458 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			458 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|  | #version 450 | ||
|  | 
 | ||
|  | #include "compiled.inc" | ||
|  | #define SMAA_MAX_SEARCH_STEPS_DIAG 8 | ||
|  | #define SMAA_AREATEX_MAX_DISTANCE 16 | ||
|  | #define SMAA_AREATEX_MAX_DISTANCE_DIAG 20 | ||
|  | #define SMAA_AREATEX_PIXEL_SIZE (1.0 / vec2(160.0, 560.0)) | ||
|  | #define SMAA_AREATEX_SUBTEX_SIZE (1.0 / 7.0) | ||
|  | #define SMAA_SEARCHTEX_SIZE vec2(66.0, 33.0) | ||
|  | #define SMAA_SEARCHTEX_PACKED_SIZE vec2(64.0, 16.0) | ||
|  | #define SMAA_CORNER_ROUNDING 25 | ||
|  | #define SMAA_CORNER_ROUNDING_NORM (float(SMAA_CORNER_ROUNDING) / 100.0) | ||
|  | #define SMAA_AREATEX_SELECT(sample) sample.rg | ||
|  | #define SMAA_SEARCHTEX_SELECT(sample) sample.r | ||
|  | #define mad(a, b, c) (a * b + c) | ||
|  | #define saturate(a) clamp(a, 0.0, 1.0) | ||
|  | #define round(a) floor(a + 0.5) | ||
|  | 
 | ||
|  | uniform sampler2D edgesTex; | ||
|  | uniform sampler2D areaTex; | ||
|  | uniform sampler2D searchTex; | ||
|  | 
 | ||
|  | uniform vec2 screenSize; | ||
|  | uniform vec2 screenSizeInv; | ||
|  | 
 | ||
|  | in vec2 texCoord; | ||
|  | in vec2 pixcoord; | ||
|  | in vec4 offset0; | ||
|  | in vec4 offset1; | ||
|  | in vec4 offset2; | ||
|  | out vec4 fragColor; | ||
|  | 
 | ||
|  | // Blending Weight Calculation Pixel Shader (Second Pass) | ||
|  | vec2 cdw_end; | ||
|  | 
 | ||
|  | vec4 textureLodA(sampler2D tex, vec2 coord, float lod) { | ||
|  | 	#ifdef _InvY | ||
|  | 	coord.y = 1.0 - coord.y; | ||
|  | 	#endif | ||
|  | 	return textureLod(tex, coord, lod); | ||
|  | } | ||
|  | 
 | ||
|  | #define SMAASampleLevelZeroOffset(tex, coord, offset) textureLodA(tex, coord + offset * screenSizeInv.xy, 0.0) | ||
|  | 
 | ||
|  | //----------------------------------------------------------------------------- | ||
|  | // Diagonal Search Functions | ||
|  | 
 | ||
|  | // #if !defined(SMAA_DISABLE_DIAG_DETECTION) | ||
|  | /** | ||
|  |  * Allows to decode two binary values from a bilinear-filtered access. | ||
|  |  */ | ||
|  | vec2 SMAADecodeDiagBilinearAccess(vec2 e) { | ||
|  | 	// Bilinear access for fetching 'e' have a 0.25 offset, and we are | ||
|  | 	// interested in the R and G edges: | ||
|  | 	// | ||
|  | 	// +---G---+-------+ | ||
|  | 	// |   x o R   x   | | ||
|  | 	// +-------+-------+ | ||
|  | 	// | ||
|  | 	// Then, if one of these edge is enabled: | ||
|  | 	//   Red:   (0.75 * X + 0.25 * 1) => 0.25 or 1.0 | ||
|  | 	//   Green: (0.75 * 1 + 0.25 * X) => 0.75 or 1.0 | ||
|  | 	// | ||
|  | 	// This function will unpack the values (mad + mul + round): | ||
|  | 	// wolframalpha.com: round(x * abs(5 * x - 5 * 0.75)) plot 0 to 1 | ||
|  | 	e.r = e.r * abs(5.0 * e.r - 5.0 * 0.75); | ||
|  | 	return round(e); | ||
|  | } | ||
|  | 
 | ||
|  | vec4 SMAADecodeDiagBilinearAccess(vec4 e) { | ||
|  | 	e.rb = e.rb * abs(5.0 * e.rb - 5.0 * 0.75); | ||
|  | 	return round(e); | ||
|  | } | ||
|  | 
 | ||
|  | /** | ||
|  |  * These functions allows to perform diagonal pattern searches. | ||
|  |  */ | ||
|  | vec2 SMAASearchDiag1(vec2 texcoord, vec2 dir/*, out vec2 e*/) { | ||
|  | 	vec4 coord = vec4(texcoord, -1.0, 1.0); | ||
|  | 	vec3 t = vec3(screenSizeInv.xy, 1.0); | ||
|  | 	float cw = coord.w; // TODO: krafix hlsl bug | ||
|  | 	while (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) && cw > 0.9) { | ||
|  | 		coord.xyz = mad(t, vec3(dir, 1.0), coord.xyz); | ||
|  | 		cdw_end /*e*/ = textureLodA(edgesTex, coord.xy, 0.0).rg; | ||
|  | 		cw = dot(cdw_end /*e*/, vec2(0.5, 0.5)); | ||
|  | 	} | ||
|  | 	coord.w = cw; | ||
|  | 	return coord.zw; | ||
|  | } | ||
|  | 
 | ||
|  | vec2 SMAASearchDiag2(vec2 texcoord, vec2 dir) { | ||
|  | 	vec4 coord = vec4(texcoord, -1.0, 1.0); | ||
|  | 	coord.x += 0.25 * screenSizeInv.x; // See @SearchDiag2Optimization | ||
|  | 	vec3 t = vec3(screenSizeInv.xy, 1.0); | ||
|  | 	float cw = coord.w; // TODO: krafix hlsl bug | ||
|  | 	while (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) && cw > 0.9) { | ||
|  | 		coord.xyz = mad(t, vec3(dir, 1.0), coord.xyz); | ||
|  | 		// @SearchDiag2Optimization | ||
|  | 		// Fetch both edges at once using bilinear filtering: | ||
|  | 		cdw_end /*e*/ = textureLodA(edgesTex, coord.xy, 0.0).rg; | ||
|  | 		cdw_end /*e*/ = SMAADecodeDiagBilinearAccess(cdw_end /*e*/); | ||
|  | 		cw = dot(cdw_end /*e*/, vec2(0.5, 0.5)); | ||
|  | 	} | ||
|  | 	coord.w = cw; | ||
|  | 	return coord.zw; | ||
|  | } | ||
|  | 
 | ||
|  | /** | ||
|  |  * Similar to SMAAArea, this calculates the area corresponding to a certain | ||
|  |  * diagonal distance and crossing edges 'e'. | ||
|  |  */ | ||
|  | vec2 SMAAAreaDiag(vec2 dist, vec2 e, float offset) { | ||
|  | 	vec2 texcoord = mad(vec2(SMAA_AREATEX_MAX_DISTANCE_DIAG, SMAA_AREATEX_MAX_DISTANCE_DIAG), e, dist); | ||
|  | 
 | ||
|  | 	// We do a scale and bias for mapping to texel space: | ||
|  | 	texcoord = mad(SMAA_AREATEX_PIXEL_SIZE, texcoord, 0.5 * SMAA_AREATEX_PIXEL_SIZE); | ||
|  | 
 | ||
|  | 	// Diagonal areas are on the second half of the texture: | ||
|  | 	texcoord.x += 0.5; | ||
|  | 
 | ||
|  | 	// Move to proper place, according to the subpixel offset: | ||
|  | 	texcoord.y += SMAA_AREATEX_SUBTEX_SIZE * offset; | ||
|  | 
 | ||
|  | 	// Do it! | ||
|  | 	return SMAA_AREATEX_SELECT(textureLod(areaTex, texcoord, 0.0)); | ||
|  | } | ||
|  | 
 | ||
|  | /** | ||
|  |  * This searches for diagonal patterns and returns the corresponding weights. | ||
|  |  */ | ||
|  | vec2 SMAACalculateDiagWeights(vec2 texcoord, vec2 e, vec4 subsampleIndices) { | ||
|  | 	vec2 weights = vec2(0.0, 0.0); | ||
|  | 
 | ||
|  | 	// Search for the line ends: | ||
|  | 	vec4 d; | ||
|  | 	if (e.r > 0.0) { | ||
|  | 		d.xz = SMAASearchDiag1(texcoord, vec2(-1.0,  1.0)/*, cdw_end*/); | ||
|  | 		float dadd = cdw_end.y > 0.9 ? 1.0 : 0.0; | ||
|  | 		d.x += dadd; | ||
|  | 	} | ||
|  | 	else { | ||
|  | 		d.xz = vec2(0.0, 0.0); | ||
|  | 	} | ||
|  | 	d.yw = SMAASearchDiag1(texcoord, vec2(1.0, -1.0)/*, cdw_end*/); | ||
|  | 
 | ||
|  | 	//SMAA_BRANCH | ||
|  | 	if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3 | ||
|  | 		// Fetch the crossing edges: | ||
|  | 		vec4 coords = mad(vec4(-d.x + 0.25, d.x, d.y, -d.y - 0.25), screenSizeInv.xyxy, texcoord.xyxy); | ||
|  | 		vec4 c; | ||
|  | 
 | ||
|  | 		c.xy = SMAASampleLevelZeroOffset(edgesTex, coords.xy, ivec2(-1,  0)).rg; | ||
|  | 		c.zw = SMAASampleLevelZeroOffset(edgesTex, coords.zw, ivec2( 1,  0)).rg; | ||
|  | 		c.yxwz = SMAADecodeDiagBilinearAccess(c.xyzw); | ||
|  | 
 | ||
|  | 		// Merge crossing edges at each side into a single value: | ||
|  | 		vec2 cc = mad(vec2(2.0, 2.0), c.xz, c.yw); | ||
|  | 
 | ||
|  | 		// Remove the crossing edge if we didn't found the end of the line: | ||
|  | 		// SMAAMovc(bvec2(step(0.9, d.zw)), cc, vec2(0.0, 0.0)); | ||
|  | 		float a1condx = step(0.9, d.z); | ||
|  | 		float a1condy = step(0.9, d.w); | ||
|  | 		if (a1condx == 1.0) cc.x = 0.0; | ||
|  | 		if (a1condy == 1.0) cc.y = 0.0; | ||
|  | 
 | ||
|  | 		// Fetch the areas for this line: | ||
|  | 		weights += SMAAAreaDiag(d.xy, cc, subsampleIndices.z); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Search for the line ends: | ||
|  | 	d.xz = SMAASearchDiag2(texcoord, vec2(-1.0, -1.0)/*, cdw_end*/); | ||
|  | 	if (SMAASampleLevelZeroOffset(edgesTex, texcoord, ivec2(1, 0)).r > 0.0) { | ||
|  | 		d.yw = SMAASearchDiag2(texcoord, vec2(1.0, 1.0)/*, cdw_end*/); | ||
|  | 		float dadd = cdw_end.y > 0.9 ? 1.0 : 0.0; | ||
|  | 		d.y += dadd; | ||
|  | 	} | ||
|  | 	else { | ||
|  | 		d.yw = vec2(0.0, 0.0); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// SMAA_BRANCH | ||
|  | 	if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3 | ||
|  | 		// Fetch the crossing edges: | ||
|  | 		vec4 coords = mad(vec4(-d.x, -d.x, d.y, d.y), screenSizeInv.xyxy, texcoord.xyxy); | ||
|  | 		vec4 c; | ||
|  | 		c.x  = SMAASampleLevelZeroOffset(edgesTex, coords.xy, ivec2(-1,  0)).g; | ||
|  | 		c.y  = SMAASampleLevelZeroOffset(edgesTex, coords.xy, ivec2( 0, -1)).r; | ||
|  | 		c.zw = SMAASampleLevelZeroOffset(edgesTex, coords.zw, ivec2( 1,  0)).gr; | ||
|  | 		vec2 cc = mad(vec2(2.0, 2.0), c.xz, c.yw); | ||
|  | 
 | ||
|  | 		// Remove the crossing edge if we didn't found the end of the line: | ||
|  | 		// SMAAMovc(bvec2(step(0.9, d.zw)), cc, vec2(0.0, 0.0)); | ||
|  | 		float a1condx = step(0.9, d.z); | ||
|  | 		float a1condy = step(0.9, d.w); | ||
|  | 		if (a1condx == 1.0) cc.x = 0.0; | ||
|  | 		if (a1condy == 1.0) cc.y = 0.0; | ||
|  | 
 | ||
|  | 		// Fetch the areas for this line: | ||
|  | 		weights += SMAAAreaDiag(d.xy, cc, subsampleIndices.w).gr; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return weights; | ||
|  | } | ||
|  | // #endif | ||
|  | 
 | ||
|  | //----------------------------------------------------------------------------- | ||
|  | // Horizontal/Vertical Search Functions | ||
|  | 
 | ||
|  | /** | ||
|  |  * This allows to determine how much length should we add in the last step | ||
|  |  * of the searches. It takes the bilinearly interpolated edge (see | ||
|  |  * @PSEUDO_GATHER4), and adds 0, 1 or 2, depending on which edges and | ||
|  |  * crossing edges are active. | ||
|  |  */ | ||
|  | float SMAASearchLength(vec2 e, float offset) { | ||
|  | 	// The texture is flipped vertically, with left and right cases taking half | ||
|  | 	// of the space horizontally: | ||
|  | 	vec2 scale = SMAA_SEARCHTEX_SIZE * vec2(0.5, -1.0); | ||
|  | 	vec2 bias = SMAA_SEARCHTEX_SIZE * vec2(offset, 1.0); | ||
|  | 
 | ||
|  | 	// Scale and bias to access texel centers: | ||
|  | 	scale += vec2(-1.0, 1.0); | ||
|  | 	bias += vec2( 0.5, -0.5); | ||
|  | 
 | ||
|  | 	// Convert from pixel coordinates to texcoords: | ||
|  | 	// (We use SMAA_SEARCHTEX_PACKED_SIZE because the texture is cropped) | ||
|  | 	scale *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE; | ||
|  | 	bias *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE; | ||
|  | 
 | ||
|  | 	vec2 coord = mad(scale, e, bias); | ||
|  | 
 | ||
|  | 	// Lookup the search texture: | ||
|  | 	return SMAA_SEARCHTEX_SELECT(textureLod(searchTex, coord, 0.0)); | ||
|  | } | ||
|  | 
 | ||
|  | /** | ||
|  |  * Horizontal/vertical search functions for the 2nd pass. | ||
|  |  */ | ||
|  | float SMAASearchXLeft(vec2 texcoord, float end) { | ||
|  | 	/** | ||
|  | 	 * @PSEUDO_GATHER4 | ||
|  | 	 * This texcoord has been offset by (-0.25, -0.125) in the vertex shader to | ||
|  | 	 * sample between edge, thus fetching four edges in a row. | ||
|  | 	 * Sampling with different offsets in each direction allows to disambiguate | ||
|  | 	 * which edges are active from the four fetched ones. | ||
|  | 	 */ | ||
|  | 	vec2 e = vec2(0.0, 1.0); | ||
|  | 	while (texcoord.x > end && | ||
|  | 		   e.g > 0.8281 && // Is there some edge not activated? | ||
|  | 		   e.r == 0.0) { // Or is there a crossing edge that breaks the line? | ||
|  | 		e = textureLodA(edgesTex, texcoord, 0.0).rg; | ||
|  | 		texcoord = mad(-vec2(2.0, 0.0), screenSizeInv.xy, texcoord); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	float offset = mad(-(255.0 / 127.0), SMAASearchLength(e, 0.0), 3.25); | ||
|  | 	return mad(screenSizeInv.x, offset, texcoord.x); | ||
|  | } | ||
|  | 
 | ||
|  | float SMAASearchXRight(vec2 texcoord, float end) { | ||
|  | 	vec2 e = vec2(0.0, 1.0); | ||
|  | 	while (texcoord.x < end && | ||
|  | 		   e.g > 0.8281 && // Is there some edge not activated? | ||
|  | 		   e.r == 0.0) { // Or is there a crossing edge that breaks the line? | ||
|  | 		e = textureLodA(edgesTex, texcoord, 0.0).rg; | ||
|  | 		texcoord = mad(vec2(2.0, 0.0), screenSizeInv.xy, texcoord); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	float offset = mad(-(255.0 / 127.0), SMAASearchLength(e, 0.5), 3.25); | ||
|  | 	return mad(-screenSizeInv.x, offset, texcoord.x); | ||
|  | } | ||
|  | 
 | ||
|  | float SMAASearchYUp(vec2 texcoord, float end) { | ||
|  | 	vec2 e = vec2(1.0, 0.0); | ||
|  | 	while (texcoord.y > end && | ||
|  | 		   e.r > 0.8281 && // Is there some edge not activated? | ||
|  | 		   e.g == 0.0) { // Or is there a crossing edge that breaks the line? | ||
|  | 		e = textureLodA(edgesTex, texcoord, 0.0).rg; | ||
|  | 		texcoord = mad(-vec2(0.0, 2.0), screenSizeInv.xy, texcoord); | ||
|  | 	} | ||
|  | 	float offset = mad(-(255.0 / 127.0), SMAASearchLength(e.gr, 0.0), 3.25); | ||
|  | 	return mad(screenSizeInv.y, offset, texcoord.y); | ||
|  | } | ||
|  | 
 | ||
|  | float SMAASearchYDown(vec2 texcoord, float end) { | ||
|  | 	vec2 e = vec2(1.0, 0.0); | ||
|  | 	while (texcoord.y < end && | ||
|  | 		   e.r > 0.8281 && // Is there some edge not activated? | ||
|  | 		   e.g == 0.0) { // Or is there a crossing edge that breaks the line? | ||
|  | 		e = textureLodA(edgesTex, texcoord, 0.0).rg; | ||
|  | 		texcoord = mad(vec2(0.0, 2.0), screenSizeInv.xy, texcoord); | ||
|  | 	} | ||
|  | 	float offset = mad(-(255.0 / 127.0), SMAASearchLength(/*searchTex,*/ e.gr, 0.5), 3.25); | ||
|  | 	return mad(-screenSizeInv.y, offset, texcoord.y); | ||
|  | } | ||
|  | 
 | ||
|  | /** | ||
|  |  * Ok, we have the distance and both crossing edges. So, what are the areas | ||
|  |  * at each side of current edge? | ||
|  |  */ | ||
|  | vec2 SMAAArea(vec2 dist, float e1, float e2, float offset) { | ||
|  | 	// Rounding prevents precision errors of bilinear filtering: | ||
|  | 	vec2 texcoord = mad(vec2(SMAA_AREATEX_MAX_DISTANCE, SMAA_AREATEX_MAX_DISTANCE), round(4.0 * vec2(e1, e2)), dist); | ||
|  | 
 | ||
|  | 	// We do a scale and bias for mapping to texel space: | ||
|  | 	texcoord = mad(SMAA_AREATEX_PIXEL_SIZE, texcoord, 0.5 * SMAA_AREATEX_PIXEL_SIZE); | ||
|  | 
 | ||
|  | 	// Move to proper place, according to the subpixel offset: | ||
|  | 	texcoord.y = mad(SMAA_AREATEX_SUBTEX_SIZE, offset, texcoord.y); | ||
|  | 
 | ||
|  | 	// Do it! | ||
|  | 	return SMAA_AREATEX_SELECT(textureLod(areaTex, texcoord, 0.0)); | ||
|  | } | ||
|  | 
 | ||
|  | //----------------------------------------------------------------------------- | ||
|  | // Corner Detection Functions | ||
|  | 
 | ||
|  | vec2 SMAADetectHorizontalCornerPattern(vec2 weights, vec4 texcoord, vec2 d) { | ||
|  | 	// #if !defined(SMAA_DISABLE_CORNER_DETECTION) | ||
|  | 	vec2 leftRight = step(d.xy, d.yx); | ||
|  | 	vec2 rounding = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight; | ||
|  | 
 | ||
|  | 	rounding /= leftRight.x + leftRight.y; // Reduce blending for pixels in the center of a line. | ||
|  | 
 | ||
|  | 	vec2 factor = vec2(1.0, 1.0); | ||
|  | 	factor.x -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, ivec2(0,  1)).r; | ||
|  | 	factor.x -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, ivec2(1,  1)).r; | ||
|  | 	factor.y -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, ivec2(0, -2)).r; | ||
|  | 	factor.y -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, ivec2(1, -2)).r; | ||
|  | 
 | ||
|  | 	weights *= saturate(factor); | ||
|  | 	return weights; // | ||
|  | 	// #endif | ||
|  | } | ||
|  | 
 | ||
|  | vec2 SMAADetectVerticalCornerPattern(vec2 weights, vec4 texcoord, vec2 d) { | ||
|  | 	//#if !defined(SMAA_DISABLE_CORNER_DETECTION) | ||
|  | 	vec2 leftRight = step(d.xy, d.yx); | ||
|  | 	vec2 rounding = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight; | ||
|  | 
 | ||
|  | 	rounding /= leftRight.x + leftRight.y; | ||
|  | 
 | ||
|  | 	vec2 factor = vec2(1.0, 1.0); | ||
|  | 	factor.x -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, ivec2( 1, 0)).g; | ||
|  | 	factor.x -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, ivec2( 1, 1)).g; | ||
|  | 	factor.y -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, ivec2(-2, 0)).g; | ||
|  | 	factor.y -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, ivec2(-2, 1)).g; | ||
|  | 
 | ||
|  | 	weights *= saturate(factor); | ||
|  | 	return weights; // | ||
|  | 	// #endif | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | vec4 SMAABlendingWeightCalculationPS(vec2 texcoord, vec2 pixcoord, | ||
|  | 									 vec4 subsampleIndices) { // Just pass zero for SMAA 1x, see @SUBSAMPLE_INDICES. | ||
|  | 	vec4 weights = vec4(0.0, 0.0, 0.0, 0.0); | ||
|  | 
 | ||
|  | 	vec2 e = textureLodA(edgesTex, texcoord, 0.0).rg; | ||
|  | 
 | ||
|  | 	//SMAA_BRANCH | ||
|  | 	if (e.g > 0.0) { // Edge at north | ||
|  | 		//#if !defined(SMAA_DISABLE_DIAG_DETECTION) | ||
|  | 		// Diagonals have both north and west edges, so searching for them in | ||
|  | 		// one of the boundaries is enough. | ||
|  | 		weights.rg = SMAACalculateDiagWeights(texcoord, e, subsampleIndices); | ||
|  | 
 | ||
|  | 		// We give piority to diagonals, so if we find a diagonal we skip | ||
|  | 		// horizontal/vertical processing. | ||
|  | 		//SMAA_BRANCH | ||
|  | 		if (weights.r == -weights.g) { // weights.r + weights.g == 0.0 | ||
|  | 		//#endif | ||
|  | 
 | ||
|  | 		vec2 d; | ||
|  | 
 | ||
|  | 		// Find the distance to the left: | ||
|  | 		vec3 coords; | ||
|  | 		coords.x = SMAASearchXLeft(offset0.xy, offset2.x); | ||
|  | 		coords.y = offset1.y; // offset[1].y = texcoord.y - 0.25 * screenSizeInv.y (@CROSSING_OFFSET) | ||
|  | 		d.x = coords.x; | ||
|  | 
 | ||
|  | 		// Now fetch the left crossing edges, two at a time using bilinear | ||
|  | 		// filtering. Sampling at -0.25 (see @CROSSING_OFFSET) enables to | ||
|  | 		// discern what value each edge has: | ||
|  | 		float e1 = textureLodA(edgesTex, coords.xy, 0.0).r; | ||
|  | 
 | ||
|  | 		// Find the distance to the right: | ||
|  | 		coords.z = SMAASearchXRight(offset0.zw, offset2.y); | ||
|  | 		d.y = coords.z; | ||
|  | 
 | ||
|  | 		// We want the distances to be in pixel units (doing this here allow to | ||
|  | 		// better interleave arithmetic and memory accesses): | ||
|  | 		d = abs(round(mad(screenSize.xx, d, -pixcoord.xx))); | ||
|  | 
 | ||
|  | 		// SMAAArea below needs a sqrt, as the areas texture is compressed | ||
|  | 		// quadratically: | ||
|  | 		vec2 sqrt_d = sqrt(d); | ||
|  | 
 | ||
|  | 		// Fetch the right crossing edges: | ||
|  | 		float e2 = SMAASampleLevelZeroOffset(edgesTex, coords.zy, ivec2(1, 0)).r; | ||
|  | 
 | ||
|  | 		// Ok, we know how this pattern looks like, now it is time for getting | ||
|  | 		// the actual area: | ||
|  | 		weights.rg = SMAAArea(sqrt_d, e1, e2, subsampleIndices.y); | ||
|  | 
 | ||
|  | 		// Fix corners: | ||
|  | 		coords.y = texcoord.y; | ||
|  | 		weights.rg = SMAADetectHorizontalCornerPattern(weights.rg, coords.xyzy, d); | ||
|  | 
 | ||
|  | 		//#if !defined(SMAA_DISABLE_DIAG_DETECTION) | ||
|  | 		} | ||
|  | 		else { | ||
|  | 			e.r = 0.0; // Skip vertical processing. | ||
|  | 		} | ||
|  | 		//#endif | ||
|  | 	} | ||
|  | 
 | ||
|  | 	//SMAA_BRANCH | ||
|  | 	if (e.r > 0.0) { // Edge at west | ||
|  | 		vec2 d; | ||
|  | 
 | ||
|  | 		// Find the distance to the top: | ||
|  | 		vec3 coords; | ||
|  | 		coords.y = SMAASearchYUp(/*edgesTex, searchTex,*/ offset1.xy, offset2.z); | ||
|  | 		coords.x = offset0.x; // offset[1].x = texcoord.x - 0.25 * screenSizeInv.x; | ||
|  | 		d.x = coords.y; | ||
|  | 
 | ||
|  | 		// Fetch the top crossing edges: | ||
|  | 		float e1 = textureLodA(edgesTex, coords.xy, 0.0).g; | ||
|  | 
 | ||
|  | 		// Find the distance to the bottom: | ||
|  | 		coords.z = SMAASearchYDown(offset1.zw, offset2.w); | ||
|  | 		d.y = coords.z; | ||
|  | 
 | ||
|  | 		// We want the distances to be in pixel units: | ||
|  | 		d = abs(round(mad(screenSize.yy, d, -pixcoord.yy))); | ||
|  | 
 | ||
|  | 		// SMAAArea below needs a sqrt, as the areas texture is compressed | ||
|  | 		// quadratically: | ||
|  | 		vec2 sqrt_d = sqrt(d); | ||
|  | 
 | ||
|  | 		// Fetch the bottom crossing edges: | ||
|  | 		float e2 = SMAASampleLevelZeroOffset(edgesTex, coords.xz, ivec2(0, 1)).g; | ||
|  | 
 | ||
|  | 		// Get the area for this direction: | ||
|  | 		weights.ba = SMAAArea(sqrt_d, e1, e2, subsampleIndices.x); | ||
|  | 
 | ||
|  | 		// Fix corners: | ||
|  | 		coords.x = texcoord.x; | ||
|  | 		weights.ba = SMAADetectVerticalCornerPattern(weights.ba, coords.xyxz, d); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return weights; | ||
|  | } | ||
|  | 
 | ||
|  | void main() { | ||
|  | 	fragColor = SMAABlendingWeightCalculationPS(texCoord, pixcoord, vec4(0.0)); | ||
|  | } |