307 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			307 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|  | /*
 | ||
|  | Bullet Continuous Collision Detection and Physics Library | ||
|  | Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | ||
|  | 
 | ||
|  | This software is provided 'as-is', without any express or implied warranty. | ||
|  | In no event will the authors be held liable for any damages arising from the use of this software. | ||
|  | Permission is granted to anyone to use this software for any purpose,  | ||
|  | including commercial applications, and to alter it and redistribute it freely,  | ||
|  | subject to the following restrictions: | ||
|  | 
 | ||
|  | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | ||
|  | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | ||
|  | 3. This notice may not be removed or altered from any source distribution. | ||
|  | */ | ||
|  | 
 | ||
|  | #ifndef BT_SOLVER_BODY_H
 | ||
|  | #define BT_SOLVER_BODY_H
 | ||
|  | 
 | ||
|  | class	btRigidBody; | ||
|  | #include "LinearMath/btVector3.h"
 | ||
|  | #include "LinearMath/btMatrix3x3.h"
 | ||
|  | 
 | ||
|  | #include "LinearMath/btAlignedAllocator.h"
 | ||
|  | #include "LinearMath/btTransformUtil.h"
 | ||
|  | 
 | ||
|  | ///Until we get other contributions, only use SIMD on Windows, when using Visual Studio 2008 or later, and not double precision
 | ||
|  | #ifdef BT_USE_SSE
 | ||
|  | #define USE_SIMD 1
 | ||
|  | #endif //
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #ifdef USE_SIMD
 | ||
|  | 
 | ||
|  | struct	btSimdScalar | ||
|  | { | ||
|  | 	SIMD_FORCE_INLINE	btSimdScalar() | ||
|  | 	{ | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	SIMD_FORCE_INLINE	btSimdScalar(float	fl) | ||
|  | 	:m_vec128 (_mm_set1_ps(fl)) | ||
|  | 	{ | ||
|  | 	} | ||
|  | 
 | ||
|  | 	SIMD_FORCE_INLINE	btSimdScalar(__m128 v128) | ||
|  | 		:m_vec128(v128) | ||
|  | 	{ | ||
|  | 	} | ||
|  | 	union | ||
|  | 	{ | ||
|  | 		__m128		m_vec128; | ||
|  | 		float		m_floats[4]; | ||
|  | 		int			m_ints[4]; | ||
|  | 		btScalar	m_unusedPadding; | ||
|  | 	}; | ||
|  | 	SIMD_FORCE_INLINE	__m128	get128() | ||
|  | 	{ | ||
|  | 		return m_vec128; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	SIMD_FORCE_INLINE	const __m128	get128() const | ||
|  | 	{ | ||
|  | 		return m_vec128; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	SIMD_FORCE_INLINE	void	set128(__m128 v128) | ||
|  | 	{ | ||
|  | 		m_vec128 = v128; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	SIMD_FORCE_INLINE	operator       __m128()        | ||
|  | 	{  | ||
|  | 		return m_vec128;  | ||
|  | 	} | ||
|  | 	SIMD_FORCE_INLINE	operator const __m128() const  | ||
|  | 	{  | ||
|  | 		return m_vec128;  | ||
|  | 	} | ||
|  | 	 | ||
|  | 	SIMD_FORCE_INLINE	operator float() const  | ||
|  | 	{  | ||
|  | 		return m_floats[0];  | ||
|  | 	} | ||
|  | 
 | ||
|  | }; | ||
|  | 
 | ||
|  | ///@brief Return the elementwise product of two btSimdScalar
 | ||
|  | SIMD_FORCE_INLINE btSimdScalar  | ||
|  | operator*(const btSimdScalar& v1, const btSimdScalar& v2)  | ||
|  | { | ||
|  | 	return btSimdScalar(_mm_mul_ps(v1.get128(),v2.get128())); | ||
|  | } | ||
|  | 
 | ||
|  | ///@brief Return the elementwise product of two btSimdScalar
 | ||
|  | SIMD_FORCE_INLINE btSimdScalar  | ||
|  | operator+(const btSimdScalar& v1, const btSimdScalar& v2)  | ||
|  | { | ||
|  | 	return btSimdScalar(_mm_add_ps(v1.get128(),v2.get128())); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | #else
 | ||
|  | #define btSimdScalar btScalar
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | ///The btSolverBody is an internal datastructure for the constraint solver. Only necessary data is packed to increase cache coherence/performance.
 | ||
|  | ATTRIBUTE_ALIGNED16 (struct)	btSolverBody | ||
|  | { | ||
|  | 	BT_DECLARE_ALIGNED_ALLOCATOR(); | ||
|  | 	btTransform		m_worldTransform; | ||
|  | 	btVector3		m_deltaLinearVelocity; | ||
|  | 	btVector3		m_deltaAngularVelocity; | ||
|  | 	btVector3		m_angularFactor; | ||
|  | 	btVector3		m_linearFactor; | ||
|  | 	btVector3		m_invMass; | ||
|  | 	btVector3		m_pushVelocity; | ||
|  | 	btVector3		m_turnVelocity; | ||
|  | 	btVector3		m_linearVelocity; | ||
|  | 	btVector3		m_angularVelocity; | ||
|  | 	btVector3		m_externalForceImpulse; | ||
|  | 	btVector3		m_externalTorqueImpulse; | ||
|  | 
 | ||
|  | 	btRigidBody*	m_originalBody; | ||
|  | 	void	setWorldTransform(const btTransform& worldTransform) | ||
|  | 	{ | ||
|  | 		m_worldTransform = worldTransform; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	const btTransform& getWorldTransform() const | ||
|  | 	{ | ||
|  | 		return m_worldTransform; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	 | ||
|  | 
 | ||
|  | 	SIMD_FORCE_INLINE void	getVelocityInLocalPointNoDelta(const btVector3& rel_pos, btVector3& velocity ) const | ||
|  | 	{ | ||
|  | 		if (m_originalBody) | ||
|  | 			velocity = m_linearVelocity + m_externalForceImpulse + (m_angularVelocity+m_externalTorqueImpulse).cross(rel_pos); | ||
|  | 		else | ||
|  | 			velocity.setValue(0,0,0); | ||
|  | 	} | ||
|  | 
 | ||
|  | 
 | ||
|  | 	SIMD_FORCE_INLINE void	getVelocityInLocalPointObsolete(const btVector3& rel_pos, btVector3& velocity ) const | ||
|  | 	{ | ||
|  | 		if (m_originalBody) | ||
|  | 			velocity = m_linearVelocity+m_deltaLinearVelocity + (m_angularVelocity+m_deltaAngularVelocity).cross(rel_pos); | ||
|  | 		else | ||
|  | 			velocity.setValue(0,0,0); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	SIMD_FORCE_INLINE void	getAngularVelocity(btVector3& angVel) const | ||
|  | 	{ | ||
|  | 		if (m_originalBody) | ||
|  | 			angVel =m_angularVelocity+m_deltaAngularVelocity; | ||
|  | 		else | ||
|  | 			angVel.setValue(0,0,0); | ||
|  | 	} | ||
|  | 
 | ||
|  | 
 | ||
|  | 	//Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
 | ||
|  | 	SIMD_FORCE_INLINE void applyImpulse(const btVector3& linearComponent, const btVector3& angularComponent,const btScalar impulseMagnitude) | ||
|  | 	{ | ||
|  | 		if (m_originalBody) | ||
|  | 		{ | ||
|  | 			m_deltaLinearVelocity += linearComponent*impulseMagnitude*m_linearFactor; | ||
|  | 			m_deltaAngularVelocity += angularComponent*(impulseMagnitude*m_angularFactor); | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	SIMD_FORCE_INLINE void internalApplyPushImpulse(const btVector3& linearComponent, const btVector3& angularComponent,btScalar impulseMagnitude) | ||
|  | 	{ | ||
|  | 		if (m_originalBody) | ||
|  | 		{ | ||
|  | 			m_pushVelocity += linearComponent*impulseMagnitude*m_linearFactor; | ||
|  | 			m_turnVelocity += angularComponent*(impulseMagnitude*m_angularFactor); | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	const btVector3& getDeltaLinearVelocity() const | ||
|  | 	{ | ||
|  | 		return m_deltaLinearVelocity; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	const btVector3& getDeltaAngularVelocity() const | ||
|  | 	{ | ||
|  | 		return m_deltaAngularVelocity; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	const btVector3& getPushVelocity() const  | ||
|  | 	{ | ||
|  | 		return m_pushVelocity; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	const btVector3& getTurnVelocity() const  | ||
|  | 	{ | ||
|  | 		return m_turnVelocity; | ||
|  | 	} | ||
|  | 
 | ||
|  | 
 | ||
|  | 	////////////////////////////////////////////////
 | ||
|  | 	///some internal methods, don't use them
 | ||
|  | 		 | ||
|  | 	btVector3& internalGetDeltaLinearVelocity() | ||
|  | 	{ | ||
|  | 		return m_deltaLinearVelocity; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	btVector3& internalGetDeltaAngularVelocity() | ||
|  | 	{ | ||
|  | 		return m_deltaAngularVelocity; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	const btVector3& internalGetAngularFactor() const | ||
|  | 	{ | ||
|  | 		return m_angularFactor; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	const btVector3& internalGetInvMass() const | ||
|  | 	{ | ||
|  | 		return m_invMass; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	void internalSetInvMass(const btVector3& invMass) | ||
|  | 	{ | ||
|  | 		m_invMass = invMass; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	btVector3& internalGetPushVelocity() | ||
|  | 	{ | ||
|  | 		return m_pushVelocity; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	btVector3& internalGetTurnVelocity() | ||
|  | 	{ | ||
|  | 		return m_turnVelocity; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	SIMD_FORCE_INLINE void	internalGetVelocityInLocalPointObsolete(const btVector3& rel_pos, btVector3& velocity ) const | ||
|  | 	{ | ||
|  | 		velocity = m_linearVelocity+m_deltaLinearVelocity + (m_angularVelocity+m_deltaAngularVelocity).cross(rel_pos); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	SIMD_FORCE_INLINE void	internalGetAngularVelocity(btVector3& angVel) const | ||
|  | 	{ | ||
|  | 		angVel = m_angularVelocity+m_deltaAngularVelocity; | ||
|  | 	} | ||
|  | 
 | ||
|  | 
 | ||
|  | 	//Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
 | ||
|  | 	SIMD_FORCE_INLINE void internalApplyImpulse(const btVector3& linearComponent, const btVector3& angularComponent,const btScalar impulseMagnitude) | ||
|  | 	{ | ||
|  | 		if (m_originalBody) | ||
|  | 		{ | ||
|  | 			m_deltaLinearVelocity += linearComponent*impulseMagnitude*m_linearFactor; | ||
|  | 			m_deltaAngularVelocity += angularComponent*(impulseMagnitude*m_angularFactor); | ||
|  | 		} | ||
|  | 	} | ||
|  | 		 | ||
|  | 	 | ||
|  | 	 | ||
|  | 
 | ||
|  | 	void	writebackVelocity() | ||
|  | 	{ | ||
|  | 		if (m_originalBody) | ||
|  | 		{ | ||
|  | 			m_linearVelocity +=m_deltaLinearVelocity; | ||
|  | 			m_angularVelocity += m_deltaAngularVelocity; | ||
|  | 			 | ||
|  | 			//m_originalBody->setCompanionId(-1);
 | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 
 | ||
|  | 	void	writebackVelocityAndTransform(btScalar timeStep, btScalar splitImpulseTurnErp) | ||
|  | 	{ | ||
|  |         (void) timeStep; | ||
|  | 		if (m_originalBody) | ||
|  | 		{ | ||
|  | 			m_linearVelocity += m_deltaLinearVelocity; | ||
|  | 			m_angularVelocity += m_deltaAngularVelocity; | ||
|  | 			 | ||
|  | 			//correct the position/orientation based on push/turn recovery
 | ||
|  | 			btTransform newTransform; | ||
|  | 			if (m_pushVelocity[0]!=0.f || m_pushVelocity[1]!=0 || m_pushVelocity[2]!=0 || m_turnVelocity[0]!=0.f || m_turnVelocity[1]!=0 || m_turnVelocity[2]!=0) | ||
|  | 			{ | ||
|  | 			//	btQuaternion orn = m_worldTransform.getRotation();
 | ||
|  | 				btTransformUtil::integrateTransform(m_worldTransform,m_pushVelocity,m_turnVelocity*splitImpulseTurnErp,timeStep,newTransform); | ||
|  | 				m_worldTransform = newTransform; | ||
|  | 			} | ||
|  | 			//m_worldTransform.setRotation(orn);
 | ||
|  | 			//m_originalBody->setCompanionId(-1);
 | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 
 | ||
|  | 
 | ||
|  | }; | ||
|  | 
 | ||
|  | #endif //BT_SOLVER_BODY_H
 | ||
|  | 
 | ||
|  | 
 |