1064 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			1064 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | /*
 | ||
|  | Bullet Continuous Collision Detection and Physics Library | ||
|  | Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | ||
|  | 
 | ||
|  | This software is provided 'as-is', without any express or implied warranty. | ||
|  | In no event will the authors be held liable for any damages arising from the use of this software. | ||
|  | Permission is granted to anyone to use this software for any purpose, | ||
|  | including commercial applications, and to alter it and redistribute it freely, | ||
|  | subject to the following restrictions: | ||
|  | 
 | ||
|  | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | ||
|  | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | ||
|  | 3. This notice may not be removed or altered from any source distribution. | ||
|  | */ | ||
|  | /*
 | ||
|  | 2007-09-09 | ||
|  | Refactored by Francisco Le?n | ||
|  | email: projectileman@yahoo.com | ||
|  | http://gimpact.sf.net
 | ||
|  | */ | ||
|  | 
 | ||
|  | #include "btGeneric6DofConstraint.h"
 | ||
|  | #include "BulletDynamics/Dynamics/btRigidBody.h"
 | ||
|  | #include "LinearMath/btTransformUtil.h"
 | ||
|  | #include "LinearMath/btTransformUtil.h"
 | ||
|  | #include <new>
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #define D6_USE_OBSOLETE_METHOD false
 | ||
|  | #define D6_USE_FRAME_OFFSET true
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA) | ||
|  | : btTypedConstraint(D6_CONSTRAINT_TYPE, rbA, rbB) | ||
|  | , m_frameInA(frameInA) | ||
|  | , m_frameInB(frameInB), | ||
|  | m_useLinearReferenceFrameA(useLinearReferenceFrameA), | ||
|  | m_useOffsetForConstraintFrame(D6_USE_FRAME_OFFSET), | ||
|  | m_flags(0), | ||
|  | m_useSolveConstraintObsolete(D6_USE_OBSOLETE_METHOD) | ||
|  | { | ||
|  | 	calculateTransforms(); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbB, const btTransform& frameInB, bool useLinearReferenceFrameB) | ||
|  |         : btTypedConstraint(D6_CONSTRAINT_TYPE, getFixedBody(), rbB), | ||
|  | 		m_frameInB(frameInB), | ||
|  | 		m_useLinearReferenceFrameA(useLinearReferenceFrameB), | ||
|  | 		m_useOffsetForConstraintFrame(D6_USE_FRAME_OFFSET), | ||
|  | 		m_flags(0), | ||
|  | 		m_useSolveConstraintObsolete(false) | ||
|  | { | ||
|  | 	///not providing rigidbody A means implicitly using worldspace for body A
 | ||
|  | 	m_frameInA = rbB.getCenterOfMassTransform() * m_frameInB; | ||
|  | 	calculateTransforms(); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #define GENERIC_D6_DISABLE_WARMSTARTING 1
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | btScalar btGetMatrixElem(const btMatrix3x3& mat, int index); | ||
|  | btScalar btGetMatrixElem(const btMatrix3x3& mat, int index) | ||
|  | { | ||
|  | 	int i = index%3; | ||
|  | 	int j = index/3; | ||
|  | 	return mat[i][j]; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | ///MatrixToEulerXYZ from http://www.geometrictools.com/LibFoundation/Mathematics/Wm4Matrix3.inl.html
 | ||
|  | bool	matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz); | ||
|  | bool	matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz) | ||
|  | { | ||
|  | 	//	// rot =  cy*cz          -cy*sz           sy
 | ||
|  | 	//	//        cz*sx*sy+cx*sz  cx*cz-sx*sy*sz -cy*sx
 | ||
|  | 	//	//       -cx*cz*sy+sx*sz  cz*sx+cx*sy*sz  cx*cy
 | ||
|  | 	//
 | ||
|  | 
 | ||
|  | 	btScalar fi = btGetMatrixElem(mat,2); | ||
|  | 	if (fi < btScalar(1.0f)) | ||
|  | 	{ | ||
|  | 		if (fi > btScalar(-1.0f)) | ||
|  | 		{ | ||
|  | 			xyz[0] = btAtan2(-btGetMatrixElem(mat,5),btGetMatrixElem(mat,8)); | ||
|  | 			xyz[1] = btAsin(btGetMatrixElem(mat,2)); | ||
|  | 			xyz[2] = btAtan2(-btGetMatrixElem(mat,1),btGetMatrixElem(mat,0)); | ||
|  | 			return true; | ||
|  | 		} | ||
|  | 		else | ||
|  | 		{ | ||
|  | 			// WARNING.  Not unique.  XA - ZA = -atan2(r10,r11)
 | ||
|  | 			xyz[0] = -btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4)); | ||
|  | 			xyz[1] = -SIMD_HALF_PI; | ||
|  | 			xyz[2] = btScalar(0.0); | ||
|  | 			return false; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		// WARNING.  Not unique.  XAngle + ZAngle = atan2(r10,r11)
 | ||
|  | 		xyz[0] = btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4)); | ||
|  | 		xyz[1] = SIMD_HALF_PI; | ||
|  | 		xyz[2] = 0.0; | ||
|  | 	} | ||
|  | 	return false; | ||
|  | } | ||
|  | 
 | ||
|  | //////////////////////////// btRotationalLimitMotor ////////////////////////////////////
 | ||
|  | 
 | ||
|  | int btRotationalLimitMotor::testLimitValue(btScalar test_value) | ||
|  | { | ||
|  | 	if(m_loLimit>m_hiLimit) | ||
|  | 	{ | ||
|  | 		m_currentLimit = 0;//Free from violation
 | ||
|  | 		return 0; | ||
|  | 	} | ||
|  | 	if (test_value < m_loLimit) | ||
|  | 	{ | ||
|  | 		m_currentLimit = 1;//low limit violation
 | ||
|  | 		m_currentLimitError =  test_value - m_loLimit; | ||
|  | 		if(m_currentLimitError>SIMD_PI)  | ||
|  | 			m_currentLimitError-=SIMD_2_PI; | ||
|  | 		else if(m_currentLimitError<-SIMD_PI)  | ||
|  | 			m_currentLimitError+=SIMD_2_PI; | ||
|  | 		return 1; | ||
|  | 	} | ||
|  | 	else if (test_value> m_hiLimit) | ||
|  | 	{ | ||
|  | 		m_currentLimit = 2;//High limit violation
 | ||
|  | 		m_currentLimitError = test_value - m_hiLimit; | ||
|  | 		if(m_currentLimitError>SIMD_PI)  | ||
|  | 			m_currentLimitError-=SIMD_2_PI; | ||
|  | 		else if(m_currentLimitError<-SIMD_PI)  | ||
|  | 			m_currentLimitError+=SIMD_2_PI; | ||
|  | 		return 2; | ||
|  | 	}; | ||
|  | 
 | ||
|  | 	m_currentLimit = 0;//Free from violation
 | ||
|  | 	return 0; | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | btScalar btRotationalLimitMotor::solveAngularLimits( | ||
|  | 	btScalar timeStep,btVector3& axis,btScalar jacDiagABInv, | ||
|  | 	btRigidBody * body0, btRigidBody * body1 ) | ||
|  | { | ||
|  | 	if (needApplyTorques()==false) return 0.0f; | ||
|  | 
 | ||
|  | 	btScalar target_velocity = m_targetVelocity; | ||
|  | 	btScalar maxMotorForce = m_maxMotorForce; | ||
|  | 
 | ||
|  | 	//current error correction
 | ||
|  | 	if (m_currentLimit!=0) | ||
|  | 	{ | ||
|  | 		target_velocity = -m_stopERP*m_currentLimitError/(timeStep); | ||
|  | 		maxMotorForce = m_maxLimitForce; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	maxMotorForce *= timeStep; | ||
|  | 
 | ||
|  | 	// current velocity difference
 | ||
|  | 
 | ||
|  | 	btVector3 angVelA = body0->getAngularVelocity(); | ||
|  | 	btVector3 angVelB = body1->getAngularVelocity(); | ||
|  | 
 | ||
|  | 	btVector3 vel_diff; | ||
|  | 	vel_diff = angVelA-angVelB; | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	btScalar rel_vel = axis.dot(vel_diff); | ||
|  | 
 | ||
|  | 	// correction velocity
 | ||
|  | 	btScalar motor_relvel = m_limitSoftness*(target_velocity  - m_damping*rel_vel); | ||
|  | 
 | ||
|  | 
 | ||
|  | 	if ( motor_relvel < SIMD_EPSILON && motor_relvel > -SIMD_EPSILON  ) | ||
|  | 	{ | ||
|  | 		return 0.0f;//no need for applying force
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 
 | ||
|  | 	// correction impulse
 | ||
|  | 	btScalar unclippedMotorImpulse = (1+m_bounce)*motor_relvel*jacDiagABInv; | ||
|  | 
 | ||
|  | 	// clip correction impulse
 | ||
|  | 	btScalar clippedMotorImpulse; | ||
|  | 
 | ||
|  | 	///@todo: should clip against accumulated impulse
 | ||
|  | 	if (unclippedMotorImpulse>0.0f) | ||
|  | 	{ | ||
|  | 		clippedMotorImpulse =  unclippedMotorImpulse > maxMotorForce? maxMotorForce: unclippedMotorImpulse; | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		clippedMotorImpulse =  unclippedMotorImpulse < -maxMotorForce ? -maxMotorForce: unclippedMotorImpulse; | ||
|  | 	} | ||
|  | 
 | ||
|  | 
 | ||
|  | 	// sort with accumulated impulses
 | ||
|  | 	btScalar	lo = btScalar(-BT_LARGE_FLOAT); | ||
|  | 	btScalar	hi = btScalar(BT_LARGE_FLOAT); | ||
|  | 
 | ||
|  | 	btScalar oldaccumImpulse = m_accumulatedImpulse; | ||
|  | 	btScalar sum = oldaccumImpulse + clippedMotorImpulse; | ||
|  | 	m_accumulatedImpulse = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum; | ||
|  | 
 | ||
|  | 	clippedMotorImpulse = m_accumulatedImpulse - oldaccumImpulse; | ||
|  | 
 | ||
|  | 	btVector3 motorImp = clippedMotorImpulse * axis; | ||
|  | 
 | ||
|  | 	body0->applyTorqueImpulse(motorImp); | ||
|  | 	body1->applyTorqueImpulse(-motorImp); | ||
|  | 
 | ||
|  | 	return clippedMotorImpulse; | ||
|  | 
 | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | //////////////////////////// End btRotationalLimitMotor ////////////////////////////////////
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | //////////////////////////// btTranslationalLimitMotor ////////////////////////////////////
 | ||
|  | 
 | ||
|  | 
 | ||
|  | int btTranslationalLimitMotor::testLimitValue(int limitIndex, btScalar test_value) | ||
|  | { | ||
|  | 	btScalar loLimit = m_lowerLimit[limitIndex]; | ||
|  | 	btScalar hiLimit = m_upperLimit[limitIndex]; | ||
|  | 	if(loLimit > hiLimit) | ||
|  | 	{ | ||
|  | 		m_currentLimit[limitIndex] = 0;//Free from violation
 | ||
|  | 		m_currentLimitError[limitIndex] = btScalar(0.f); | ||
|  | 		return 0; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (test_value < loLimit) | ||
|  | 	{ | ||
|  | 		m_currentLimit[limitIndex] = 2;//low limit violation
 | ||
|  | 		m_currentLimitError[limitIndex] =  test_value - loLimit; | ||
|  | 		return 2; | ||
|  | 	} | ||
|  | 	else if (test_value> hiLimit) | ||
|  | 	{ | ||
|  | 		m_currentLimit[limitIndex] = 1;//High limit violation
 | ||
|  | 		m_currentLimitError[limitIndex] = test_value - hiLimit; | ||
|  | 		return 1; | ||
|  | 	}; | ||
|  | 
 | ||
|  | 	m_currentLimit[limitIndex] = 0;//Free from violation
 | ||
|  | 	m_currentLimitError[limitIndex] = btScalar(0.f); | ||
|  | 	return 0; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | btScalar btTranslationalLimitMotor::solveLinearAxis( | ||
|  | 	btScalar timeStep, | ||
|  | 	btScalar jacDiagABInv, | ||
|  | 	btRigidBody& body1,const btVector3 &pointInA, | ||
|  | 	btRigidBody& body2,const btVector3 &pointInB, | ||
|  | 	int limit_index, | ||
|  | 	const btVector3 & axis_normal_on_a, | ||
|  | 	const btVector3 & anchorPos) | ||
|  | { | ||
|  | 
 | ||
|  | 	///find relative velocity
 | ||
|  | 	//    btVector3 rel_pos1 = pointInA - body1.getCenterOfMassPosition();
 | ||
|  | 	//    btVector3 rel_pos2 = pointInB - body2.getCenterOfMassPosition();
 | ||
|  | 	btVector3 rel_pos1 = anchorPos - body1.getCenterOfMassPosition(); | ||
|  | 	btVector3 rel_pos2 = anchorPos - body2.getCenterOfMassPosition(); | ||
|  | 
 | ||
|  | 	btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); | ||
|  | 	btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); | ||
|  | 	btVector3 vel = vel1 - vel2; | ||
|  | 
 | ||
|  | 	btScalar rel_vel = axis_normal_on_a.dot(vel); | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	/// apply displacement correction
 | ||
|  | 
 | ||
|  | 	//positional error (zeroth order error)
 | ||
|  | 	btScalar depth = -(pointInA - pointInB).dot(axis_normal_on_a); | ||
|  | 	btScalar	lo = btScalar(-BT_LARGE_FLOAT); | ||
|  | 	btScalar	hi = btScalar(BT_LARGE_FLOAT); | ||
|  | 
 | ||
|  | 	btScalar minLimit = m_lowerLimit[limit_index]; | ||
|  | 	btScalar maxLimit = m_upperLimit[limit_index]; | ||
|  | 
 | ||
|  | 	//handle the limits
 | ||
|  | 	if (minLimit < maxLimit) | ||
|  | 	{ | ||
|  | 		{ | ||
|  | 			if (depth > maxLimit) | ||
|  | 			{ | ||
|  | 				depth -= maxLimit; | ||
|  | 				lo = btScalar(0.); | ||
|  | 
 | ||
|  | 			} | ||
|  | 			else | ||
|  | 			{ | ||
|  | 				if (depth < minLimit) | ||
|  | 				{ | ||
|  | 					depth -= minLimit; | ||
|  | 					hi = btScalar(0.); | ||
|  | 				} | ||
|  | 				else | ||
|  | 				{ | ||
|  | 					return 0.0f; | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	btScalar normalImpulse= m_limitSoftness*(m_restitution*depth/timeStep - m_damping*rel_vel) * jacDiagABInv; | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	btScalar oldNormalImpulse = m_accumulatedImpulse[limit_index]; | ||
|  | 	btScalar sum = oldNormalImpulse + normalImpulse; | ||
|  | 	m_accumulatedImpulse[limit_index] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum; | ||
|  | 	normalImpulse = m_accumulatedImpulse[limit_index] - oldNormalImpulse; | ||
|  | 
 | ||
|  | 	btVector3 impulse_vector = axis_normal_on_a * normalImpulse; | ||
|  | 	body1.applyImpulse( impulse_vector, rel_pos1); | ||
|  | 	body2.applyImpulse(-impulse_vector, rel_pos2); | ||
|  | 
 | ||
|  | 	 | ||
|  | 
 | ||
|  | 	return normalImpulse; | ||
|  | } | ||
|  | 
 | ||
|  | //////////////////////////// btTranslationalLimitMotor ////////////////////////////////////
 | ||
|  | 
 | ||
|  | void btGeneric6DofConstraint::calculateAngleInfo() | ||
|  | { | ||
|  | 	btMatrix3x3 relative_frame = m_calculatedTransformA.getBasis().inverse()*m_calculatedTransformB.getBasis(); | ||
|  | 	matrixToEulerXYZ(relative_frame,m_calculatedAxisAngleDiff); | ||
|  | 	// in euler angle mode we do not actually constrain the angular velocity
 | ||
|  | 	// along the axes axis[0] and axis[2] (although we do use axis[1]) :
 | ||
|  | 	//
 | ||
|  | 	//    to get			constrain w2-w1 along		...not
 | ||
|  | 	//    ------			---------------------		------
 | ||
|  | 	//    d(angle[0])/dt = 0	ax[1] x ax[2]			ax[0]
 | ||
|  | 	//    d(angle[1])/dt = 0	ax[1]
 | ||
|  | 	//    d(angle[2])/dt = 0	ax[0] x ax[1]			ax[2]
 | ||
|  | 	//
 | ||
|  | 	// constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0.
 | ||
|  | 	// to prove the result for angle[0], write the expression for angle[0] from
 | ||
|  | 	// GetInfo1 then take the derivative. to prove this for angle[2] it is
 | ||
|  | 	// easier to take the euler rate expression for d(angle[2])/dt with respect
 | ||
|  | 	// to the components of w and set that to 0.
 | ||
|  | 	btVector3 axis0 = m_calculatedTransformB.getBasis().getColumn(0); | ||
|  | 	btVector3 axis2 = m_calculatedTransformA.getBasis().getColumn(2); | ||
|  | 
 | ||
|  | 	m_calculatedAxis[1] = axis2.cross(axis0); | ||
|  | 	m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2); | ||
|  | 	m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]); | ||
|  | 
 | ||
|  | 	m_calculatedAxis[0].normalize(); | ||
|  | 	m_calculatedAxis[1].normalize(); | ||
|  | 	m_calculatedAxis[2].normalize(); | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | void btGeneric6DofConstraint::calculateTransforms() | ||
|  | { | ||
|  | 	calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform()); | ||
|  | } | ||
|  | 
 | ||
|  | void btGeneric6DofConstraint::calculateTransforms(const btTransform& transA,const btTransform& transB) | ||
|  | { | ||
|  | 	m_calculatedTransformA = transA * m_frameInA; | ||
|  | 	m_calculatedTransformB = transB * m_frameInB; | ||
|  | 	calculateLinearInfo(); | ||
|  | 	calculateAngleInfo(); | ||
|  | 	if(m_useOffsetForConstraintFrame) | ||
|  | 	{	//  get weight factors depending on masses
 | ||
|  | 		btScalar miA = getRigidBodyA().getInvMass(); | ||
|  | 		btScalar miB = getRigidBodyB().getInvMass(); | ||
|  | 		m_hasStaticBody = (miA < SIMD_EPSILON) || (miB < SIMD_EPSILON); | ||
|  | 		btScalar miS = miA + miB; | ||
|  | 		if(miS > btScalar(0.f)) | ||
|  | 		{ | ||
|  | 			m_factA = miB / miS; | ||
|  | 		} | ||
|  | 		else  | ||
|  | 		{ | ||
|  | 			m_factA = btScalar(0.5f); | ||
|  | 		} | ||
|  | 		m_factB = btScalar(1.0f) - m_factA; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | void btGeneric6DofConstraint::buildLinearJacobian( | ||
|  | 	btJacobianEntry & jacLinear,const btVector3 & normalWorld, | ||
|  | 	const btVector3 & pivotAInW,const btVector3 & pivotBInW) | ||
|  | { | ||
|  | 	new (&jacLinear) btJacobianEntry( | ||
|  |         m_rbA.getCenterOfMassTransform().getBasis().transpose(), | ||
|  |         m_rbB.getCenterOfMassTransform().getBasis().transpose(), | ||
|  |         pivotAInW - m_rbA.getCenterOfMassPosition(), | ||
|  |         pivotBInW - m_rbB.getCenterOfMassPosition(), | ||
|  |         normalWorld, | ||
|  |         m_rbA.getInvInertiaDiagLocal(), | ||
|  |         m_rbA.getInvMass(), | ||
|  |         m_rbB.getInvInertiaDiagLocal(), | ||
|  |         m_rbB.getInvMass()); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | void btGeneric6DofConstraint::buildAngularJacobian( | ||
|  | 	btJacobianEntry & jacAngular,const btVector3 & jointAxisW) | ||
|  | { | ||
|  | 	 new (&jacAngular)	btJacobianEntry(jointAxisW, | ||
|  |                                       m_rbA.getCenterOfMassTransform().getBasis().transpose(), | ||
|  |                                       m_rbB.getCenterOfMassTransform().getBasis().transpose(), | ||
|  |                                       m_rbA.getInvInertiaDiagLocal(), | ||
|  |                                       m_rbB.getInvInertiaDiagLocal()); | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | bool btGeneric6DofConstraint::testAngularLimitMotor(int axis_index) | ||
|  | { | ||
|  | 	btScalar angle = m_calculatedAxisAngleDiff[axis_index]; | ||
|  | 	angle = btAdjustAngleToLimits(angle, m_angularLimits[axis_index].m_loLimit, m_angularLimits[axis_index].m_hiLimit); | ||
|  | 	m_angularLimits[axis_index].m_currentPosition = angle; | ||
|  | 	//test limits
 | ||
|  | 	m_angularLimits[axis_index].testLimitValue(angle); | ||
|  | 	return m_angularLimits[axis_index].needApplyTorques(); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | void btGeneric6DofConstraint::buildJacobian() | ||
|  | { | ||
|  | #ifndef __SPU__
 | ||
|  | 	if (m_useSolveConstraintObsolete) | ||
|  | 	{ | ||
|  | 
 | ||
|  | 		// Clear accumulated impulses for the next simulation step
 | ||
|  | 		m_linearLimits.m_accumulatedImpulse.setValue(btScalar(0.), btScalar(0.), btScalar(0.)); | ||
|  | 		int i; | ||
|  | 		for(i = 0; i < 3; i++) | ||
|  | 		{ | ||
|  | 			m_angularLimits[i].m_accumulatedImpulse = btScalar(0.); | ||
|  | 		} | ||
|  | 		//calculates transform
 | ||
|  | 		calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform()); | ||
|  | 
 | ||
|  | 		//  const btVector3& pivotAInW = m_calculatedTransformA.getOrigin();
 | ||
|  | 		//  const btVector3& pivotBInW = m_calculatedTransformB.getOrigin();
 | ||
|  | 		calcAnchorPos(); | ||
|  | 		btVector3 pivotAInW = m_AnchorPos; | ||
|  | 		btVector3 pivotBInW = m_AnchorPos; | ||
|  | 
 | ||
|  | 		// not used here
 | ||
|  | 		//    btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
 | ||
|  | 		//    btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
 | ||
|  | 
 | ||
|  | 		btVector3 normalWorld; | ||
|  | 		//linear part
 | ||
|  | 		for (i=0;i<3;i++) | ||
|  | 		{ | ||
|  | 			if (m_linearLimits.isLimited(i)) | ||
|  | 			{ | ||
|  | 				if (m_useLinearReferenceFrameA) | ||
|  | 					normalWorld = m_calculatedTransformA.getBasis().getColumn(i); | ||
|  | 				else | ||
|  | 					normalWorld = m_calculatedTransformB.getBasis().getColumn(i); | ||
|  | 
 | ||
|  | 				buildLinearJacobian( | ||
|  | 					m_jacLinear[i],normalWorld , | ||
|  | 					pivotAInW,pivotBInW); | ||
|  | 
 | ||
|  | 			} | ||
|  | 		} | ||
|  | 
 | ||
|  | 		// angular part
 | ||
|  | 		for (i=0;i<3;i++) | ||
|  | 		{ | ||
|  | 			//calculates error angle
 | ||
|  | 			if (testAngularLimitMotor(i)) | ||
|  | 			{ | ||
|  | 				normalWorld = this->getAxis(i); | ||
|  | 				// Create angular atom
 | ||
|  | 				buildAngularJacobian(m_jacAng[i],normalWorld); | ||
|  | 			} | ||
|  | 		} | ||
|  | 
 | ||
|  | 	} | ||
|  | #endif //__SPU__
 | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void btGeneric6DofConstraint::getInfo1 (btConstraintInfo1* info) | ||
|  | { | ||
|  | 	if (m_useSolveConstraintObsolete) | ||
|  | 	{ | ||
|  | 		info->m_numConstraintRows = 0; | ||
|  | 		info->nub = 0; | ||
|  | 	} else | ||
|  | 	{ | ||
|  | 		//prepare constraint
 | ||
|  | 		calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform()); | ||
|  | 		info->m_numConstraintRows = 0; | ||
|  | 		info->nub = 6; | ||
|  | 		int i; | ||
|  | 		//test linear limits
 | ||
|  | 		for(i = 0; i < 3; i++) | ||
|  | 		{ | ||
|  | 			if(m_linearLimits.needApplyForce(i)) | ||
|  | 			{ | ||
|  | 				info->m_numConstraintRows++; | ||
|  | 				info->nub--; | ||
|  | 			} | ||
|  | 		} | ||
|  | 		//test angular limits
 | ||
|  | 		for (i=0;i<3 ;i++ ) | ||
|  | 		{ | ||
|  | 			if(testAngularLimitMotor(i)) | ||
|  | 			{ | ||
|  | 				info->m_numConstraintRows++; | ||
|  | 				info->nub--; | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | void btGeneric6DofConstraint::getInfo1NonVirtual (btConstraintInfo1* info) | ||
|  | { | ||
|  | 	if (m_useSolveConstraintObsolete) | ||
|  | 	{ | ||
|  | 		info->m_numConstraintRows = 0; | ||
|  | 		info->nub = 0; | ||
|  | 	} else | ||
|  | 	{ | ||
|  | 		//pre-allocate all 6
 | ||
|  | 		info->m_numConstraintRows = 6; | ||
|  | 		info->nub = 0; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void btGeneric6DofConstraint::getInfo2 (btConstraintInfo2* info) | ||
|  | { | ||
|  | 	btAssert(!m_useSolveConstraintObsolete); | ||
|  | 
 | ||
|  | 	const btTransform& transA = m_rbA.getCenterOfMassTransform(); | ||
|  | 	const btTransform& transB = m_rbB.getCenterOfMassTransform(); | ||
|  | 	const btVector3& linVelA = m_rbA.getLinearVelocity(); | ||
|  | 	const btVector3& linVelB = m_rbB.getLinearVelocity(); | ||
|  | 	const btVector3& angVelA = m_rbA.getAngularVelocity(); | ||
|  | 	const btVector3& angVelB = m_rbB.getAngularVelocity(); | ||
|  | 
 | ||
|  | 	if(m_useOffsetForConstraintFrame) | ||
|  | 	{ // for stability better to solve angular limits first
 | ||
|  | 		int row = setAngularLimits(info, 0,transA,transB,linVelA,linVelB,angVelA,angVelB); | ||
|  | 		setLinearLimits(info, row, transA,transB,linVelA,linVelB,angVelA,angVelB); | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ // leave old version for compatibility
 | ||
|  | 		int row = setLinearLimits(info, 0, transA,transB,linVelA,linVelB,angVelA,angVelB); | ||
|  | 		setAngularLimits(info, row,transA,transB,linVelA,linVelB,angVelA,angVelB); | ||
|  | 	} | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void btGeneric6DofConstraint::getInfo2NonVirtual (btConstraintInfo2* info, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB) | ||
|  | { | ||
|  | 	 | ||
|  | 	btAssert(!m_useSolveConstraintObsolete); | ||
|  | 	//prepare constraint
 | ||
|  | 	calculateTransforms(transA,transB); | ||
|  | 
 | ||
|  | 	int i; | ||
|  | 	for (i=0;i<3 ;i++ ) | ||
|  | 	{ | ||
|  | 		testAngularLimitMotor(i); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if(m_useOffsetForConstraintFrame) | ||
|  | 	{ // for stability better to solve angular limits first
 | ||
|  | 		int row = setAngularLimits(info, 0,transA,transB,linVelA,linVelB,angVelA,angVelB); | ||
|  | 		setLinearLimits(info, row, transA,transB,linVelA,linVelB,angVelA,angVelB); | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ // leave old version for compatibility
 | ||
|  | 		int row = setLinearLimits(info, 0, transA,transB,linVelA,linVelB,angVelA,angVelB); | ||
|  | 		setAngularLimits(info, row,transA,transB,linVelA,linVelB,angVelA,angVelB); | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | int btGeneric6DofConstraint::setLinearLimits(btConstraintInfo2* info, int row, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB) | ||
|  | { | ||
|  | //	int row = 0;
 | ||
|  | 	//solve linear limits
 | ||
|  | 	btRotationalLimitMotor limot; | ||
|  | 	for (int i=0;i<3 ;i++ ) | ||
|  | 	{ | ||
|  | 		if(m_linearLimits.needApplyForce(i)) | ||
|  | 		{ // re-use rotational motor code
 | ||
|  | 			limot.m_bounce = btScalar(0.f); | ||
|  | 			limot.m_currentLimit = m_linearLimits.m_currentLimit[i]; | ||
|  | 			limot.m_currentPosition = m_linearLimits.m_currentLinearDiff[i]; | ||
|  | 			limot.m_currentLimitError  = m_linearLimits.m_currentLimitError[i]; | ||
|  | 			limot.m_damping  = m_linearLimits.m_damping; | ||
|  | 			limot.m_enableMotor  = m_linearLimits.m_enableMotor[i]; | ||
|  | 			limot.m_hiLimit  = m_linearLimits.m_upperLimit[i]; | ||
|  | 			limot.m_limitSoftness  = m_linearLimits.m_limitSoftness; | ||
|  | 			limot.m_loLimit  = m_linearLimits.m_lowerLimit[i]; | ||
|  | 			limot.m_maxLimitForce  = btScalar(0.f); | ||
|  | 			limot.m_maxMotorForce  = m_linearLimits.m_maxMotorForce[i]; | ||
|  | 			limot.m_targetVelocity  = m_linearLimits.m_targetVelocity[i]; | ||
|  | 			btVector3 axis = m_calculatedTransformA.getBasis().getColumn(i); | ||
|  | 			int flags = m_flags >> (i * BT_6DOF_FLAGS_AXIS_SHIFT); | ||
|  | 			limot.m_normalCFM	= (flags & BT_6DOF_FLAGS_CFM_NORM) ? m_linearLimits.m_normalCFM[i] : info->cfm[0]; | ||
|  | 			limot.m_stopCFM		= (flags & BT_6DOF_FLAGS_CFM_STOP) ? m_linearLimits.m_stopCFM[i] : info->cfm[0]; | ||
|  | 			limot.m_stopERP		= (flags & BT_6DOF_FLAGS_ERP_STOP) ? m_linearLimits.m_stopERP[i] : info->erp; | ||
|  | 			if(m_useOffsetForConstraintFrame) | ||
|  | 			{ | ||
|  | 				int indx1 = (i + 1) % 3; | ||
|  | 				int indx2 = (i + 2) % 3; | ||
|  | 				int rotAllowed = 1; // rotations around orthos to current axis
 | ||
|  | 				if(m_angularLimits[indx1].m_currentLimit && m_angularLimits[indx2].m_currentLimit) | ||
|  | 				{ | ||
|  | 					rotAllowed = 0; | ||
|  | 				} | ||
|  | 				row += get_limit_motor_info2(&limot, transA,transB,linVelA,linVelB,angVelA,angVelB, info, row, axis, 0, rotAllowed); | ||
|  | 			} | ||
|  | 			else | ||
|  | 			{ | ||
|  | 				row += get_limit_motor_info2(&limot, transA,transB,linVelA,linVelB,angVelA,angVelB, info, row, axis, 0); | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 	return row; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | int btGeneric6DofConstraint::setAngularLimits(btConstraintInfo2 *info, int row_offset, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB) | ||
|  | { | ||
|  | 	btGeneric6DofConstraint * d6constraint = this; | ||
|  | 	int row = row_offset; | ||
|  | 	//solve angular limits
 | ||
|  | 	for (int i=0;i<3 ;i++ ) | ||
|  | 	{ | ||
|  | 		if(d6constraint->getRotationalLimitMotor(i)->needApplyTorques()) | ||
|  | 		{ | ||
|  | 			btVector3 axis = d6constraint->getAxis(i); | ||
|  | 			int flags = m_flags >> ((i + 3) * BT_6DOF_FLAGS_AXIS_SHIFT); | ||
|  | 			if(!(flags & BT_6DOF_FLAGS_CFM_NORM)) | ||
|  | 			{ | ||
|  | 				m_angularLimits[i].m_normalCFM = info->cfm[0]; | ||
|  | 			} | ||
|  | 			if(!(flags & BT_6DOF_FLAGS_CFM_STOP)) | ||
|  | 			{ | ||
|  | 				m_angularLimits[i].m_stopCFM = info->cfm[0]; | ||
|  | 			} | ||
|  | 			if(!(flags & BT_6DOF_FLAGS_ERP_STOP)) | ||
|  | 			{ | ||
|  | 				m_angularLimits[i].m_stopERP = info->erp; | ||
|  | 			} | ||
|  | 			row += get_limit_motor_info2(d6constraint->getRotationalLimitMotor(i), | ||
|  | 												transA,transB,linVelA,linVelB,angVelA,angVelB, info,row,axis,1); | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return row; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | void	btGeneric6DofConstraint::updateRHS(btScalar	timeStep) | ||
|  | { | ||
|  | 	(void)timeStep; | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void btGeneric6DofConstraint::setFrames(const btTransform& frameA, const btTransform& frameB) | ||
|  | { | ||
|  | 	m_frameInA = frameA; | ||
|  | 	m_frameInB = frameB; | ||
|  | 	buildJacobian(); | ||
|  | 	calculateTransforms(); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | btVector3 btGeneric6DofConstraint::getAxis(int axis_index) const | ||
|  | { | ||
|  | 	return m_calculatedAxis[axis_index]; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | btScalar	btGeneric6DofConstraint::getRelativePivotPosition(int axisIndex) const | ||
|  | { | ||
|  | 	return m_calculatedLinearDiff[axisIndex]; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | btScalar btGeneric6DofConstraint::getAngle(int axisIndex) const | ||
|  | { | ||
|  | 	return m_calculatedAxisAngleDiff[axisIndex]; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | void btGeneric6DofConstraint::calcAnchorPos(void) | ||
|  | { | ||
|  | 	btScalar imA = m_rbA.getInvMass(); | ||
|  | 	btScalar imB = m_rbB.getInvMass(); | ||
|  | 	btScalar weight; | ||
|  | 	if(imB == btScalar(0.0)) | ||
|  | 	{ | ||
|  | 		weight = btScalar(1.0); | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		weight = imA / (imA + imB); | ||
|  | 	} | ||
|  | 	const btVector3& pA = m_calculatedTransformA.getOrigin(); | ||
|  | 	const btVector3& pB = m_calculatedTransformB.getOrigin(); | ||
|  | 	m_AnchorPos = pA * weight + pB * (btScalar(1.0) - weight); | ||
|  | 	return; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | void btGeneric6DofConstraint::calculateLinearInfo() | ||
|  | { | ||
|  | 	m_calculatedLinearDiff = m_calculatedTransformB.getOrigin() - m_calculatedTransformA.getOrigin(); | ||
|  | 	m_calculatedLinearDiff = m_calculatedTransformA.getBasis().inverse() * m_calculatedLinearDiff; | ||
|  | 	for(int i = 0; i < 3; i++) | ||
|  | 	{ | ||
|  | 		m_linearLimits.m_currentLinearDiff[i] = m_calculatedLinearDiff[i]; | ||
|  | 		m_linearLimits.testLimitValue(i, m_calculatedLinearDiff[i]); | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | int btGeneric6DofConstraint::get_limit_motor_info2( | ||
|  | 	btRotationalLimitMotor * limot, | ||
|  | 	const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB, | ||
|  | 	btConstraintInfo2 *info, int row, btVector3& ax1, int rotational,int rotAllowed) | ||
|  | { | ||
|  |     int srow = row * info->rowskip; | ||
|  |     bool powered = limot->m_enableMotor; | ||
|  |     int limit = limot->m_currentLimit; | ||
|  |     if (powered || limit) | ||
|  |     {   // if the joint is powered, or has joint limits, add in the extra row
 | ||
|  |         btScalar *J1 = rotational ? info->m_J1angularAxis : info->m_J1linearAxis; | ||
|  |         btScalar *J2 = rotational ? info->m_J2angularAxis : info->m_J2linearAxis; | ||
|  |         J1[srow+0] = ax1[0]; | ||
|  |         J1[srow+1] = ax1[1]; | ||
|  |         J1[srow+2] = ax1[2]; | ||
|  | 
 | ||
|  |         J2[srow+0] = -ax1[0]; | ||
|  |         J2[srow+1] = -ax1[1]; | ||
|  |         J2[srow+2] = -ax1[2]; | ||
|  | 
 | ||
|  | 		if((!rotational)) | ||
|  |         { | ||
|  | 			if (m_useOffsetForConstraintFrame) | ||
|  | 			{ | ||
|  | 				btVector3 tmpA, tmpB, relA, relB; | ||
|  | 				// get vector from bodyB to frameB in WCS
 | ||
|  | 				relB = m_calculatedTransformB.getOrigin() - transB.getOrigin(); | ||
|  | 				// get its projection to constraint axis
 | ||
|  | 				btVector3 projB = ax1 * relB.dot(ax1); | ||
|  | 				// get vector directed from bodyB to constraint axis (and orthogonal to it)
 | ||
|  | 				btVector3 orthoB = relB - projB; | ||
|  | 				// same for bodyA
 | ||
|  | 				relA = m_calculatedTransformA.getOrigin() - transA.getOrigin(); | ||
|  | 				btVector3 projA = ax1 * relA.dot(ax1); | ||
|  | 				btVector3 orthoA = relA - projA; | ||
|  | 				// get desired offset between frames A and B along constraint axis
 | ||
|  | 				btScalar desiredOffs = limot->m_currentPosition - limot->m_currentLimitError; | ||
|  | 				// desired vector from projection of center of bodyA to projection of center of bodyB to constraint axis
 | ||
|  | 				btVector3 totalDist = projA + ax1 * desiredOffs - projB; | ||
|  | 				// get offset vectors relA and relB
 | ||
|  | 				relA = orthoA + totalDist * m_factA; | ||
|  | 				relB = orthoB - totalDist * m_factB; | ||
|  | 				tmpA = relA.cross(ax1); | ||
|  | 				tmpB = relB.cross(ax1); | ||
|  | 				if(m_hasStaticBody && (!rotAllowed)) | ||
|  | 				{ | ||
|  | 					tmpA *= m_factA; | ||
|  | 					tmpB *= m_factB; | ||
|  | 				} | ||
|  | 				int i; | ||
|  | 				for (i=0; i<3; i++) info->m_J1angularAxis[srow+i] = tmpA[i]; | ||
|  | 				for (i=0; i<3; i++) info->m_J2angularAxis[srow+i] = -tmpB[i]; | ||
|  | 			} else | ||
|  | 			{ | ||
|  | 				btVector3 ltd;	// Linear Torque Decoupling vector
 | ||
|  | 				btVector3 c = m_calculatedTransformB.getOrigin() - transA.getOrigin(); | ||
|  | 				ltd = c.cross(ax1); | ||
|  | 				info->m_J1angularAxis[srow+0] = ltd[0]; | ||
|  | 				info->m_J1angularAxis[srow+1] = ltd[1]; | ||
|  | 				info->m_J1angularAxis[srow+2] = ltd[2]; | ||
|  | 
 | ||
|  | 				c = m_calculatedTransformB.getOrigin() - transB.getOrigin(); | ||
|  | 				ltd = -c.cross(ax1); | ||
|  | 				info->m_J2angularAxis[srow+0] = ltd[0]; | ||
|  | 				info->m_J2angularAxis[srow+1] = ltd[1]; | ||
|  | 				info->m_J2angularAxis[srow+2] = ltd[2]; | ||
|  | 			} | ||
|  |         } | ||
|  |         // if we're limited low and high simultaneously, the joint motor is
 | ||
|  |         // ineffective
 | ||
|  |         if (limit && (limot->m_loLimit == limot->m_hiLimit)) powered = false; | ||
|  |         info->m_constraintError[srow] = btScalar(0.f); | ||
|  |         if (powered) | ||
|  |         { | ||
|  | 			info->cfm[srow] = limot->m_normalCFM; | ||
|  |             if(!limit) | ||
|  |             { | ||
|  | 				btScalar tag_vel = rotational ? limot->m_targetVelocity : -limot->m_targetVelocity; | ||
|  | 
 | ||
|  | 				btScalar mot_fact = getMotorFactor(	limot->m_currentPosition,  | ||
|  | 													limot->m_loLimit, | ||
|  | 													limot->m_hiLimit,  | ||
|  | 													tag_vel,  | ||
|  | 													info->fps * limot->m_stopERP); | ||
|  | 				info->m_constraintError[srow] += mot_fact * limot->m_targetVelocity; | ||
|  |                 info->m_lowerLimit[srow] = -limot->m_maxMotorForce; | ||
|  |                 info->m_upperLimit[srow] = limot->m_maxMotorForce; | ||
|  |             } | ||
|  |         } | ||
|  |         if(limit) | ||
|  |         { | ||
|  |             btScalar k = info->fps * limot->m_stopERP; | ||
|  | 			if(!rotational) | ||
|  | 			{ | ||
|  | 				info->m_constraintError[srow] += k * limot->m_currentLimitError; | ||
|  | 			} | ||
|  | 			else | ||
|  | 			{ | ||
|  | 				info->m_constraintError[srow] += -k * limot->m_currentLimitError; | ||
|  | 			} | ||
|  | 			info->cfm[srow] = limot->m_stopCFM; | ||
|  |             if (limot->m_loLimit == limot->m_hiLimit) | ||
|  |             {   // limited low and high simultaneously
 | ||
|  |                 info->m_lowerLimit[srow] = -SIMD_INFINITY; | ||
|  |                 info->m_upperLimit[srow] = SIMD_INFINITY; | ||
|  |             } | ||
|  |             else | ||
|  |             { | ||
|  |                 if (limit == 1) | ||
|  |                 { | ||
|  |                     info->m_lowerLimit[srow] = 0; | ||
|  |                     info->m_upperLimit[srow] = SIMD_INFINITY; | ||
|  |                 } | ||
|  |                 else | ||
|  |                 { | ||
|  |                     info->m_lowerLimit[srow] = -SIMD_INFINITY; | ||
|  |                     info->m_upperLimit[srow] = 0; | ||
|  |                 } | ||
|  |                 // deal with bounce
 | ||
|  |                 if (limot->m_bounce > 0) | ||
|  |                 { | ||
|  |                     // calculate joint velocity
 | ||
|  |                     btScalar vel; | ||
|  |                     if (rotational) | ||
|  |                     { | ||
|  |                         vel = angVelA.dot(ax1); | ||
|  | //make sure that if no body -> angVelB == zero vec
 | ||
|  | //                        if (body1)
 | ||
|  |                             vel -= angVelB.dot(ax1); | ||
|  |                     } | ||
|  |                     else | ||
|  |                     { | ||
|  |                         vel = linVelA.dot(ax1); | ||
|  | //make sure that if no body -> angVelB == zero vec
 | ||
|  | //                        if (body1)
 | ||
|  |                             vel -= linVelB.dot(ax1); | ||
|  |                     } | ||
|  |                     // only apply bounce if the velocity is incoming, and if the
 | ||
|  |                     // resulting c[] exceeds what we already have.
 | ||
|  |                     if (limit == 1) | ||
|  |                     { | ||
|  |                         if (vel < 0) | ||
|  |                         { | ||
|  |                             btScalar newc = -limot->m_bounce* vel; | ||
|  |                             if (newc > info->m_constraintError[srow])  | ||
|  | 								info->m_constraintError[srow] = newc; | ||
|  |                         } | ||
|  |                     } | ||
|  |                     else | ||
|  |                     { | ||
|  |                         if (vel > 0) | ||
|  |                         { | ||
|  |                             btScalar newc = -limot->m_bounce * vel; | ||
|  |                             if (newc < info->m_constraintError[srow])  | ||
|  | 								info->m_constraintError[srow] = newc; | ||
|  |                         } | ||
|  |                     } | ||
|  |                 } | ||
|  |             } | ||
|  |         } | ||
|  |         return 1; | ||
|  |     } | ||
|  |     else return 0; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5). 
 | ||
|  | 	///If no axis is provided, it uses the default axis for this constraint.
 | ||
|  | void btGeneric6DofConstraint::setParam(int num, btScalar value, int axis) | ||
|  | { | ||
|  | 	if((axis >= 0) && (axis < 3)) | ||
|  | 	{ | ||
|  | 		switch(num) | ||
|  | 		{ | ||
|  | 			case BT_CONSTRAINT_STOP_ERP :  | ||
|  | 				m_linearLimits.m_stopERP[axis] = value; | ||
|  | 				m_flags |= BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT); | ||
|  | 				break; | ||
|  | 			case BT_CONSTRAINT_STOP_CFM :  | ||
|  | 				m_linearLimits.m_stopCFM[axis] = value; | ||
|  | 				m_flags |= BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT); | ||
|  | 				break; | ||
|  | 			case BT_CONSTRAINT_CFM :  | ||
|  | 				m_linearLimits.m_normalCFM[axis] = value; | ||
|  | 				m_flags |= BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT); | ||
|  | 				break; | ||
|  | 			default :  | ||
|  | 				btAssertConstrParams(0); | ||
|  | 		} | ||
|  | 	} | ||
|  | 	else if((axis >=3) && (axis < 6)) | ||
|  | 	{ | ||
|  | 		switch(num) | ||
|  | 		{ | ||
|  | 			case BT_CONSTRAINT_STOP_ERP :  | ||
|  | 				m_angularLimits[axis - 3].m_stopERP = value; | ||
|  | 				m_flags |= BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT); | ||
|  | 				break; | ||
|  | 			case BT_CONSTRAINT_STOP_CFM :  | ||
|  | 				m_angularLimits[axis - 3].m_stopCFM = value; | ||
|  | 				m_flags |= BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT); | ||
|  | 				break; | ||
|  | 			case BT_CONSTRAINT_CFM :  | ||
|  | 				m_angularLimits[axis - 3].m_normalCFM = value; | ||
|  | 				m_flags |= BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT); | ||
|  | 				break; | ||
|  | 			default :  | ||
|  | 				btAssertConstrParams(0); | ||
|  | 		} | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		btAssertConstrParams(0); | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | 	///return the local value of parameter
 | ||
|  | btScalar btGeneric6DofConstraint::getParam(int num, int axis) const  | ||
|  | { | ||
|  | 	btScalar retVal = 0; | ||
|  | 	if((axis >= 0) && (axis < 3)) | ||
|  | 	{ | ||
|  | 		switch(num) | ||
|  | 		{ | ||
|  | 			case BT_CONSTRAINT_STOP_ERP :  | ||
|  | 				btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT))); | ||
|  | 				retVal = m_linearLimits.m_stopERP[axis]; | ||
|  | 				break; | ||
|  | 			case BT_CONSTRAINT_STOP_CFM :  | ||
|  | 				btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT))); | ||
|  | 				retVal = m_linearLimits.m_stopCFM[axis]; | ||
|  | 				break; | ||
|  | 			case BT_CONSTRAINT_CFM :  | ||
|  | 				btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT))); | ||
|  | 				retVal = m_linearLimits.m_normalCFM[axis]; | ||
|  | 				break; | ||
|  | 			default :  | ||
|  | 				btAssertConstrParams(0); | ||
|  | 		} | ||
|  | 	} | ||
|  | 	else if((axis >=3) && (axis < 6)) | ||
|  | 	{ | ||
|  | 		switch(num) | ||
|  | 		{ | ||
|  | 			case BT_CONSTRAINT_STOP_ERP :  | ||
|  | 				btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT))); | ||
|  | 				retVal = m_angularLimits[axis - 3].m_stopERP; | ||
|  | 				break; | ||
|  | 			case BT_CONSTRAINT_STOP_CFM :  | ||
|  | 				btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT))); | ||
|  | 				retVal = m_angularLimits[axis - 3].m_stopCFM; | ||
|  | 				break; | ||
|  | 			case BT_CONSTRAINT_CFM :  | ||
|  | 				btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT))); | ||
|  | 				retVal = m_angularLimits[axis - 3].m_normalCFM; | ||
|  | 				break; | ||
|  | 			default :  | ||
|  | 				btAssertConstrParams(0); | ||
|  | 		} | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		btAssertConstrParams(0); | ||
|  | 	} | ||
|  | 	return retVal; | ||
|  | } | ||
|  | 
 | ||
|  |   | ||
|  | 
 | ||
|  | void btGeneric6DofConstraint::setAxis(const btVector3& axis1,const btVector3& axis2) | ||
|  | { | ||
|  | 	btVector3 zAxis = axis1.normalized(); | ||
|  | 	btVector3 yAxis = axis2.normalized(); | ||
|  | 	btVector3 xAxis = yAxis.cross(zAxis); // we want right coordinate system
 | ||
|  | 	 | ||
|  | 	btTransform frameInW; | ||
|  | 	frameInW.setIdentity(); | ||
|  | 	frameInW.getBasis().setValue(	xAxis[0], yAxis[0], zAxis[0],	 | ||
|  | 	                                xAxis[1], yAxis[1], zAxis[1], | ||
|  | 	                               xAxis[2], yAxis[2], zAxis[2]); | ||
|  | 	 | ||
|  | 	// now get constraint frame in local coordinate systems
 | ||
|  | 	m_frameInA = m_rbA.getCenterOfMassTransform().inverse() * frameInW; | ||
|  | 	m_frameInB = m_rbB.getCenterOfMassTransform().inverse() * frameInW; | ||
|  | 	 | ||
|  | 	calculateTransforms(); | ||
|  | } |