1349 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			1349 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|  | /*
 | ||
|  | Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans  http://continuousphysics.com/Bullet/
 | ||
|  | 
 | ||
|  | This software is provided 'as-is', without any express or implied warranty. | ||
|  | In no event will the authors be held liable for any damages arising from the use of this software. | ||
|  | Permission is granted to anyone to use this software for any purpose,  | ||
|  | including commercial applications, and to alter it and redistribute it freely,  | ||
|  | subject to the following restrictions: | ||
|  | 
 | ||
|  | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | ||
|  | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | ||
|  | 3. This notice may not be removed or altered from any source distribution. | ||
|  | */ | ||
|  | 
 | ||
|  | 
 | ||
|  | #ifndef	BT_MATRIX3x3_H
 | ||
|  | #define BT_MATRIX3x3_H
 | ||
|  | 
 | ||
|  | #include "btVector3.h"
 | ||
|  | #include "btQuaternion.h"
 | ||
|  | #include <stdio.h>
 | ||
|  | 
 | ||
|  | #ifdef BT_USE_SSE
 | ||
|  | //const __m128 ATTRIBUTE_ALIGNED16(v2220) = {2.0f, 2.0f, 2.0f, 0.0f};
 | ||
|  | //const __m128 ATTRIBUTE_ALIGNED16(vMPPP) = {-0.0f, +0.0f, +0.0f, +0.0f};
 | ||
|  | #define vMPPP (_mm_set_ps (+0.0f, +0.0f, +0.0f, -0.0f))
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if defined(BT_USE_SSE)
 | ||
|  | #define v1000 (_mm_set_ps(0.0f,0.0f,0.0f,1.0f))
 | ||
|  | #define v0100 (_mm_set_ps(0.0f,0.0f,1.0f,0.0f))
 | ||
|  | #define v0010 (_mm_set_ps(0.0f,1.0f,0.0f,0.0f))
 | ||
|  | #elif defined(BT_USE_NEON)
 | ||
|  | const btSimdFloat4 ATTRIBUTE_ALIGNED16(v1000) = {1.0f, 0.0f, 0.0f, 0.0f}; | ||
|  | const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0100) = {0.0f, 1.0f, 0.0f, 0.0f}; | ||
|  | const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0010) = {0.0f, 0.0f, 1.0f, 0.0f}; | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifdef BT_USE_DOUBLE_PRECISION
 | ||
|  | #define btMatrix3x3Data	btMatrix3x3DoubleData 
 | ||
|  | #else
 | ||
|  | #define btMatrix3x3Data	btMatrix3x3FloatData
 | ||
|  | #endif //BT_USE_DOUBLE_PRECISION
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /**@brief The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with btQuaternion, btTransform and btVector3.
 | ||
|  | * Make sure to only include a pure orthogonal matrix without scaling. */ | ||
|  | ATTRIBUTE_ALIGNED16(class) btMatrix3x3 { | ||
|  | 
 | ||
|  | 	///Data storage for the matrix, each vector is a row of the matrix
 | ||
|  | 	btVector3 m_el[3]; | ||
|  | 
 | ||
|  | public: | ||
|  | 	/** @brief No initializaion constructor */ | ||
|  | 	btMatrix3x3 () {} | ||
|  | 
 | ||
|  | 	//		explicit btMatrix3x3(const btScalar *m) { setFromOpenGLSubMatrix(m); }
 | ||
|  | 
 | ||
|  | 	/**@brief Constructor from Quaternion */ | ||
|  | 	explicit btMatrix3x3(const btQuaternion& q) { setRotation(q); } | ||
|  | 	/*
 | ||
|  | 	template <typename btScalar> | ||
|  | 	Matrix3x3(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) | ||
|  | 	{  | ||
|  | 	setEulerYPR(yaw, pitch, roll); | ||
|  | 	} | ||
|  | 	*/ | ||
|  | 	/** @brief Constructor with row major formatting */ | ||
|  | 	btMatrix3x3(const btScalar& xx, const btScalar& xy, const btScalar& xz, | ||
|  | 		const btScalar& yx, const btScalar& yy, const btScalar& yz, | ||
|  | 		const btScalar& zx, const btScalar& zy, const btScalar& zz) | ||
|  | 	{  | ||
|  | 		setValue(xx, xy, xz,  | ||
|  | 			yx, yy, yz,  | ||
|  | 			zx, zy, zz); | ||
|  | 	} | ||
|  | 
 | ||
|  | #if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
 | ||
|  | 	SIMD_FORCE_INLINE btMatrix3x3 (const btSimdFloat4 v0, const btSimdFloat4 v1, const btSimdFloat4 v2 )  | ||
|  | 	{ | ||
|  |         m_el[0].mVec128 = v0; | ||
|  |         m_el[1].mVec128 = v1; | ||
|  |         m_el[2].mVec128 = v2; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	SIMD_FORCE_INLINE btMatrix3x3 (const btVector3& v0, const btVector3& v1, const btVector3& v2 )  | ||
|  | 	{ | ||
|  |         m_el[0] = v0; | ||
|  |         m_el[1] = v1; | ||
|  |         m_el[2] = v2; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Copy constructor
 | ||
|  | 	SIMD_FORCE_INLINE btMatrix3x3(const btMatrix3x3& rhs) | ||
|  | 	{ | ||
|  | 		m_el[0].mVec128 = rhs.m_el[0].mVec128; | ||
|  | 		m_el[1].mVec128 = rhs.m_el[1].mVec128; | ||
|  | 		m_el[2].mVec128 = rhs.m_el[2].mVec128; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Assignment Operator
 | ||
|  | 	SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& m)  | ||
|  | 	{ | ||
|  | 		m_el[0].mVec128 = m.m_el[0].mVec128; | ||
|  | 		m_el[1].mVec128 = m.m_el[1].mVec128; | ||
|  | 		m_el[2].mVec128 = m.m_el[2].mVec128; | ||
|  | 		 | ||
|  | 		return *this; | ||
|  | 	} | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | 	/** @brief Copy constructor */ | ||
|  | 	SIMD_FORCE_INLINE btMatrix3x3 (const btMatrix3x3& other) | ||
|  | 	{ | ||
|  | 		m_el[0] = other.m_el[0]; | ||
|  | 		m_el[1] = other.m_el[1]; | ||
|  | 		m_el[2] = other.m_el[2]; | ||
|  | 	} | ||
|  |      | ||
|  | 	/** @brief Assignment Operator */ | ||
|  | 	SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& other) | ||
|  | 	{ | ||
|  | 		m_el[0] = other.m_el[0]; | ||
|  | 		m_el[1] = other.m_el[1]; | ||
|  | 		m_el[2] = other.m_el[2]; | ||
|  | 		return *this; | ||
|  | 	} | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | 	/** @brief Get a column of the matrix as a vector 
 | ||
|  | 	*  @param i Column number 0 indexed */ | ||
|  | 	SIMD_FORCE_INLINE btVector3 getColumn(int i) const | ||
|  | 	{ | ||
|  | 		return btVector3(m_el[0][i],m_el[1][i],m_el[2][i]); | ||
|  | 	} | ||
|  | 
 | ||
|  | 
 | ||
|  | 	/** @brief Get a row of the matrix as a vector 
 | ||
|  | 	*  @param i Row number 0 indexed */ | ||
|  | 	SIMD_FORCE_INLINE const btVector3& getRow(int i) const | ||
|  | 	{ | ||
|  | 		btFullAssert(0 <= i && i < 3); | ||
|  | 		return m_el[i]; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/** @brief Get a mutable reference to a row of the matrix as a vector 
 | ||
|  | 	*  @param i Row number 0 indexed */ | ||
|  | 	SIMD_FORCE_INLINE btVector3&  operator[](int i) | ||
|  | 	{  | ||
|  | 		btFullAssert(0 <= i && i < 3); | ||
|  | 		return m_el[i];  | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/** @brief Get a const reference to a row of the matrix as a vector 
 | ||
|  | 	*  @param i Row number 0 indexed */ | ||
|  | 	SIMD_FORCE_INLINE const btVector3& operator[](int i) const | ||
|  | 	{ | ||
|  | 		btFullAssert(0 <= i && i < 3); | ||
|  | 		return m_el[i];  | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/** @brief Multiply by the target matrix on the right
 | ||
|  | 	*  @param m Rotation matrix to be applied  | ||
|  | 	* Equivilant to this = this * m */ | ||
|  | 	btMatrix3x3& operator*=(const btMatrix3x3& m);  | ||
|  | 
 | ||
|  | 	/** @brief Adds by the target matrix on the right
 | ||
|  | 	*  @param m matrix to be applied  | ||
|  | 	* Equivilant to this = this + m */ | ||
|  | 	btMatrix3x3& operator+=(const btMatrix3x3& m);  | ||
|  | 
 | ||
|  | 	/** @brief Substractss by the target matrix on the right
 | ||
|  | 	*  @param m matrix to be applied  | ||
|  | 	* Equivilant to this = this - m */ | ||
|  | 	btMatrix3x3& operator-=(const btMatrix3x3& m);  | ||
|  | 
 | ||
|  | 	/** @brief Set from the rotational part of a 4x4 OpenGL matrix
 | ||
|  | 	*  @param m A pointer to the beginning of the array of scalars*/ | ||
|  | 	void setFromOpenGLSubMatrix(const btScalar *m) | ||
|  | 	{ | ||
|  | 		m_el[0].setValue(m[0],m[4],m[8]); | ||
|  | 		m_el[1].setValue(m[1],m[5],m[9]); | ||
|  | 		m_el[2].setValue(m[2],m[6],m[10]); | ||
|  | 
 | ||
|  | 	} | ||
|  | 	/** @brief Set the values of the matrix explicitly (row major)
 | ||
|  | 	*  @param xx Top left | ||
|  | 	*  @param xy Top Middle | ||
|  | 	*  @param xz Top Right | ||
|  | 	*  @param yx Middle Left | ||
|  | 	*  @param yy Middle Middle | ||
|  | 	*  @param yz Middle Right | ||
|  | 	*  @param zx Bottom Left | ||
|  | 	*  @param zy Bottom Middle | ||
|  | 	*  @param zz Bottom Right*/ | ||
|  | 	void setValue(const btScalar& xx, const btScalar& xy, const btScalar& xz,  | ||
|  | 		const btScalar& yx, const btScalar& yy, const btScalar& yz,  | ||
|  | 		const btScalar& zx, const btScalar& zy, const btScalar& zz) | ||
|  | 	{ | ||
|  | 		m_el[0].setValue(xx,xy,xz); | ||
|  | 		m_el[1].setValue(yx,yy,yz); | ||
|  | 		m_el[2].setValue(zx,zy,zz); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/** @brief Set the matrix from a quaternion
 | ||
|  | 	*  @param q The Quaternion to match */   | ||
|  | 	void setRotation(const btQuaternion& q)  | ||
|  | 	{ | ||
|  | 		btScalar d = q.length2(); | ||
|  | 		btFullAssert(d != btScalar(0.0)); | ||
|  | 		btScalar s = btScalar(2.0) / d; | ||
|  |      | ||
|  |     #if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | ||
|  |         __m128	vs, Q = q.get128(); | ||
|  | 		__m128i Qi = btCastfTo128i(Q); | ||
|  |         __m128	Y, Z; | ||
|  |         __m128	V1, V2, V3; | ||
|  |         __m128	V11, V21, V31; | ||
|  |         __m128	NQ = _mm_xor_ps(Q, btvMzeroMask); | ||
|  | 		__m128i NQi = btCastfTo128i(NQ); | ||
|  |          | ||
|  |         V1 = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(1,0,2,3)));	// Y X Z W
 | ||
|  | 		V2 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(0,0,1,3));     // -X -X  Y  W
 | ||
|  |         V3 = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(2,1,0,3)));	// Z Y X W
 | ||
|  |         V1 = _mm_xor_ps(V1, vMPPP);	//	change the sign of the first element
 | ||
|  | 			 | ||
|  |         V11	= btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(1,1,0,3)));	// Y Y X W
 | ||
|  | 		V21 = _mm_unpackhi_ps(Q, Q);                    //  Z  Z  W  W
 | ||
|  | 		V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(0,2,0,3));	//  X  Z -X -W
 | ||
|  | 
 | ||
|  | 		V2 = V2 * V1;	//
 | ||
|  | 		V1 = V1 * V11;	//
 | ||
|  | 		V3 = V3 * V31;	//
 | ||
|  | 
 | ||
|  |         V11 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(2,3,1,3));	//	-Z -W  Y  W
 | ||
|  | 		V11 = V11 * V21;	//
 | ||
|  |         V21 = _mm_xor_ps(V21, vMPPP);	//	change the sign of the first element
 | ||
|  | 		V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(3,3,1,3));	//	 W  W -Y -W
 | ||
|  |         V31 = _mm_xor_ps(V31, vMPPP);	//	change the sign of the first element
 | ||
|  | 		Y = btCastiTo128f(_mm_shuffle_epi32 (NQi, BT_SHUFFLE(3,2,0,3)));	// -W -Z -X -W
 | ||
|  | 		Z = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(1,0,1,3)));	//  Y  X  Y  W
 | ||
|  | 
 | ||
|  | 		vs = _mm_load_ss(&s); | ||
|  | 		V21 = V21 * Y; | ||
|  | 		V31 = V31 * Z; | ||
|  | 
 | ||
|  | 		V1 = V1 + V11; | ||
|  |         V2 = V2 + V21; | ||
|  |         V3 = V3 + V31; | ||
|  | 
 | ||
|  |         vs = bt_splat3_ps(vs, 0); | ||
|  |             //	s ready
 | ||
|  |         V1 = V1 * vs; | ||
|  |         V2 = V2 * vs; | ||
|  |         V3 = V3 * vs; | ||
|  |          | ||
|  |         V1 = V1 + v1000; | ||
|  |         V2 = V2 + v0100; | ||
|  |         V3 = V3 + v0010; | ||
|  |          | ||
|  |         m_el[0] = V1;  | ||
|  |         m_el[1] = V2; | ||
|  |         m_el[2] = V3; | ||
|  |     #else    
 | ||
|  | 		btScalar xs = q.x() * s,   ys = q.y() * s,   zs = q.z() * s; | ||
|  | 		btScalar wx = q.w() * xs,  wy = q.w() * ys,  wz = q.w() * zs; | ||
|  | 		btScalar xx = q.x() * xs,  xy = q.x() * ys,  xz = q.x() * zs; | ||
|  | 		btScalar yy = q.y() * ys,  yz = q.y() * zs,  zz = q.z() * zs; | ||
|  | 		setValue( | ||
|  |             btScalar(1.0) - (yy + zz), xy - wz, xz + wy, | ||
|  | 			xy + wz, btScalar(1.0) - (xx + zz), yz - wx, | ||
|  | 			xz - wy, yz + wx, btScalar(1.0) - (xx + yy)); | ||
|  | 	#endif
 | ||
|  |     } | ||
|  | 
 | ||
|  | 
 | ||
|  | 	/** @brief Set the matrix from euler angles using YPR around YXZ respectively
 | ||
|  | 	*  @param yaw Yaw about Y axis | ||
|  | 	*  @param pitch Pitch about X axis | ||
|  | 	*  @param roll Roll about Z axis  | ||
|  | 	*/ | ||
|  | 	void setEulerYPR(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)  | ||
|  | 	{ | ||
|  | 		setEulerZYX(roll, pitch, yaw); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/** @brief Set the matrix from euler angles YPR around ZYX axes
 | ||
|  | 	* @param eulerX Roll about X axis | ||
|  | 	* @param eulerY Pitch around Y axis | ||
|  | 	* @param eulerZ Yaw aboud Z axis | ||
|  | 	*  | ||
|  | 	* These angles are used to produce a rotation matrix. The euler | ||
|  | 	* angles are applied in ZYX order. I.e a vector is first rotated  | ||
|  | 	* about X then Y and then Z | ||
|  | 	**/ | ||
|  | 	void setEulerZYX(btScalar eulerX,btScalar eulerY,btScalar eulerZ) {  | ||
|  | 		///@todo proposed to reverse this since it's labeled zyx but takes arguments xyz and it will match all other parts of the code
 | ||
|  | 		btScalar ci ( btCos(eulerX));  | ||
|  | 		btScalar cj ( btCos(eulerY));  | ||
|  | 		btScalar ch ( btCos(eulerZ));  | ||
|  | 		btScalar si ( btSin(eulerX));  | ||
|  | 		btScalar sj ( btSin(eulerY));  | ||
|  | 		btScalar sh ( btSin(eulerZ));  | ||
|  | 		btScalar cc = ci * ch;  | ||
|  | 		btScalar cs = ci * sh;  | ||
|  | 		btScalar sc = si * ch;  | ||
|  | 		btScalar ss = si * sh; | ||
|  | 
 | ||
|  | 		setValue(cj * ch, sj * sc - cs, sj * cc + ss, | ||
|  | 			cj * sh, sj * ss + cc, sj * cs - sc,  | ||
|  | 			-sj,      cj * si,      cj * ci); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/**@brief Set the matrix to the identity */ | ||
|  | 	void setIdentity() | ||
|  | 	{  | ||
|  | #if (defined(BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) || defined(BT_USE_NEON)
 | ||
|  | 			m_el[0] = v1000;  | ||
|  | 			m_el[1] = v0100; | ||
|  | 			m_el[2] = v0010; | ||
|  | #else
 | ||
|  | 		setValue(btScalar(1.0), btScalar(0.0), btScalar(0.0),  | ||
|  | 			btScalar(0.0), btScalar(1.0), btScalar(0.0),  | ||
|  | 			btScalar(0.0), btScalar(0.0), btScalar(1.0));  | ||
|  | #endif
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	static const btMatrix3x3&	getIdentity() | ||
|  | 	{ | ||
|  | #if (defined(BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) || defined(BT_USE_NEON)
 | ||
|  |         static const btMatrix3x3  | ||
|  |         identityMatrix(v1000, v0100, v0010); | ||
|  | #else
 | ||
|  | 		static const btMatrix3x3  | ||
|  |         identityMatrix( | ||
|  |             btScalar(1.0), btScalar(0.0), btScalar(0.0),  | ||
|  | 			btScalar(0.0), btScalar(1.0), btScalar(0.0),  | ||
|  | 			btScalar(0.0), btScalar(0.0), btScalar(1.0)); | ||
|  | #endif
 | ||
|  | 		return identityMatrix; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/**@brief Fill the rotational part of an OpenGL matrix and clear the shear/perspective
 | ||
|  | 	* @param m The array to be filled */ | ||
|  | 	void getOpenGLSubMatrix(btScalar *m) const  | ||
|  | 	{ | ||
|  | #if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | ||
|  |         __m128 v0 = m_el[0].mVec128; | ||
|  |         __m128 v1 = m_el[1].mVec128; | ||
|  |         __m128 v2 = m_el[2].mVec128;    //  x2 y2 z2 w2
 | ||
|  |         __m128 *vm = (__m128 *)m; | ||
|  |         __m128 vT; | ||
|  |          | ||
|  |         v2 = _mm_and_ps(v2, btvFFF0fMask);  //  x2 y2 z2 0
 | ||
|  |          | ||
|  |         vT = _mm_unpackhi_ps(v0, v1);	//	z0 z1 * *
 | ||
|  |         v0 = _mm_unpacklo_ps(v0, v1);	//	x0 x1 y0 y1
 | ||
|  | 
 | ||
|  |         v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3) );	// y0 y1 y2 0
 | ||
|  |         v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3) );	// x0 x1 x2 0
 | ||
|  |         v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT)));	// z0 z1 z2 0
 | ||
|  | 
 | ||
|  |         vm[0] = v0; | ||
|  |         vm[1] = v1; | ||
|  |         vm[2] = v2; | ||
|  | #elif defined(BT_USE_NEON)
 | ||
|  |         // note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions.
 | ||
|  |         static const uint32x2_t zMask = (const uint32x2_t) {static_cast<uint32_t>(-1), 0 }; | ||
|  |         float32x4_t *vm = (float32x4_t *)m; | ||
|  |         float32x4x2_t top = vtrnq_f32( m_el[0].mVec128, m_el[1].mVec128 );  // {x0 x1 z0 z1}, {y0 y1 w0 w1}
 | ||
|  |         float32x2x2_t bl = vtrn_f32( vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f) );       // {x2  0 }, {y2 0}
 | ||
|  |         float32x4_t v0 = vcombine_f32( vget_low_f32(top.val[0]), bl.val[0] ); | ||
|  |         float32x4_t v1 = vcombine_f32( vget_low_f32(top.val[1]), bl.val[1] ); | ||
|  |         float32x2_t q = (float32x2_t) vand_u32( (uint32x2_t) vget_high_f32( m_el[2].mVec128), zMask ); | ||
|  |         float32x4_t v2 = vcombine_f32( vget_high_f32(top.val[0]), q );       // z0 z1 z2  0
 | ||
|  | 
 | ||
|  |         vm[0] = v0; | ||
|  |         vm[1] = v1; | ||
|  |         vm[2] = v2; | ||
|  | #else
 | ||
|  | 		m[0]  = btScalar(m_el[0].x());  | ||
|  | 		m[1]  = btScalar(m_el[1].x()); | ||
|  | 		m[2]  = btScalar(m_el[2].x()); | ||
|  | 		m[3]  = btScalar(0.0);  | ||
|  | 		m[4]  = btScalar(m_el[0].y()); | ||
|  | 		m[5]  = btScalar(m_el[1].y()); | ||
|  | 		m[6]  = btScalar(m_el[2].y()); | ||
|  | 		m[7]  = btScalar(0.0);  | ||
|  | 		m[8]  = btScalar(m_el[0].z());  | ||
|  | 		m[9]  = btScalar(m_el[1].z()); | ||
|  | 		m[10] = btScalar(m_el[2].z()); | ||
|  | 		m[11] = btScalar(0.0);  | ||
|  | #endif
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/**@brief Get the matrix represented as a quaternion 
 | ||
|  | 	* @param q The quaternion which will be set */ | ||
|  | 	void getRotation(btQuaternion& q) const | ||
|  | 	{ | ||
|  | #if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
 | ||
|  |         btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z(); | ||
|  |         btScalar s, x; | ||
|  |          | ||
|  |         union { | ||
|  |             btSimdFloat4 vec; | ||
|  |             btScalar f[4]; | ||
|  |         } temp; | ||
|  |          | ||
|  |         if (trace > btScalar(0.0))  | ||
|  |         { | ||
|  |             x = trace + btScalar(1.0); | ||
|  | 
 | ||
|  |             temp.f[0]=m_el[2].y() - m_el[1].z(); | ||
|  |             temp.f[1]=m_el[0].z() - m_el[2].x(); | ||
|  |             temp.f[2]=m_el[1].x() - m_el[0].y(); | ||
|  |             temp.f[3]=x; | ||
|  |             //temp.f[3]= s * btScalar(0.5);
 | ||
|  |         }  | ||
|  |         else  | ||
|  |         { | ||
|  |             int i, j, k; | ||
|  |             if(m_el[0].x() < m_el[1].y())  | ||
|  |             {  | ||
|  |                 if( m_el[1].y() < m_el[2].z() ) | ||
|  |                     { i = 2; j = 0; k = 1; } | ||
|  |                 else | ||
|  |                     { i = 1; j = 2; k = 0; } | ||
|  |             } | ||
|  |             else | ||
|  |             { | ||
|  |                 if( m_el[0].x() < m_el[2].z()) | ||
|  |                     { i = 2; j = 0; k = 1; } | ||
|  |                 else | ||
|  |                     { i = 0; j = 1; k = 2; } | ||
|  |             } | ||
|  | 
 | ||
|  |             x = m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0); | ||
|  | 
 | ||
|  |             temp.f[3] = (m_el[k][j] - m_el[j][k]); | ||
|  |             temp.f[j] = (m_el[j][i] + m_el[i][j]); | ||
|  |             temp.f[k] = (m_el[k][i] + m_el[i][k]); | ||
|  |             temp.f[i] = x; | ||
|  |             //temp.f[i] = s * btScalar(0.5);
 | ||
|  |         } | ||
|  | 
 | ||
|  |         s = btSqrt(x); | ||
|  |         q.set128(temp.vec); | ||
|  |         s = btScalar(0.5) / s; | ||
|  | 
 | ||
|  |         q *= s; | ||
|  | #else    
 | ||
|  | 		btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z(); | ||
|  | 
 | ||
|  | 		btScalar temp[4]; | ||
|  | 
 | ||
|  | 		if (trace > btScalar(0.0))  | ||
|  | 		{ | ||
|  | 			btScalar s = btSqrt(trace + btScalar(1.0)); | ||
|  | 			temp[3]=(s * btScalar(0.5)); | ||
|  | 			s = btScalar(0.5) / s; | ||
|  | 
 | ||
|  | 			temp[0]=((m_el[2].y() - m_el[1].z()) * s); | ||
|  | 			temp[1]=((m_el[0].z() - m_el[2].x()) * s); | ||
|  | 			temp[2]=((m_el[1].x() - m_el[0].y()) * s); | ||
|  | 		}  | ||
|  | 		else  | ||
|  | 		{ | ||
|  | 			int i = m_el[0].x() < m_el[1].y() ?  | ||
|  | 				(m_el[1].y() < m_el[2].z() ? 2 : 1) : | ||
|  | 				(m_el[0].x() < m_el[2].z() ? 2 : 0);  | ||
|  | 			int j = (i + 1) % 3;   | ||
|  | 			int k = (i + 2) % 3; | ||
|  | 
 | ||
|  | 			btScalar s = btSqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0)); | ||
|  | 			temp[i] = s * btScalar(0.5); | ||
|  | 			s = btScalar(0.5) / s; | ||
|  | 
 | ||
|  | 			temp[3] = (m_el[k][j] - m_el[j][k]) * s; | ||
|  | 			temp[j] = (m_el[j][i] + m_el[i][j]) * s; | ||
|  | 			temp[k] = (m_el[k][i] + m_el[i][k]) * s; | ||
|  | 		} | ||
|  | 		q.setValue(temp[0],temp[1],temp[2],temp[3]); | ||
|  | #endif
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/**@brief Get the matrix represented as euler angles around YXZ, roundtrip with setEulerYPR
 | ||
|  | 	* @param yaw Yaw around Y axis | ||
|  | 	* @param pitch Pitch around X axis | ||
|  | 	* @param roll around Z axis */	 | ||
|  | 	void getEulerYPR(btScalar& yaw, btScalar& pitch, btScalar& roll) const | ||
|  | 	{ | ||
|  | 
 | ||
|  | 		// first use the normal calculus
 | ||
|  | 		yaw = btScalar(btAtan2(m_el[1].x(), m_el[0].x())); | ||
|  | 		pitch = btScalar(btAsin(-m_el[2].x())); | ||
|  | 		roll = btScalar(btAtan2(m_el[2].y(), m_el[2].z())); | ||
|  | 
 | ||
|  | 		// on pitch = +/-HalfPI
 | ||
|  | 		if (btFabs(pitch)==SIMD_HALF_PI) | ||
|  | 		{ | ||
|  | 			if (yaw>0) | ||
|  | 				yaw-=SIMD_PI; | ||
|  | 			else | ||
|  | 				yaw+=SIMD_PI; | ||
|  | 
 | ||
|  | 			if (roll>0) | ||
|  | 				roll-=SIMD_PI; | ||
|  | 			else | ||
|  | 				roll+=SIMD_PI; | ||
|  | 		} | ||
|  | 	}; | ||
|  | 
 | ||
|  | 
 | ||
|  | 	/**@brief Get the matrix represented as euler angles around ZYX
 | ||
|  | 	* @param yaw Yaw around X axis | ||
|  | 	* @param pitch Pitch around Y axis | ||
|  | 	* @param roll around X axis  | ||
|  | 	* @param solution_number Which solution of two possible solutions ( 1 or 2) are possible values*/	 | ||
|  | 	void getEulerZYX(btScalar& yaw, btScalar& pitch, btScalar& roll, unsigned int solution_number = 1) const | ||
|  | 	{ | ||
|  | 		struct Euler | ||
|  | 		{ | ||
|  | 			btScalar yaw; | ||
|  | 			btScalar pitch; | ||
|  | 			btScalar roll; | ||
|  | 		}; | ||
|  | 
 | ||
|  | 		Euler euler_out; | ||
|  | 		Euler euler_out2; //second solution
 | ||
|  | 		//get the pointer to the raw data
 | ||
|  | 
 | ||
|  | 		// Check that pitch is not at a singularity
 | ||
|  | 		if (btFabs(m_el[2].x()) >= 1) | ||
|  | 		{ | ||
|  | 			euler_out.yaw = 0; | ||
|  | 			euler_out2.yaw = 0; | ||
|  | 
 | ||
|  | 			// From difference of angles formula
 | ||
|  | 			btScalar delta = btAtan2(m_el[0].x(),m_el[0].z()); | ||
|  | 			if (m_el[2].x() > 0)  //gimbal locked up
 | ||
|  | 			{ | ||
|  | 				euler_out.pitch = SIMD_PI / btScalar(2.0); | ||
|  | 				euler_out2.pitch = SIMD_PI / btScalar(2.0); | ||
|  | 				euler_out.roll = euler_out.pitch + delta; | ||
|  | 				euler_out2.roll = euler_out.pitch + delta; | ||
|  | 			} | ||
|  | 			else // gimbal locked down
 | ||
|  | 			{ | ||
|  | 				euler_out.pitch = -SIMD_PI / btScalar(2.0); | ||
|  | 				euler_out2.pitch = -SIMD_PI / btScalar(2.0); | ||
|  | 				euler_out.roll = -euler_out.pitch + delta; | ||
|  | 				euler_out2.roll = -euler_out.pitch + delta; | ||
|  | 			} | ||
|  | 		} | ||
|  | 		else | ||
|  | 		{ | ||
|  | 			euler_out.pitch = - btAsin(m_el[2].x()); | ||
|  | 			euler_out2.pitch = SIMD_PI - euler_out.pitch; | ||
|  | 
 | ||
|  | 			euler_out.roll = btAtan2(m_el[2].y()/btCos(euler_out.pitch),  | ||
|  | 				m_el[2].z()/btCos(euler_out.pitch)); | ||
|  | 			euler_out2.roll = btAtan2(m_el[2].y()/btCos(euler_out2.pitch),  | ||
|  | 				m_el[2].z()/btCos(euler_out2.pitch)); | ||
|  | 
 | ||
|  | 			euler_out.yaw = btAtan2(m_el[1].x()/btCos(euler_out.pitch),  | ||
|  | 				m_el[0].x()/btCos(euler_out.pitch)); | ||
|  | 			euler_out2.yaw = btAtan2(m_el[1].x()/btCos(euler_out2.pitch),  | ||
|  | 				m_el[0].x()/btCos(euler_out2.pitch)); | ||
|  | 		} | ||
|  | 
 | ||
|  | 		if (solution_number == 1) | ||
|  | 		{  | ||
|  | 			yaw = euler_out.yaw;  | ||
|  | 			pitch = euler_out.pitch; | ||
|  | 			roll = euler_out.roll; | ||
|  | 		} | ||
|  | 		else | ||
|  | 		{  | ||
|  | 			yaw = euler_out2.yaw;  | ||
|  | 			pitch = euler_out2.pitch; | ||
|  | 			roll = euler_out2.roll; | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/**@brief Create a scaled copy of the matrix 
 | ||
|  | 	* @param s Scaling vector The elements of the vector will scale each column */ | ||
|  | 
 | ||
|  | 	btMatrix3x3 scaled(const btVector3& s) const | ||
|  | 	{ | ||
|  | #if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
 | ||
|  | 		return btMatrix3x3(m_el[0] * s, m_el[1] * s, m_el[2] * s); | ||
|  | #else		
 | ||
|  | 		return btMatrix3x3( | ||
|  |             m_el[0].x() * s.x(), m_el[0].y() * s.y(), m_el[0].z() * s.z(), | ||
|  | 			m_el[1].x() * s.x(), m_el[1].y() * s.y(), m_el[1].z() * s.z(), | ||
|  | 			m_el[2].x() * s.x(), m_el[2].y() * s.y(), m_el[2].z() * s.z()); | ||
|  | #endif
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/**@brief Return the determinant of the matrix */ | ||
|  | 	btScalar            determinant() const; | ||
|  | 	/**@brief Return the adjoint of the matrix */ | ||
|  | 	btMatrix3x3 adjoint() const; | ||
|  | 	/**@brief Return the matrix with all values non negative */ | ||
|  | 	btMatrix3x3 absolute() const; | ||
|  | 	/**@brief Return the transpose of the matrix */ | ||
|  | 	btMatrix3x3 transpose() const; | ||
|  | 	/**@brief Return the inverse of the matrix */ | ||
|  | 	btMatrix3x3 inverse() const;  | ||
|  | 
 | ||
|  | 	/// Solve A * x = b, where b is a column vector. This is more efficient
 | ||
|  | 	/// than computing the inverse in one-shot cases.
 | ||
|  | 	///Solve33 is from Box2d, thanks to Erin Catto,
 | ||
|  | 	btVector3 solve33(const btVector3& b) const | ||
|  | 	{ | ||
|  | 		btVector3 col1 = getColumn(0); | ||
|  | 		btVector3 col2 = getColumn(1); | ||
|  | 		btVector3 col3 = getColumn(2); | ||
|  | 		 | ||
|  | 		btScalar det = btDot(col1, btCross(col2, col3)); | ||
|  | 		if (btFabs(det)>SIMD_EPSILON) | ||
|  | 		{ | ||
|  | 			det = 1.0f / det; | ||
|  | 		} | ||
|  | 		btVector3 x; | ||
|  | 		x[0] = det * btDot(b, btCross(col2, col3)); | ||
|  | 		x[1] = det * btDot(col1, btCross(b, col3)); | ||
|  | 		x[2] = det * btDot(col1, btCross(col2, b)); | ||
|  | 		return x; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	btMatrix3x3 transposeTimes(const btMatrix3x3& m) const; | ||
|  | 	btMatrix3x3 timesTranspose(const btMatrix3x3& m) const; | ||
|  | 
 | ||
|  | 	SIMD_FORCE_INLINE btScalar tdotx(const btVector3& v) const  | ||
|  | 	{ | ||
|  | 		return m_el[0].x() * v.x() + m_el[1].x() * v.y() + m_el[2].x() * v.z(); | ||
|  | 	} | ||
|  | 	SIMD_FORCE_INLINE btScalar tdoty(const btVector3& v) const  | ||
|  | 	{ | ||
|  | 		return m_el[0].y() * v.x() + m_el[1].y() * v.y() + m_el[2].y() * v.z(); | ||
|  | 	} | ||
|  | 	SIMD_FORCE_INLINE btScalar tdotz(const btVector3& v) const  | ||
|  | 	{ | ||
|  | 		return m_el[0].z() * v.x() + m_el[1].z() * v.y() + m_el[2].z() * v.z(); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	///extractRotation is from "A robust method to extract the rotational part of deformations"
 | ||
|  | 	///See http://dl.acm.org/citation.cfm?doid=2994258.2994269
 | ||
|  | 	SIMD_FORCE_INLINE void extractRotation(btQuaternion &q,btScalar tolerance = 1.0e-9, int maxIter=100) | ||
|  | 	{ | ||
|  | 		int iter =0; | ||
|  | 		btScalar w; | ||
|  | 		const btMatrix3x3& A=*this; | ||
|  | 		for(iter = 0; iter < maxIter; iter++) | ||
|  | 		{ | ||
|  | 			btMatrix3x3 R(q); | ||
|  | 			btVector3 omega = (R.getColumn(0).cross(A.getColumn(0)) + R.getColumn(1).cross(A.getColumn(1))  | ||
|  | 				+ R.getColumn(2).cross(A.getColumn(2)) | ||
|  | 				) * (btScalar(1.0) / btFabs(R.getColumn(0).dot(A.getColumn(0)) + R.getColumn | ||
|  | 				(1).dot(A.getColumn(1)) + R.getColumn(2).dot(A.getColumn(2))) + | ||
|  | 					tolerance); | ||
|  | 			w = omega.norm(); | ||
|  | 			if(w < tolerance) | ||
|  | 				break; | ||
|  | 			q = btQuaternion(btVector3((btScalar(1.0) / w) * omega),w) * | ||
|  | 				q; | ||
|  | 			q.normalize(); | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	/**@brief diagonalizes this matrix
 | ||
|  | 	* @param rot stores the rotation from the coordinate system in which the matrix is diagonal to the original | ||
|  | 	* coordinate system, i.e., old_this = rot * new_this * rot^T.  | ||
|  | 	* @param threshold See iteration | ||
|  | 	* @param maxIter The iteration stops when we hit the given tolerance or when maxIter have been executed.  | ||
|  | 	*/ | ||
|  | 	void diagonalize(btMatrix3x3& rot, btScalar tolerance = 1.0e-9, int maxIter=100) | ||
|  | 	{ | ||
|  | 		btQuaternion r; | ||
|  | 		r = btQuaternion::getIdentity(); | ||
|  | 		extractRotation(r,tolerance,maxIter); | ||
|  | 		rot.setRotation(r); | ||
|  | 		btMatrix3x3 rotInv = btMatrix3x3(r.inverse()); | ||
|  | 		btMatrix3x3 old = *this; | ||
|  | 		setValue(old.tdotx( rotInv[0]), old.tdoty( rotInv[0]), old.tdotz( rotInv[0]), | ||
|  | 		old.tdotx( rotInv[1]), old.tdoty( rotInv[1]), old.tdotz( rotInv[1]), | ||
|  | 		old.tdotx( rotInv[2]), old.tdoty( rotInv[2]), old.tdotz( rotInv[2])); | ||
|  | 	} | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	/**@brief Calculate the matrix cofactor 
 | ||
|  | 	* @param r1 The first row to use for calculating the cofactor | ||
|  | 	* @param c1 The first column to use for calculating the cofactor | ||
|  | 	* @param r1 The second row to use for calculating the cofactor | ||
|  | 	* @param c1 The second column to use for calculating the cofactor | ||
|  | 	* See http://en.wikipedia.org/wiki/Cofactor_(linear_algebra) for more details
 | ||
|  | 	*/ | ||
|  | 	btScalar cofac(int r1, int c1, int r2, int c2) const  | ||
|  | 	{ | ||
|  | 		return m_el[r1][c1] * m_el[r2][c2] - m_el[r1][c2] * m_el[r2][c1]; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	void	serialize(struct	btMatrix3x3Data& dataOut) const; | ||
|  | 
 | ||
|  | 	void	serializeFloat(struct	btMatrix3x3FloatData& dataOut) const; | ||
|  | 
 | ||
|  | 	void	deSerialize(const struct	btMatrix3x3Data& dataIn); | ||
|  | 
 | ||
|  | 	void	deSerializeFloat(const struct	btMatrix3x3FloatData& dataIn); | ||
|  | 
 | ||
|  | 	void	deSerializeDouble(const struct	btMatrix3x3DoubleData& dataIn); | ||
|  | 
 | ||
|  | }; | ||
|  | 
 | ||
|  | 
 | ||
|  | SIMD_FORCE_INLINE btMatrix3x3&  | ||
|  | btMatrix3x3::operator*=(const btMatrix3x3& m) | ||
|  | { | ||
|  | #if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | ||
|  |     __m128 rv00, rv01, rv02; | ||
|  |     __m128 rv10, rv11, rv12; | ||
|  |     __m128 rv20, rv21, rv22; | ||
|  |     __m128 mv0, mv1, mv2; | ||
|  | 
 | ||
|  |     rv02 = m_el[0].mVec128; | ||
|  |     rv12 = m_el[1].mVec128; | ||
|  |     rv22 = m_el[2].mVec128; | ||
|  | 
 | ||
|  |     mv0 = _mm_and_ps(m[0].mVec128, btvFFF0fMask);  | ||
|  |     mv1 = _mm_and_ps(m[1].mVec128, btvFFF0fMask);  | ||
|  |     mv2 = _mm_and_ps(m[2].mVec128, btvFFF0fMask);  | ||
|  |      | ||
|  |     // rv0
 | ||
|  |     rv00 = bt_splat_ps(rv02, 0); | ||
|  |     rv01 = bt_splat_ps(rv02, 1); | ||
|  |     rv02 = bt_splat_ps(rv02, 2); | ||
|  |      | ||
|  |     rv00 = _mm_mul_ps(rv00, mv0); | ||
|  |     rv01 = _mm_mul_ps(rv01, mv1); | ||
|  |     rv02 = _mm_mul_ps(rv02, mv2); | ||
|  |      | ||
|  |     // rv1
 | ||
|  |     rv10 = bt_splat_ps(rv12, 0); | ||
|  |     rv11 = bt_splat_ps(rv12, 1); | ||
|  |     rv12 = bt_splat_ps(rv12, 2); | ||
|  |      | ||
|  |     rv10 = _mm_mul_ps(rv10, mv0); | ||
|  |     rv11 = _mm_mul_ps(rv11, mv1); | ||
|  |     rv12 = _mm_mul_ps(rv12, mv2); | ||
|  |      | ||
|  |     // rv2
 | ||
|  |     rv20 = bt_splat_ps(rv22, 0); | ||
|  |     rv21 = bt_splat_ps(rv22, 1); | ||
|  |     rv22 = bt_splat_ps(rv22, 2); | ||
|  |      | ||
|  |     rv20 = _mm_mul_ps(rv20, mv0); | ||
|  |     rv21 = _mm_mul_ps(rv21, mv1); | ||
|  |     rv22 = _mm_mul_ps(rv22, mv2); | ||
|  | 
 | ||
|  |     rv00 = _mm_add_ps(rv00, rv01); | ||
|  |     rv10 = _mm_add_ps(rv10, rv11); | ||
|  |     rv20 = _mm_add_ps(rv20, rv21); | ||
|  | 
 | ||
|  |     m_el[0].mVec128 = _mm_add_ps(rv00, rv02); | ||
|  |     m_el[1].mVec128 = _mm_add_ps(rv10, rv12); | ||
|  |     m_el[2].mVec128 = _mm_add_ps(rv20, rv22); | ||
|  | 
 | ||
|  | #elif defined(BT_USE_NEON)
 | ||
|  | 
 | ||
|  |     float32x4_t rv0, rv1, rv2; | ||
|  |     float32x4_t v0, v1, v2; | ||
|  |     float32x4_t mv0, mv1, mv2; | ||
|  | 
 | ||
|  |     v0 = m_el[0].mVec128; | ||
|  |     v1 = m_el[1].mVec128; | ||
|  |     v2 = m_el[2].mVec128; | ||
|  | 
 | ||
|  |     mv0 = (float32x4_t) vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask);  | ||
|  |     mv1 = (float32x4_t) vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask);  | ||
|  |     mv2 = (float32x4_t) vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask);  | ||
|  |      | ||
|  |     rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0); | ||
|  |     rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0); | ||
|  |     rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0); | ||
|  |      | ||
|  |     rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1); | ||
|  |     rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1); | ||
|  |     rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1); | ||
|  |      | ||
|  |     rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0); | ||
|  |     rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0); | ||
|  |     rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0); | ||
|  | 
 | ||
|  |     m_el[0].mVec128 = rv0; | ||
|  |     m_el[1].mVec128 = rv1; | ||
|  |     m_el[2].mVec128 = rv2; | ||
|  | #else    
 | ||
|  | 	setValue( | ||
|  |         m.tdotx(m_el[0]), m.tdoty(m_el[0]), m.tdotz(m_el[0]), | ||
|  | 		m.tdotx(m_el[1]), m.tdoty(m_el[1]), m.tdotz(m_el[1]), | ||
|  | 		m.tdotx(m_el[2]), m.tdoty(m_el[2]), m.tdotz(m_el[2])); | ||
|  | #endif
 | ||
|  | 	return *this; | ||
|  | } | ||
|  | 
 | ||
|  | SIMD_FORCE_INLINE btMatrix3x3&  | ||
|  | btMatrix3x3::operator+=(const btMatrix3x3& m) | ||
|  | { | ||
|  | #if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
 | ||
|  |     m_el[0].mVec128 = m_el[0].mVec128 + m.m_el[0].mVec128; | ||
|  |     m_el[1].mVec128 = m_el[1].mVec128 + m.m_el[1].mVec128; | ||
|  |     m_el[2].mVec128 = m_el[2].mVec128 + m.m_el[2].mVec128; | ||
|  | #else
 | ||
|  | 	setValue( | ||
|  | 		m_el[0][0]+m.m_el[0][0],  | ||
|  | 		m_el[0][1]+m.m_el[0][1], | ||
|  | 		m_el[0][2]+m.m_el[0][2], | ||
|  | 		m_el[1][0]+m.m_el[1][0],  | ||
|  | 		m_el[1][1]+m.m_el[1][1], | ||
|  | 		m_el[1][2]+m.m_el[1][2], | ||
|  | 		m_el[2][0]+m.m_el[2][0],  | ||
|  | 		m_el[2][1]+m.m_el[2][1], | ||
|  | 		m_el[2][2]+m.m_el[2][2]); | ||
|  | #endif
 | ||
|  | 	return *this; | ||
|  | } | ||
|  | 
 | ||
|  | SIMD_FORCE_INLINE btMatrix3x3 | ||
|  | operator*(const btMatrix3x3& m, const btScalar & k) | ||
|  | { | ||
|  | #if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
 | ||
|  |     __m128 vk = bt_splat_ps(_mm_load_ss((float *)&k), 0x80); | ||
|  |     return btMatrix3x3( | ||
|  |                 _mm_mul_ps(m[0].mVec128, vk),  | ||
|  |                 _mm_mul_ps(m[1].mVec128, vk),  | ||
|  |                 _mm_mul_ps(m[2].mVec128, vk));  | ||
|  | #elif defined(BT_USE_NEON)
 | ||
|  |     return btMatrix3x3( | ||
|  |                 vmulq_n_f32(m[0].mVec128, k), | ||
|  |                 vmulq_n_f32(m[1].mVec128, k), | ||
|  |                 vmulq_n_f32(m[2].mVec128, k));  | ||
|  | #else
 | ||
|  | 	return btMatrix3x3( | ||
|  | 		m[0].x()*k,m[0].y()*k,m[0].z()*k, | ||
|  | 		m[1].x()*k,m[1].y()*k,m[1].z()*k, | ||
|  | 		m[2].x()*k,m[2].y()*k,m[2].z()*k); | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | SIMD_FORCE_INLINE btMatrix3x3  | ||
|  | operator+(const btMatrix3x3& m1, const btMatrix3x3& m2) | ||
|  | { | ||
|  | #if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
 | ||
|  | 	return btMatrix3x3( | ||
|  |         m1[0].mVec128 + m2[0].mVec128, | ||
|  |         m1[1].mVec128 + m2[1].mVec128, | ||
|  |         m1[2].mVec128 + m2[2].mVec128); | ||
|  | #else
 | ||
|  | 	return btMatrix3x3( | ||
|  |         m1[0][0]+m2[0][0],  | ||
|  |         m1[0][1]+m2[0][1], | ||
|  |         m1[0][2]+m2[0][2], | ||
|  |          | ||
|  |         m1[1][0]+m2[1][0],  | ||
|  |         m1[1][1]+m2[1][1], | ||
|  |         m1[1][2]+m2[1][2], | ||
|  |          | ||
|  |         m1[2][0]+m2[2][0],  | ||
|  |         m1[2][1]+m2[2][1], | ||
|  |         m1[2][2]+m2[2][2]); | ||
|  | #endif    
 | ||
|  | } | ||
|  | 
 | ||
|  | SIMD_FORCE_INLINE btMatrix3x3  | ||
|  | operator-(const btMatrix3x3& m1, const btMatrix3x3& m2) | ||
|  | { | ||
|  | #if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
 | ||
|  | 	return btMatrix3x3( | ||
|  |         m1[0].mVec128 - m2[0].mVec128, | ||
|  |         m1[1].mVec128 - m2[1].mVec128, | ||
|  |         m1[2].mVec128 - m2[2].mVec128); | ||
|  | #else
 | ||
|  | 	return btMatrix3x3( | ||
|  |         m1[0][0]-m2[0][0],  | ||
|  |         m1[0][1]-m2[0][1], | ||
|  |         m1[0][2]-m2[0][2], | ||
|  |          | ||
|  |         m1[1][0]-m2[1][0],  | ||
|  |         m1[1][1]-m2[1][1], | ||
|  |         m1[1][2]-m2[1][2], | ||
|  |          | ||
|  |         m1[2][0]-m2[2][0],  | ||
|  |         m1[2][1]-m2[2][1], | ||
|  |         m1[2][2]-m2[2][2]); | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | SIMD_FORCE_INLINE btMatrix3x3&  | ||
|  | btMatrix3x3::operator-=(const btMatrix3x3& m) | ||
|  | { | ||
|  | #if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
 | ||
|  |     m_el[0].mVec128 = m_el[0].mVec128 - m.m_el[0].mVec128; | ||
|  |     m_el[1].mVec128 = m_el[1].mVec128 - m.m_el[1].mVec128; | ||
|  |     m_el[2].mVec128 = m_el[2].mVec128 - m.m_el[2].mVec128; | ||
|  | #else
 | ||
|  | 	setValue( | ||
|  | 	m_el[0][0]-m.m_el[0][0],  | ||
|  | 	m_el[0][1]-m.m_el[0][1], | ||
|  | 	m_el[0][2]-m.m_el[0][2], | ||
|  | 	m_el[1][0]-m.m_el[1][0],  | ||
|  | 	m_el[1][1]-m.m_el[1][1], | ||
|  | 	m_el[1][2]-m.m_el[1][2], | ||
|  | 	m_el[2][0]-m.m_el[2][0],  | ||
|  | 	m_el[2][1]-m.m_el[2][1], | ||
|  | 	m_el[2][2]-m.m_el[2][2]); | ||
|  | #endif
 | ||
|  | 	return *this; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | SIMD_FORCE_INLINE btScalar  | ||
|  | btMatrix3x3::determinant() const | ||
|  | {  | ||
|  | 	return btTriple((*this)[0], (*this)[1], (*this)[2]); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | SIMD_FORCE_INLINE btMatrix3x3  | ||
|  | btMatrix3x3::absolute() const | ||
|  | { | ||
|  | #if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
 | ||
|  |     return btMatrix3x3( | ||
|  |             _mm_and_ps(m_el[0].mVec128, btvAbsfMask), | ||
|  |             _mm_and_ps(m_el[1].mVec128, btvAbsfMask), | ||
|  |             _mm_and_ps(m_el[2].mVec128, btvAbsfMask)); | ||
|  | #elif defined(BT_USE_NEON)
 | ||
|  |     return btMatrix3x3( | ||
|  |             (float32x4_t)vandq_s32((int32x4_t)m_el[0].mVec128, btv3AbsMask), | ||
|  |             (float32x4_t)vandq_s32((int32x4_t)m_el[1].mVec128, btv3AbsMask), | ||
|  |             (float32x4_t)vandq_s32((int32x4_t)m_el[2].mVec128, btv3AbsMask)); | ||
|  | #else	
 | ||
|  | 	return btMatrix3x3( | ||
|  |             btFabs(m_el[0].x()), btFabs(m_el[0].y()), btFabs(m_el[0].z()), | ||
|  |             btFabs(m_el[1].x()), btFabs(m_el[1].y()), btFabs(m_el[1].z()), | ||
|  |             btFabs(m_el[2].x()), btFabs(m_el[2].y()), btFabs(m_el[2].z())); | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | SIMD_FORCE_INLINE btMatrix3x3  | ||
|  | btMatrix3x3::transpose() const  | ||
|  | { | ||
|  | #if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
 | ||
|  |     __m128 v0 = m_el[0].mVec128; | ||
|  |     __m128 v1 = m_el[1].mVec128; | ||
|  |     __m128 v2 = m_el[2].mVec128;    //  x2 y2 z2 w2
 | ||
|  |     __m128 vT; | ||
|  |      | ||
|  |     v2 = _mm_and_ps(v2, btvFFF0fMask);  //  x2 y2 z2 0
 | ||
|  |      | ||
|  |     vT = _mm_unpackhi_ps(v0, v1);	//	z0 z1 * *
 | ||
|  |     v0 = _mm_unpacklo_ps(v0, v1);	//	x0 x1 y0 y1
 | ||
|  | 
 | ||
|  |     v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3) );	// y0 y1 y2 0
 | ||
|  |     v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3) );	// x0 x1 x2 0
 | ||
|  |     v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT)));	// z0 z1 z2 0
 | ||
|  | 
 | ||
|  | 
 | ||
|  |     return btMatrix3x3( v0, v1, v2 ); | ||
|  | #elif defined(BT_USE_NEON)
 | ||
|  |     // note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions.
 | ||
|  |     static const uint32x2_t zMask = (const uint32x2_t) {static_cast<uint32_t>(-1), 0 }; | ||
|  |     float32x4x2_t top = vtrnq_f32( m_el[0].mVec128, m_el[1].mVec128 );  // {x0 x1 z0 z1}, {y0 y1 w0 w1}
 | ||
|  |     float32x2x2_t bl = vtrn_f32( vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f) );       // {x2  0 }, {y2 0}
 | ||
|  |     float32x4_t v0 = vcombine_f32( vget_low_f32(top.val[0]), bl.val[0] ); | ||
|  |     float32x4_t v1 = vcombine_f32( vget_low_f32(top.val[1]), bl.val[1] ); | ||
|  |     float32x2_t q = (float32x2_t) vand_u32( (uint32x2_t) vget_high_f32( m_el[2].mVec128), zMask ); | ||
|  |     float32x4_t v2 = vcombine_f32( vget_high_f32(top.val[0]), q );       // z0 z1 z2  0
 | ||
|  |     return btMatrix3x3( v0, v1, v2 );  | ||
|  | #else
 | ||
|  | 	return btMatrix3x3( m_el[0].x(), m_el[1].x(), m_el[2].x(), | ||
|  |                         m_el[0].y(), m_el[1].y(), m_el[2].y(), | ||
|  |                         m_el[0].z(), m_el[1].z(), m_el[2].z()); | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | SIMD_FORCE_INLINE btMatrix3x3  | ||
|  | btMatrix3x3::adjoint() const  | ||
|  | { | ||
|  | 	return btMatrix3x3(cofac(1, 1, 2, 2), cofac(0, 2, 2, 1), cofac(0, 1, 1, 2), | ||
|  | 		cofac(1, 2, 2, 0), cofac(0, 0, 2, 2), cofac(0, 2, 1, 0), | ||
|  | 		cofac(1, 0, 2, 1), cofac(0, 1, 2, 0), cofac(0, 0, 1, 1)); | ||
|  | } | ||
|  | 
 | ||
|  | SIMD_FORCE_INLINE btMatrix3x3  | ||
|  | btMatrix3x3::inverse() const | ||
|  | { | ||
|  | 	btVector3 co(cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)); | ||
|  | 	btScalar det = (*this)[0].dot(co); | ||
|  | 	//btFullAssert(det != btScalar(0.0));
 | ||
|  | 	btAssert(det != btScalar(0.0)); | ||
|  | 	btScalar s = btScalar(1.0) / det; | ||
|  | 	return btMatrix3x3(co.x() * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s, | ||
|  | 		co.y() * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s, | ||
|  | 		co.z() * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s); | ||
|  | } | ||
|  | 
 | ||
|  | SIMD_FORCE_INLINE btMatrix3x3  | ||
|  | btMatrix3x3::transposeTimes(const btMatrix3x3& m) const | ||
|  | { | ||
|  | #if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
 | ||
|  |     // zeros w
 | ||
|  | //    static const __m128i xyzMask = (const __m128i){ -1ULL, 0xffffffffULL };
 | ||
|  |     __m128 row = m_el[0].mVec128; | ||
|  |     __m128 m0 = _mm_and_ps( m.getRow(0).mVec128, btvFFF0fMask ); | ||
|  |     __m128 m1 = _mm_and_ps( m.getRow(1).mVec128, btvFFF0fMask); | ||
|  |     __m128 m2 = _mm_and_ps( m.getRow(2).mVec128, btvFFF0fMask ); | ||
|  |     __m128 r0 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0)); | ||
|  |     __m128 r1 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0x55)); | ||
|  |     __m128 r2 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0xaa)); | ||
|  |     row = m_el[1].mVec128; | ||
|  |     r0 = _mm_add_ps( r0, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0))); | ||
|  |     r1 = _mm_add_ps( r1, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0x55))); | ||
|  |     r2 = _mm_add_ps( r2, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0xaa))); | ||
|  |     row = m_el[2].mVec128; | ||
|  |     r0 = _mm_add_ps( r0, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0))); | ||
|  |     r1 = _mm_add_ps( r1, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0x55))); | ||
|  |     r2 = _mm_add_ps( r2, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0xaa))); | ||
|  |     return btMatrix3x3( r0, r1, r2 ); | ||
|  | 
 | ||
|  | #elif defined BT_USE_NEON
 | ||
|  |     // zeros w
 | ||
|  |     static const uint32x4_t xyzMask = (const uint32x4_t){ static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), 0 }; | ||
|  |     float32x4_t m0 = (float32x4_t) vandq_u32( (uint32x4_t) m.getRow(0).mVec128, xyzMask ); | ||
|  |     float32x4_t m1 = (float32x4_t) vandq_u32( (uint32x4_t) m.getRow(1).mVec128, xyzMask ); | ||
|  |     float32x4_t m2 = (float32x4_t) vandq_u32( (uint32x4_t) m.getRow(2).mVec128, xyzMask ); | ||
|  |     float32x4_t row = m_el[0].mVec128; | ||
|  |     float32x4_t r0 = vmulq_lane_f32( m0, vget_low_f32(row), 0); | ||
|  |     float32x4_t r1 = vmulq_lane_f32( m0, vget_low_f32(row), 1); | ||
|  |     float32x4_t r2 = vmulq_lane_f32( m0, vget_high_f32(row), 0); | ||
|  |     row = m_el[1].mVec128; | ||
|  |     r0 = vmlaq_lane_f32( r0, m1, vget_low_f32(row), 0); | ||
|  |     r1 = vmlaq_lane_f32( r1, m1, vget_low_f32(row), 1); | ||
|  |     r2 = vmlaq_lane_f32( r2, m1, vget_high_f32(row), 0); | ||
|  |     row = m_el[2].mVec128; | ||
|  |     r0 = vmlaq_lane_f32( r0, m2, vget_low_f32(row), 0); | ||
|  |     r1 = vmlaq_lane_f32( r1, m2, vget_low_f32(row), 1); | ||
|  |     r2 = vmlaq_lane_f32( r2, m2, vget_high_f32(row), 0); | ||
|  |     return btMatrix3x3( r0, r1, r2 ); | ||
|  | #else
 | ||
|  |     return btMatrix3x3( | ||
|  | 		m_el[0].x() * m[0].x() + m_el[1].x() * m[1].x() + m_el[2].x() * m[2].x(), | ||
|  | 		m_el[0].x() * m[0].y() + m_el[1].x() * m[1].y() + m_el[2].x() * m[2].y(), | ||
|  | 		m_el[0].x() * m[0].z() + m_el[1].x() * m[1].z() + m_el[2].x() * m[2].z(), | ||
|  | 		m_el[0].y() * m[0].x() + m_el[1].y() * m[1].x() + m_el[2].y() * m[2].x(), | ||
|  | 		m_el[0].y() * m[0].y() + m_el[1].y() * m[1].y() + m_el[2].y() * m[2].y(), | ||
|  | 		m_el[0].y() * m[0].z() + m_el[1].y() * m[1].z() + m_el[2].y() * m[2].z(), | ||
|  | 		m_el[0].z() * m[0].x() + m_el[1].z() * m[1].x() + m_el[2].z() * m[2].x(), | ||
|  | 		m_el[0].z() * m[0].y() + m_el[1].z() * m[1].y() + m_el[2].z() * m[2].y(), | ||
|  | 		m_el[0].z() * m[0].z() + m_el[1].z() * m[1].z() + m_el[2].z() * m[2].z()); | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | SIMD_FORCE_INLINE btMatrix3x3  | ||
|  | btMatrix3x3::timesTranspose(const btMatrix3x3& m) const | ||
|  | { | ||
|  | #if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
 | ||
|  |     __m128 a0 = m_el[0].mVec128; | ||
|  |     __m128 a1 = m_el[1].mVec128; | ||
|  |     __m128 a2 = m_el[2].mVec128; | ||
|  |      | ||
|  |     btMatrix3x3 mT = m.transpose(); // we rely on transpose() zeroing w channel so that we don't have to do it here
 | ||
|  |     __m128 mx = mT[0].mVec128; | ||
|  |     __m128 my = mT[1].mVec128; | ||
|  |     __m128 mz = mT[2].mVec128; | ||
|  |      | ||
|  |     __m128 r0 = _mm_mul_ps(mx, _mm_shuffle_ps(a0, a0, 0x00)); | ||
|  |     __m128 r1 = _mm_mul_ps(mx, _mm_shuffle_ps(a1, a1, 0x00)); | ||
|  |     __m128 r2 = _mm_mul_ps(mx, _mm_shuffle_ps(a2, a2, 0x00)); | ||
|  |     r0 = _mm_add_ps(r0, _mm_mul_ps(my, _mm_shuffle_ps(a0, a0, 0x55))); | ||
|  |     r1 = _mm_add_ps(r1, _mm_mul_ps(my, _mm_shuffle_ps(a1, a1, 0x55))); | ||
|  |     r2 = _mm_add_ps(r2, _mm_mul_ps(my, _mm_shuffle_ps(a2, a2, 0x55))); | ||
|  |     r0 = _mm_add_ps(r0, _mm_mul_ps(mz, _mm_shuffle_ps(a0, a0, 0xaa))); | ||
|  |     r1 = _mm_add_ps(r1, _mm_mul_ps(mz, _mm_shuffle_ps(a1, a1, 0xaa))); | ||
|  |     r2 = _mm_add_ps(r2, _mm_mul_ps(mz, _mm_shuffle_ps(a2, a2, 0xaa))); | ||
|  |     return btMatrix3x3( r0, r1, r2); | ||
|  |              | ||
|  | #elif defined BT_USE_NEON
 | ||
|  |     float32x4_t a0 = m_el[0].mVec128; | ||
|  |     float32x4_t a1 = m_el[1].mVec128; | ||
|  |     float32x4_t a2 = m_el[2].mVec128; | ||
|  |      | ||
|  |     btMatrix3x3 mT = m.transpose(); // we rely on transpose() zeroing w channel so that we don't have to do it here
 | ||
|  |     float32x4_t mx = mT[0].mVec128; | ||
|  |     float32x4_t my = mT[1].mVec128; | ||
|  |     float32x4_t mz = mT[2].mVec128; | ||
|  |      | ||
|  |     float32x4_t r0 = vmulq_lane_f32( mx, vget_low_f32(a0), 0); | ||
|  |     float32x4_t r1 = vmulq_lane_f32( mx, vget_low_f32(a1), 0); | ||
|  |     float32x4_t r2 = vmulq_lane_f32( mx, vget_low_f32(a2), 0); | ||
|  |     r0 = vmlaq_lane_f32( r0, my, vget_low_f32(a0), 1); | ||
|  |     r1 = vmlaq_lane_f32( r1, my, vget_low_f32(a1), 1); | ||
|  |     r2 = vmlaq_lane_f32( r2, my, vget_low_f32(a2), 1); | ||
|  |     r0 = vmlaq_lane_f32( r0, mz, vget_high_f32(a0), 0); | ||
|  |     r1 = vmlaq_lane_f32( r1, mz, vget_high_f32(a1), 0); | ||
|  |     r2 = vmlaq_lane_f32( r2, mz, vget_high_f32(a2), 0); | ||
|  |     return btMatrix3x3( r0, r1, r2 ); | ||
|  |      | ||
|  | #else
 | ||
|  | 	return btMatrix3x3( | ||
|  | 		m_el[0].dot(m[0]), m_el[0].dot(m[1]), m_el[0].dot(m[2]), | ||
|  | 		m_el[1].dot(m[0]), m_el[1].dot(m[1]), m_el[1].dot(m[2]), | ||
|  | 		m_el[2].dot(m[0]), m_el[2].dot(m[1]), m_el[2].dot(m[2])); | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | SIMD_FORCE_INLINE btVector3  | ||
|  | operator*(const btMatrix3x3& m, const btVector3& v)  | ||
|  | { | ||
|  | #if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
 | ||
|  |     return v.dot3(m[0], m[1], m[2]); | ||
|  | #else
 | ||
|  | 	return btVector3(m[0].dot(v), m[1].dot(v), m[2].dot(v)); | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | SIMD_FORCE_INLINE btVector3 | ||
|  | operator*(const btVector3& v, const btMatrix3x3& m) | ||
|  | { | ||
|  | #if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
 | ||
|  | 
 | ||
|  |     const __m128 vv = v.mVec128; | ||
|  | 
 | ||
|  |     __m128 c0 = bt_splat_ps( vv, 0); | ||
|  |     __m128 c1 = bt_splat_ps( vv, 1); | ||
|  |     __m128 c2 = bt_splat_ps( vv, 2); | ||
|  | 
 | ||
|  |     c0 = _mm_mul_ps(c0, _mm_and_ps(m[0].mVec128, btvFFF0fMask) ); | ||
|  |     c1 = _mm_mul_ps(c1, _mm_and_ps(m[1].mVec128, btvFFF0fMask) ); | ||
|  |     c0 = _mm_add_ps(c0, c1); | ||
|  |     c2 = _mm_mul_ps(c2, _mm_and_ps(m[2].mVec128, btvFFF0fMask) ); | ||
|  |      | ||
|  |     return btVector3(_mm_add_ps(c0, c2)); | ||
|  | #elif defined(BT_USE_NEON)
 | ||
|  |     const float32x4_t vv = v.mVec128; | ||
|  |     const float32x2_t vlo = vget_low_f32(vv); | ||
|  |     const float32x2_t vhi = vget_high_f32(vv); | ||
|  | 
 | ||
|  |     float32x4_t c0, c1, c2; | ||
|  | 
 | ||
|  |     c0 = (float32x4_t) vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask); | ||
|  |     c1 = (float32x4_t) vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask); | ||
|  |     c2 = (float32x4_t) vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask); | ||
|  | 
 | ||
|  |     c0 = vmulq_lane_f32(c0, vlo, 0); | ||
|  |     c1 = vmulq_lane_f32(c1, vlo, 1); | ||
|  |     c2 = vmulq_lane_f32(c2, vhi, 0); | ||
|  |     c0 = vaddq_f32(c0, c1); | ||
|  |     c0 = vaddq_f32(c0, c2); | ||
|  |      | ||
|  |     return btVector3(c0); | ||
|  | #else
 | ||
|  | 	return btVector3(m.tdotx(v), m.tdoty(v), m.tdotz(v)); | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | SIMD_FORCE_INLINE btMatrix3x3  | ||
|  | operator*(const btMatrix3x3& m1, const btMatrix3x3& m2) | ||
|  | { | ||
|  | #if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
 | ||
|  | 
 | ||
|  |     __m128 m10 = m1[0].mVec128;   | ||
|  |     __m128 m11 = m1[1].mVec128; | ||
|  |     __m128 m12 = m1[2].mVec128; | ||
|  |      | ||
|  |     __m128 m2v = _mm_and_ps(m2[0].mVec128, btvFFF0fMask); | ||
|  |      | ||
|  |     __m128 c0 = bt_splat_ps( m10, 0); | ||
|  |     __m128 c1 = bt_splat_ps( m11, 0); | ||
|  |     __m128 c2 = bt_splat_ps( m12, 0); | ||
|  |      | ||
|  |     c0 = _mm_mul_ps(c0, m2v); | ||
|  |     c1 = _mm_mul_ps(c1, m2v); | ||
|  |     c2 = _mm_mul_ps(c2, m2v); | ||
|  |      | ||
|  |     m2v = _mm_and_ps(m2[1].mVec128, btvFFF0fMask); | ||
|  |      | ||
|  |     __m128 c0_1 = bt_splat_ps( m10, 1); | ||
|  |     __m128 c1_1 = bt_splat_ps( m11, 1); | ||
|  |     __m128 c2_1 = bt_splat_ps( m12, 1); | ||
|  |      | ||
|  |     c0_1 = _mm_mul_ps(c0_1, m2v); | ||
|  |     c1_1 = _mm_mul_ps(c1_1, m2v); | ||
|  |     c2_1 = _mm_mul_ps(c2_1, m2v); | ||
|  |      | ||
|  |     m2v = _mm_and_ps(m2[2].mVec128, btvFFF0fMask); | ||
|  |      | ||
|  |     c0 = _mm_add_ps(c0, c0_1); | ||
|  |     c1 = _mm_add_ps(c1, c1_1); | ||
|  |     c2 = _mm_add_ps(c2, c2_1); | ||
|  |      | ||
|  |     m10 = bt_splat_ps( m10, 2); | ||
|  |     m11 = bt_splat_ps( m11, 2); | ||
|  |     m12 = bt_splat_ps( m12, 2); | ||
|  |      | ||
|  |     m10 = _mm_mul_ps(m10, m2v); | ||
|  |     m11 = _mm_mul_ps(m11, m2v); | ||
|  |     m12 = _mm_mul_ps(m12, m2v); | ||
|  |      | ||
|  |     c0 = _mm_add_ps(c0, m10); | ||
|  |     c1 = _mm_add_ps(c1, m11); | ||
|  |     c2 = _mm_add_ps(c2, m12); | ||
|  |      | ||
|  |     return btMatrix3x3(c0, c1, c2); | ||
|  | 
 | ||
|  | #elif defined(BT_USE_NEON)
 | ||
|  | 
 | ||
|  |     float32x4_t rv0, rv1, rv2; | ||
|  |     float32x4_t v0, v1, v2; | ||
|  |     float32x4_t mv0, mv1, mv2; | ||
|  | 
 | ||
|  |     v0 = m1[0].mVec128; | ||
|  |     v1 = m1[1].mVec128; | ||
|  |     v2 = m1[2].mVec128; | ||
|  | 
 | ||
|  |     mv0 = (float32x4_t) vandq_s32((int32x4_t)m2[0].mVec128, btvFFF0Mask);  | ||
|  |     mv1 = (float32x4_t) vandq_s32((int32x4_t)m2[1].mVec128, btvFFF0Mask);  | ||
|  |     mv2 = (float32x4_t) vandq_s32((int32x4_t)m2[2].mVec128, btvFFF0Mask);  | ||
|  |      | ||
|  |     rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0); | ||
|  |     rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0); | ||
|  |     rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0); | ||
|  |      | ||
|  |     rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1); | ||
|  |     rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1); | ||
|  |     rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1); | ||
|  |      | ||
|  |     rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0); | ||
|  |     rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0); | ||
|  |     rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0); | ||
|  | 
 | ||
|  | 	return btMatrix3x3(rv0, rv1, rv2); | ||
|  |          | ||
|  | #else	
 | ||
|  | 	return btMatrix3x3( | ||
|  | 		m2.tdotx( m1[0]), m2.tdoty( m1[0]), m2.tdotz( m1[0]), | ||
|  | 		m2.tdotx( m1[1]), m2.tdoty( m1[1]), m2.tdotz( m1[1]), | ||
|  | 		m2.tdotx( m1[2]), m2.tdoty( m1[2]), m2.tdotz( m1[2])); | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  | SIMD_FORCE_INLINE btMatrix3x3 btMultTransposeLeft(const btMatrix3x3& m1, const btMatrix3x3& m2) { | ||
|  | return btMatrix3x3( | ||
|  | m1[0][0] * m2[0][0] + m1[1][0] * m2[1][0] + m1[2][0] * m2[2][0], | ||
|  | m1[0][0] * m2[0][1] + m1[1][0] * m2[1][1] + m1[2][0] * m2[2][1], | ||
|  | m1[0][0] * m2[0][2] + m1[1][0] * m2[1][2] + m1[2][0] * m2[2][2], | ||
|  | m1[0][1] * m2[0][0] + m1[1][1] * m2[1][0] + m1[2][1] * m2[2][0], | ||
|  | m1[0][1] * m2[0][1] + m1[1][1] * m2[1][1] + m1[2][1] * m2[2][1], | ||
|  | m1[0][1] * m2[0][2] + m1[1][1] * m2[1][2] + m1[2][1] * m2[2][2], | ||
|  | m1[0][2] * m2[0][0] + m1[1][2] * m2[1][0] + m1[2][2] * m2[2][0], | ||
|  | m1[0][2] * m2[0][1] + m1[1][2] * m2[1][1] + m1[2][2] * m2[2][1], | ||
|  | m1[0][2] * m2[0][2] + m1[1][2] * m2[1][2] + m1[2][2] * m2[2][2]); | ||
|  | } | ||
|  | */ | ||
|  | 
 | ||
|  | /**@brief Equality operator between two matrices
 | ||
|  | * It will test all elements are equal.  */ | ||
|  | SIMD_FORCE_INLINE bool operator==(const btMatrix3x3& m1, const btMatrix3x3& m2) | ||
|  | { | ||
|  | #if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
 | ||
|  | 
 | ||
|  |     __m128 c0, c1, c2; | ||
|  | 
 | ||
|  |     c0 = _mm_cmpeq_ps(m1[0].mVec128, m2[0].mVec128); | ||
|  |     c1 = _mm_cmpeq_ps(m1[1].mVec128, m2[1].mVec128); | ||
|  |     c2 = _mm_cmpeq_ps(m1[2].mVec128, m2[2].mVec128); | ||
|  |      | ||
|  |     c0 = _mm_and_ps(c0, c1); | ||
|  |     c0 = _mm_and_ps(c0, c2); | ||
|  | 
 | ||
|  | 	int m = _mm_movemask_ps((__m128)c0); | ||
|  | 	return (0x7 == (m & 0x7)); | ||
|  | 	 | ||
|  | #else 
 | ||
|  | 	return  | ||
|  |     (   m1[0][0] == m2[0][0] && m1[1][0] == m2[1][0] && m1[2][0] == m2[2][0] && | ||
|  | 		m1[0][1] == m2[0][1] && m1[1][1] == m2[1][1] && m1[2][1] == m2[2][1] && | ||
|  | 		m1[0][2] == m2[0][2] && m1[1][2] == m2[1][2] && m1[2][2] == m2[2][2] ); | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | ///for serialization
 | ||
|  | struct	btMatrix3x3FloatData | ||
|  | { | ||
|  | 	btVector3FloatData m_el[3]; | ||
|  | }; | ||
|  | 
 | ||
|  | ///for serialization
 | ||
|  | struct	btMatrix3x3DoubleData | ||
|  | { | ||
|  | 	btVector3DoubleData m_el[3]; | ||
|  | }; | ||
|  | 
 | ||
|  | 
 | ||
|  | 	 | ||
|  | 
 | ||
|  | SIMD_FORCE_INLINE	void	btMatrix3x3::serialize(struct	btMatrix3x3Data& dataOut) const | ||
|  | { | ||
|  | 	for (int i=0;i<3;i++) | ||
|  | 		m_el[i].serialize(dataOut.m_el[i]); | ||
|  | } | ||
|  | 
 | ||
|  | SIMD_FORCE_INLINE	void	btMatrix3x3::serializeFloat(struct	btMatrix3x3FloatData& dataOut) const | ||
|  | { | ||
|  | 	for (int i=0;i<3;i++) | ||
|  | 		m_el[i].serializeFloat(dataOut.m_el[i]); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | SIMD_FORCE_INLINE	void	btMatrix3x3::deSerialize(const struct	btMatrix3x3Data& dataIn) | ||
|  | { | ||
|  | 	for (int i=0;i<3;i++) | ||
|  | 		m_el[i].deSerialize(dataIn.m_el[i]); | ||
|  | } | ||
|  | 
 | ||
|  | SIMD_FORCE_INLINE	void	btMatrix3x3::deSerializeFloat(const struct	btMatrix3x3FloatData& dataIn) | ||
|  | { | ||
|  | 	for (int i=0;i<3;i++) | ||
|  | 		m_el[i].deSerializeFloat(dataIn.m_el[i]); | ||
|  | } | ||
|  | 
 | ||
|  | SIMD_FORCE_INLINE	void	btMatrix3x3::deSerializeDouble(const struct	btMatrix3x3DoubleData& dataIn) | ||
|  | { | ||
|  | 	for (int i=0;i<3;i++) | ||
|  | 		m_el[i].deSerializeDouble(dataIn.m_el[i]); | ||
|  | } | ||
|  | 
 | ||
|  | #endif //BT_MATRIX3x3_H
 | ||
|  | 
 |