 
						||
| 
								 | 
							
									if (!mesh.verts)
							 | 
						||
| 
								 | 
							
										return DT_FAILURE | DT_OUT_OF_MEMORY;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									mesh.polys = (unsigned short*)alloc->alloc(sizeof(unsigned short)*maxTris*MAX_VERTS_PER_POLY*2);
							 | 
						||
| 
								 | 
							
									if (!mesh.polys)
							 | 
						||
| 
								 | 
							
										return DT_FAILURE | DT_OUT_OF_MEMORY;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									mesh.areas = (unsigned char*)alloc->alloc(sizeof(unsigned char)*maxTris);
							 | 
						||
| 
								 | 
							
									if (!mesh.areas)
							 | 
						||
| 
								 | 
							
										return DT_FAILURE | DT_OUT_OF_MEMORY;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									mesh.flags = (unsigned short*)alloc->alloc(sizeof(unsigned short)*maxTris);
							 | 
						||
| 
								 | 
							
									if (!mesh.flags)
							 | 
						||
| 
								 | 
							
										return DT_FAILURE | DT_OUT_OF_MEMORY;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									// Just allocate and clean the mesh flags array. The user is resposible for filling it.
							 | 
						||
| 
								 | 
							
									memset(mesh.flags, 0, sizeof(unsigned short) * maxTris);
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
									mesh.nverts = 0;
							 | 
						||
| 
								 | 
							
									mesh.npolys = 0;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									memset(mesh.verts, 0, sizeof(unsigned short)*maxVertices*3);
							 | 
						||
| 
								 | 
							
									memset(mesh.polys, 0xff, sizeof(unsigned short)*maxTris*MAX_VERTS_PER_POLY*2);
							 | 
						||
| 
								 | 
							
									memset(mesh.areas, 0, sizeof(unsigned char)*maxTris);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									unsigned short firstVert[VERTEX_BUCKET_COUNT2];
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < VERTEX_BUCKET_COUNT2; ++i)
							 | 
						||
| 
								 | 
							
										firstVert[i] = DT_TILECACHE_NULL_IDX;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									dtFixedArray<unsigned short> nextVert(alloc, maxVertices);
							 | 
						||
| 
								 | 
							
									if (!nextVert)
							 | 
						||
| 
								 | 
							
										return DT_FAILURE | DT_OUT_OF_MEMORY;
							 | 
						||
| 
								 | 
							
									memset(nextVert, 0, sizeof(unsigned short)*maxVertices);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									dtFixedArray<unsigned short> indices(alloc, maxVertsPerCont);
							 | 
						||
| 
								 | 
							
									if (!indices)
							 | 
						||
| 
								 | 
							
										return DT_FAILURE | DT_OUT_OF_MEMORY;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									dtFixedArray<unsigned short> tris(alloc, maxVertsPerCont*3);
							 | 
						||
| 
								 | 
							
									if (!tris)
							 | 
						||
| 
								 | 
							
										return DT_FAILURE | DT_OUT_OF_MEMORY;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									dtFixedArray<unsigned short> polys(alloc, maxVertsPerCont*MAX_VERTS_PER_POLY);
							 | 
						||
| 
								 | 
							
									if (!polys)
							 | 
						||
| 
								 | 
							
										return DT_FAILURE | DT_OUT_OF_MEMORY;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < lcset.nconts; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										dtTileCacheContour& cont = lcset.conts[i];
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Skip null contours.
							 | 
						||
| 
								 | 
							
										if (cont.nverts < 3)
							 | 
						||
| 
								 | 
							
											continue;
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Triangulate contour
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < cont.nverts; ++j)
							 | 
						||
| 
								 | 
							
											indices[j] = (unsigned short)j;
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										int ntris = triangulate(cont.nverts, cont.verts, &indices[0], &tris[0]);
							 | 
						||
| 
								 | 
							
										if (ntris <= 0)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											// TODO: issue warning!
							 | 
						||
| 
								 | 
							
											ntris = -ntris;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Add and merge vertices.
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < cont.nverts; ++j)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											const unsigned char* v = &cont.verts[j*4];
							 | 
						||
| 
								 | 
							
											indices[j] = addVertex((unsigned short)v[0], (unsigned short)v[1], (unsigned short)v[2],
							 | 
						||
| 
								 | 
							
																   mesh.verts, firstVert, nextVert, mesh.nverts);
							 | 
						||
| 
								 | 
							
											if (v[3] & 0x80)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// This vertex should be removed.
							 | 
						||
| 
								 | 
							
												vflags[indices[j]] = 1;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Build initial polygons.
							 | 
						||
| 
								 | 
							
										int npolys = 0;
							 | 
						||
| 
								 | 
							
										memset(polys, 0xff, sizeof(unsigned short) * maxVertsPerCont * MAX_VERTS_PER_POLY);
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < ntris; ++j)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											const unsigned short* t = &tris[j*3];
							 | 
						||
| 
								 | 
							
											if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2])
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												polys[npolys*MAX_VERTS_PER_POLY+0] = indices[t[0]];
							 | 
						||
| 
								 | 
							
												polys[npolys*MAX_VERTS_PER_POLY+1] = indices[t[1]];
							 | 
						||
| 
								 | 
							
												polys[npolys*MAX_VERTS_PER_POLY+2] = indices[t[2]];
							 | 
						||
| 
								 | 
							
												npolys++;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										if (!npolys)
							 | 
						||
| 
								 | 
							
											continue;
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Merge polygons.
							 | 
						||
| 
								 | 
							
										int maxVertsPerPoly =MAX_VERTS_PER_POLY ;
							 | 
						||
| 
								 | 
							
										if (maxVertsPerPoly > 3)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											for(;;)
							 | 
						||
| 
								 | 
							
											{
							 | 
						||
| 
								 | 
							
												// Find best polygons to merge.
							 | 
						||
| 
								 | 
							
												int bestMergeVal = 0;
							 | 
						||
| 
								 | 
							
												int bestPa = 0, bestPb = 0, bestEa = 0, bestEb = 0;
							 | 
						||
| 
								 | 
							
												
							 | 
						||
| 
								 | 
							
												for (int j = 0; j < npolys-1; ++j)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													unsigned short* pj = &polys[j*MAX_VERTS_PER_POLY];
							 | 
						||
| 
								 | 
							
													for (int k = j+1; k < npolys; ++k)
							 | 
						||
| 
								 | 
							
													{
							 | 
						||
| 
								 | 
							
														unsigned short* pk = &polys[k*MAX_VERTS_PER_POLY];
							 | 
						||
| 
								 | 
							
														int ea, eb;
							 | 
						||
| 
								 | 
							
														int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb);
							 | 
						||
| 
								 | 
							
														if (v > bestMergeVal)
							 | 
						||
| 
								 | 
							
														{
							 | 
						||
| 
								 | 
							
															bestMergeVal = v;
							 | 
						||
| 
								 | 
							
															bestPa = j;
							 | 
						||
| 
								 | 
							
															bestPb = k;
							 | 
						||
| 
								 | 
							
															bestEa = ea;
							 | 
						||
| 
								 | 
							
															bestEb = eb;
							 | 
						||
| 
								 | 
							
														}
							 | 
						||
| 
								 | 
							
													}
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
												
							 | 
						||
| 
								 | 
							
												if (bestMergeVal > 0)
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													// Found best, merge.
							 | 
						||
| 
								 | 
							
													unsigned short* pa = &polys[bestPa*MAX_VERTS_PER_POLY];
							 | 
						||
| 
								 | 
							
													unsigned short* pb = &polys[bestPb*MAX_VERTS_PER_POLY];
							 | 
						||
| 
								 | 
							
													mergePolys(pa, pb, bestEa, bestEb);
							 | 
						||
| 
								 | 
							
													memcpy(pb, &polys[(npolys-1)*MAX_VERTS_PER_POLY], sizeof(unsigned short)*MAX_VERTS_PER_POLY);
							 | 
						||
| 
								 | 
							
													npolys--;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
												else
							 | 
						||
| 
								 | 
							
												{
							 | 
						||
| 
								 | 
							
													// Could not merge any polygons, stop.
							 | 
						||
| 
								 | 
							
													break;
							 | 
						||
| 
								 | 
							
												}
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
										// Store polygons.
							 | 
						||
| 
								 | 
							
										for (int j = 0; j < npolys; ++j)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											unsigned short* p = &mesh.polys[mesh.npolys*MAX_VERTS_PER_POLY*2];
							 | 
						||
| 
								 | 
							
											unsigned short* q = &polys[j*MAX_VERTS_PER_POLY];
							 | 
						||
| 
								 | 
							
											for (int k = 0; k < MAX_VERTS_PER_POLY; ++k)
							 | 
						||
| 
								 | 
							
												p[k] = q[k];
							 | 
						||
| 
								 | 
							
											mesh.areas[mesh.npolys] = cont.area;
							 | 
						||
| 
								 | 
							
											mesh.npolys++;
							 | 
						||
| 
								 | 
							
											if (mesh.npolys > maxTris)
							 | 
						||
| 
								 | 
							
												return DT_FAILURE | DT_BUFFER_TOO_SMALL;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Remove edge vertices.
							 | 
						||
| 
								 | 
							
									for (int i = 0; i < mesh.nverts; ++i)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										if (vflags[i])
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											if (!canRemoveVertex(mesh, (unsigned short)i))
							 | 
						||
| 
								 | 
							
												continue;
							 | 
						||
| 
								 | 
							
											dtStatus status = removeVertex(mesh, (unsigned short)i, maxTris);
							 | 
						||
| 
								 | 
							
											if (dtStatusFailed(status))
							 | 
						||
| 
								 | 
							
												return status;
							 | 
						||
| 
								 | 
							
											// Remove vertex
							 | 
						||
| 
								 | 
							
											// Note: mesh.nverts is already decremented inside removeVertex()!
							 | 
						||
| 
								 | 
							
											for (int j = i; j < mesh.nverts; ++j)
							 | 
						||
| 
								 | 
							
												vflags[j] = vflags[j+1];
							 | 
						||
| 
								 | 
							
											--i;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Calculate adjacency.
							 | 
						||
| 
								 | 
							
									if (!buildMeshAdjacency(alloc, mesh.polys, mesh.npolys, mesh.verts, mesh.nverts, lcset))
							 | 
						||
| 
								 | 
							
										return DT_FAILURE | DT_OUT_OF_MEMORY;
							 | 
						||
| 
								 | 
							
										
							 | 
						||
| 
								 | 
							
									return DT_SUCCESS;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								dtStatus dtMarkCylinderArea(dtTileCacheLayer& layer, const float* orig, const float cs, const float ch,
							 | 
						||
| 
								 | 
							
															const float* pos, const float radius, const float height, const unsigned char areaId)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									float bmin[3], bmax[3];
							 | 
						||
| 
								 | 
							
									bmin[0] = pos[0] - radius;
							 | 
						||
| 
								 | 
							
									bmin[1] = pos[1];
							 | 
						||
| 
								 | 
							
									bmin[2] = pos[2] - radius;
							 | 
						||
| 
								 | 
							
									bmax[0] = pos[0] + radius;
							 | 
						||
| 
								 | 
							
									bmax[1] = pos[1] + height;
							 | 
						||
| 
								 | 
							
									bmax[2] = pos[2] + radius;
							 | 
						||
| 
								 | 
							
									const float r2 = dtSqr(radius/cs + 0.5f);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									const int w = (int)layer.header->width;
							 | 
						||
| 
								 | 
							
									const int h = (int)layer.header->height;
							 | 
						||
| 
								 | 
							
									const float ics = 1.0f/cs;
							 | 
						||
| 
								 | 
							
									const float ich = 1.0f/ch;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									const float px = (pos[0]-orig[0])*ics;
							 | 
						||
| 
								 | 
							
									const float pz = (pos[2]-orig[2])*ics;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									int minx = (int)dtMathFloorf((bmin[0]-orig[0])*ics);
							 | 
						||
| 
								 | 
							
									int miny = (int)dtMathFloorf((bmin[1]-orig[1])*ich);
							 | 
						||
| 
								 | 
							
									int minz = (int)dtMathFloorf((bmin[2]-orig[2])*ics);
							 | 
						||
| 
								 | 
							
									int maxx = (int)dtMathFloorf((bmax[0]-orig[0])*ics);
							 | 
						||
| 
								 | 
							
									int maxy = (int)dtMathFloorf((bmax[1]-orig[1])*ich);
							 | 
						||
| 
								 | 
							
									int maxz = (int)dtMathFloorf((bmax[2]-orig[2])*ics);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									if (maxx < 0) return DT_SUCCESS;
							 | 
						||
| 
								 | 
							
									if (minx >= w) return DT_SUCCESS;
							 | 
						||
| 
								 | 
							
									if (maxz < 0) return DT_SUCCESS;
							 | 
						||
| 
								 | 
							
									if (minz >= h) return DT_SUCCESS;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									if (minx < 0) minx = 0;
							 | 
						||
| 
								 | 
							
									if (maxx >= w) maxx = w-1;
							 | 
						||
| 
								 | 
							
									if (minz < 0) minz = 0;
							 | 
						||
| 
								 | 
							
									if (maxz >= h) maxz = h-1;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int z = minz; z <= maxz; ++z)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										for (int x = minx; x <= maxx; ++x)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											const float dx = (float)(x+0.5f) - px;
							 | 
						||
| 
								 | 
							
											const float dz = (float)(z+0.5f) - pz;
							 | 
						||
| 
								 | 
							
											if (dx*dx + dz*dz > r2)
							 | 
						||
| 
								 | 
							
												continue;
							 | 
						||
| 
								 | 
							
											const int y = layer.heights[x+z*w];
							 | 
						||
| 
								 | 
							
											if (y < miny || y > maxy)
							 | 
						||
| 
								 | 
							
												continue;
							 | 
						||
| 
								 | 
							
											layer.areas[x+z*w] = areaId;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									return DT_SUCCESS;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								dtStatus dtMarkBoxArea(dtTileCacheLayer& layer, const float* orig, const float cs, const float ch,
							 | 
						||
| 
								 | 
							
													   const float* bmin, const float* bmax, const unsigned char areaId)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const int w = (int)layer.header->width;
							 | 
						||
| 
								 | 
							
									const int h = (int)layer.header->height;
							 | 
						||
| 
								 | 
							
									const float ics = 1.0f/cs;
							 | 
						||
| 
								 | 
							
									const float ich = 1.0f/ch;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									int minx = (int)floorf((bmin[0]-orig[0])*ics);
							 | 
						||
| 
								 | 
							
									int miny = (int)floorf((bmin[1]-orig[1])*ich);
							 | 
						||
| 
								 | 
							
									int minz = (int)floorf((bmin[2]-orig[2])*ics);
							 | 
						||
| 
								 | 
							
									int maxx = (int)floorf((bmax[0]-orig[0])*ics);
							 | 
						||
| 
								 | 
							
									int maxy = (int)floorf((bmax[1]-orig[1])*ich);
							 | 
						||
| 
								 | 
							
									int maxz = (int)floorf((bmax[2]-orig[2])*ics);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									if (maxx < 0) return DT_SUCCESS;
							 | 
						||
| 
								 | 
							
									if (minx >= w) return DT_SUCCESS;
							 | 
						||
| 
								 | 
							
									if (maxz < 0) return DT_SUCCESS;
							 | 
						||
| 
								 | 
							
									if (minz >= h) return DT_SUCCESS;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									if (minx < 0) minx = 0;
							 | 
						||
| 
								 | 
							
									if (maxx >= w) maxx = w-1;
							 | 
						||
| 
								 | 
							
									if (minz < 0) minz = 0;
							 | 
						||
| 
								 | 
							
									if (maxz >= h) maxz = h-1;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									for (int z = minz; z <= maxz; ++z)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										for (int x = minx; x <= maxx; ++x)
							 | 
						||
| 
								 | 
							
										{
							 | 
						||
| 
								 | 
							
											const int y = layer.heights[x+z*w];
							 | 
						||
| 
								 | 
							
											if (y < miny || y > maxy)
							 | 
						||
| 
								 | 
							
												continue;
							 | 
						||
| 
								 | 
							
											layer.areas[x+z*w] = areaId;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									return DT_SUCCESS;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								dtStatus dtMarkBoxArea(dtTileCacheLayer& layer, const float* orig, const float cs, const float ch,
							 | 
						||
| 
								 | 
							
													   const float* center, const float* halfExtents, const float* rotAux, const unsigned char areaId)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const int w = (int)layer.header->width;
							 | 
						||
| 
								 | 
							
									const int h = (int)layer.header->height;
							 | 
						||
| 
								 | 
							
									const float ics = 1.0f/cs;
							 | 
						||
| 
								 | 
							
									const float ich = 1.0f/ch;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									float cx = (center[0] - orig[0])*ics;
							 | 
						||
| 
								 | 
							
									float cz = (center[2] - orig[2])*ics;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									float maxr = 1.41f*dtMax(halfExtents[0], halfExtents[2]);
							 | 
						||
| 
								 | 
							
									int minx = (int)floorf(cx - maxr*ics);
							 | 
						||
| 
								 | 
							
									int maxx = (int)floorf(cx + maxr*ics);
							 | 
						||
| 
								 | 
							
									int minz = (int)floorf(cz - maxr*ics);
							 | 
						||
| 
								 | 
							
									int maxz = (int)floorf(cz + maxr*ics);
							 | 
						||
| 
								 | 
							
									int miny = (int)floorf((center[1]-halfExtents[1]-orig[1])*ich);
							 | 
						||
| 
								 | 
							
									int maxy = (int)floorf((center[1]+halfExtents[1]-orig[1])*ich);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									if (maxx < 0) return DT_SUCCESS;
							 | 
						||
| 
								 | 
							
									if (minx >= w) return DT_SUCCESS;
							 | 
						||
| 
								 | 
							
									if (maxz < 0) return DT_SUCCESS;
							 | 
						||
| 
								 | 
							
									if (minz >= h) return DT_SUCCESS;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									if (minx < 0) minx = 0;
							 | 
						||
| 
								 | 
							
									if (maxx >= w) maxx = w-1;
							 | 
						||
| 
								 | 
							
									if (minz < 0) minz = 0;
							 | 
						||
| 
								 | 
							
									if (maxz >= h) maxz = h-1;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									float xhalf = halfExtents[0]*ics + 0.5f;
							 | 
						||
| 
								 | 
							
									float zhalf = halfExtents[2]*ics + 0.5f;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for (int z = minz; z <= maxz; ++z)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										for (int x = minx; x <= maxx; ++x)
							 | 
						||
| 
								 | 
							
										{			
							 | 
						||
| 
								 | 
							
											float x2 = 2.0f*(float(x) - cx);
							 | 
						||
| 
								 | 
							
											float z2 = 2.0f*(float(z) - cz);
							 | 
						||
| 
								 | 
							
											float xrot = rotAux[1]*x2 + rotAux[0]*z2;
							 | 
						||
| 
								 | 
							
											if (xrot > xhalf || xrot < -xhalf)
							 | 
						||
| 
								 | 
							
												continue;
							 | 
						||
| 
								 | 
							
											float zrot = rotAux[1]*z2 - rotAux[0]*x2;
							 | 
						||
| 
								 | 
							
											if (zrot > zhalf || zrot < -zhalf)
							 | 
						||
| 
								 | 
							
												continue;
							 | 
						||
| 
								 | 
							
											const int y = layer.heights[x+z*w];
							 | 
						||
| 
								 | 
							
											if (y < miny || y > maxy)
							 | 
						||
| 
								 | 
							
												continue;
							 | 
						||
| 
								 | 
							
											layer.areas[x+z*w] = areaId;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									return DT_SUCCESS;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								dtStatus dtBuildTileCacheLayer(dtTileCacheCompressor* comp,
							 | 
						||
| 
								 | 
							
															   dtTileCacheLayerHeader* header,
							 | 
						||
| 
								 | 
							
															   const unsigned char* heights,
							 | 
						||
| 
								 | 
							
															   const unsigned char* areas,
							 | 
						||
| 
								 | 
							
															   const unsigned char* cons,
							 | 
						||
| 
								 | 
							
															   unsigned char** outData, int* outDataSize)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									const int headerSize = dtAlign4(sizeof(dtTileCacheLayerHeader));
							 | 
						||
| 
								 | 
							
									const int gridSize = (int)header->width * (int)header->height;
							 | 
						||
| 
								 | 
							
									const int maxDataSize = headerSize + comp->maxCompressedSize(gridSize*3);
							 | 
						||
| 
								 | 
							
									unsigned char* data = (unsigned char*)dtAlloc(maxDataSize, DT_ALLOC_PERM);
							 | 
						||
| 
								 | 
							
									if (!data)
							 | 
						||
| 
								 | 
							
										return DT_FAILURE | DT_OUT_OF_MEMORY;
							 | 
						||
| 
								 | 
							
									memset(data, 0, maxDataSize);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Store header
							 | 
						||
| 
								 | 
							
									memcpy(data, header, sizeof(dtTileCacheLayerHeader));
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Concatenate grid data for compression.
							 | 
						||
| 
								 | 
							
									const int bufferSize = gridSize*3;
							 | 
						||
| 
								 | 
							
									unsigned char* buffer = (unsigned char*)dtAlloc(bufferSize, DT_ALLOC_TEMP);
							 | 
						||
| 
								 | 
							
									if (!buffer)
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										dtFree(data);
							 | 
						||
| 
								 | 
							
										return DT_FAILURE | DT_OUT_OF_MEMORY;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									memcpy(buffer, heights, gridSize);
							 | 
						||
| 
								 | 
							
									memcpy(buffer+gridSize, areas, gridSize);
							 | 
						||
| 
								 | 
							
									memcpy(buffer+gridSize*2, cons, gridSize);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Compress
							 | 
						||
| 
								 | 
							
									unsigned char* compressed = data + headerSize;
							 | 
						||
| 
								 | 
							
									const int maxCompressedSize = maxDataSize - headerSize;
							 | 
						||
| 
								 | 
							
									int compressedSize = 0;
							 | 
						||
| 
								 | 
							
									dtStatus status = comp->compress(buffer, bufferSize, compressed, maxCompressedSize, &compressedSize);
							 | 
						||
| 
								 | 
							
									if (dtStatusFailed(status))
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										dtFree(buffer);
							 | 
						||
| 
								 | 
							
										dtFree(data);
							 | 
						||
| 
								 | 
							
										return status;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									*outData = data;
							 | 
						||
| 
								 | 
							
									*outDataSize = headerSize + compressedSize;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									dtFree(buffer);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return DT_SUCCESS;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void dtFreeTileCacheLayer(dtTileCacheAlloc* alloc, dtTileCacheLayer* layer)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									dtAssert(alloc);
							 | 
						||
| 
								 | 
							
									// The layer is allocated as one conitguous blob of data.
							 | 
						||
| 
								 | 
							
									alloc->free(layer);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								dtStatus dtDecompressTileCacheLayer(dtTileCacheAlloc* alloc, dtTileCacheCompressor* comp,
							 | 
						||
| 
								 | 
							
																	unsigned char* compressed, const int compressedSize,
							 | 
						||
| 
								 | 
							
																	dtTileCacheLayer** layerOut)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									dtAssert(alloc);
							 | 
						||
| 
								 | 
							
									dtAssert(comp);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									if (!layerOut)
							 | 
						||
| 
								 | 
							
										return DT_FAILURE | DT_INVALID_PARAM;
							 | 
						||
| 
								 | 
							
									if (!compressed)
							 | 
						||
| 
								 | 
							
										return DT_FAILURE | DT_INVALID_PARAM;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									*layerOut = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									dtTileCacheLayerHeader* compressedHeader = (dtTileCacheLayerHeader*)compressed;
							 | 
						||
| 
								 | 
							
									if (compressedHeader->magic != DT_TILECACHE_MAGIC)
							 | 
						||
| 
								 | 
							
										return DT_FAILURE | DT_WRONG_MAGIC;
							 | 
						||
| 
								 | 
							
									if (compressedHeader->version != DT_TILECACHE_VERSION)
							 | 
						||
| 
								 | 
							
										return DT_FAILURE | DT_WRONG_VERSION;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									const int layerSize = dtAlign4(sizeof(dtTileCacheLayer));
							 | 
						||
| 
								 | 
							
									const int headerSize = dtAlign4(sizeof(dtTileCacheLayerHeader));
							 | 
						||
| 
								 | 
							
									const int gridSize = (int)compressedHeader->width * (int)compressedHeader->height;
							 | 
						||
| 
								 | 
							
									const int bufferSize = layerSize + headerSize + gridSize*4;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									unsigned char* buffer = (unsigned char*)alloc->alloc(bufferSize);
							 | 
						||
| 
								 | 
							
									if (!buffer)
							 | 
						||
| 
								 | 
							
										return DT_FAILURE | DT_OUT_OF_MEMORY;
							 | 
						||
| 
								 | 
							
									memset(buffer, 0, bufferSize);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									dtTileCacheLayer* layer = (dtTileCacheLayer*)buffer;
							 | 
						||
| 
								 | 
							
									dtTileCacheLayerHeader* header = (dtTileCacheLayerHeader*)(buffer + layerSize);
							 | 
						||
| 
								 | 
							
									unsigned char* grids = buffer + layerSize + headerSize;
							 | 
						||
| 
								 | 
							
									const int gridsSize = bufferSize - (layerSize + headerSize); 
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// Copy header
							 | 
						||
| 
								 | 
							
									memcpy(header, compressedHeader, headerSize);
							 | 
						||
| 
								 | 
							
									// Decompress grid.
							 | 
						||
| 
								 | 
							
									int size = 0;
							 | 
						||
| 
								 | 
							
									dtStatus status = comp->decompress(compressed+headerSize, compressedSize-headerSize,
							 | 
						||
| 
								 | 
							
																	   grids, gridsSize, &size);
							 | 
						||
| 
								 | 
							
									if (dtStatusFailed(status))
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										alloc->free(buffer);
							 | 
						||
| 
								 | 
							
										return status;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									layer->header = header;
							 | 
						||
| 
								 | 
							
									layer->heights = grids;
							 | 
						||
| 
								 | 
							
									layer->areas = grids + gridSize;
							 | 
						||
| 
								 | 
							
									layer->cons = grids + gridSize*2;
							 | 
						||
| 
								 | 
							
									layer->regs = grids + gridSize*3;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									*layerOut = layer;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return DT_SUCCESS;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								bool dtTileCacheHeaderSwapEndian(unsigned char* data, const int dataSize)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									dtIgnoreUnused(dataSize);
							 | 
						||
| 
								 | 
							
									dtTileCacheLayerHeader* header = (dtTileCacheLayerHeader*)data;
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									int swappedMagic = DT_TILECACHE_MAGIC;
							 | 
						||
| 
								 | 
							
									int swappedVersion = DT_TILECACHE_VERSION;
							 | 
						||
| 
								 | 
							
									dtSwapEndian(&swappedMagic);
							 | 
						||
| 
								 | 
							
									dtSwapEndian(&swappedVersion);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									if ((header->magic != DT_TILECACHE_MAGIC || header->version != DT_TILECACHE_VERSION) &&
							 | 
						||
| 
								 | 
							
										(header->magic != swappedMagic || header->version != swappedVersion))
							 | 
						||
| 
								 | 
							
									{
							 | 
						||
| 
								 | 
							
										return false;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									dtSwapEndian(&header->magic);
							 | 
						||
| 
								 | 
							
									dtSwapEndian(&header->version);
							 | 
						||
| 
								 | 
							
									dtSwapEndian(&header->tx);
							 | 
						||
| 
								 | 
							
									dtSwapEndian(&header->ty);
							 | 
						||
| 
								 | 
							
									dtSwapEndian(&header->tlayer);
							 | 
						||
| 
								 | 
							
									dtSwapEndian(&header->bmin[0]);
							 | 
						||
| 
								 | 
							
									dtSwapEndian(&header->bmin[1]);
							 | 
						||
| 
								 | 
							
									dtSwapEndian(&header->bmin[2]);
							 | 
						||
| 
								 | 
							
									dtSwapEndian(&header->bmax[0]);
							 | 
						||
| 
								 | 
							
									dtSwapEndian(&header->bmax[1]);
							 | 
						||
| 
								 | 
							
									dtSwapEndian(&header->bmax[2]);
							 | 
						||
| 
								 | 
							
									dtSwapEndian(&header->hmin);
							 | 
						||
| 
								 | 
							
									dtSwapEndian(&header->hmax);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									// width, height, minx, maxx, miny, maxy are unsigned char, no need to swap.
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
									return true;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 |