500 lines
13 KiB
Haxe
500 lines
13 KiB
Haxe
|
package iron.math;
|
|||
|
|
|||
|
import kha.FastFloat;
|
|||
|
|
|||
|
class Quat {
|
|||
|
|
|||
|
public var x: FastFloat;
|
|||
|
public var y: FastFloat;
|
|||
|
public var z: FastFloat;
|
|||
|
public var w: FastFloat;
|
|||
|
|
|||
|
static var helpVec0 = new Vec4();
|
|||
|
static var helpVec1 = new Vec4();
|
|||
|
static var helpVec2 = new Vec4();
|
|||
|
static var helpMat = Mat4.identity();
|
|||
|
static var xAxis = Vec4.xAxis();
|
|||
|
static var yAxis = Vec4.yAxis();
|
|||
|
|
|||
|
static inline var SQRT2: FastFloat = 1.4142135623730951;
|
|||
|
|
|||
|
public inline function new(x: FastFloat = 0.0, y: FastFloat = 0.0, z: FastFloat = 0.0, w: FastFloat = 1.0) {
|
|||
|
this.x = x;
|
|||
|
this.y = y;
|
|||
|
this.z = z;
|
|||
|
this.w = w;
|
|||
|
}
|
|||
|
|
|||
|
public inline function set(x: FastFloat, y: FastFloat, z: FastFloat, w: FastFloat): Quat {
|
|||
|
this.x = x;
|
|||
|
this.y = y;
|
|||
|
this.z = z;
|
|||
|
this.w = w;
|
|||
|
return this;
|
|||
|
}
|
|||
|
|
|||
|
public inline function add(q: Quat): Quat {
|
|||
|
this.x += q.x;
|
|||
|
this.y += q.y;
|
|||
|
this.z += q.z;
|
|||
|
this.w += q.w;
|
|||
|
return this;
|
|||
|
}
|
|||
|
|
|||
|
public inline function addquat(a: Quat, b: Quat): Quat {
|
|||
|
this.x = a.x + b.x;
|
|||
|
this.y = a.y + b.y;
|
|||
|
this.z = a.z + b.z;
|
|||
|
this.w = a.w + b.w;
|
|||
|
return this;
|
|||
|
}
|
|||
|
|
|||
|
public inline function sub(q: Quat): Quat {
|
|||
|
this.x -= q.x;
|
|||
|
this.y -= q.y;
|
|||
|
this.z -= q.z;
|
|||
|
this.w -= q.w;
|
|||
|
return this;
|
|||
|
}
|
|||
|
|
|||
|
public inline function subquat(a: Quat, b: Quat): Quat {
|
|||
|
this.x = a.x - b.x;
|
|||
|
this.y = a.y - b.y;
|
|||
|
this.z = a.z - b.z;
|
|||
|
this.w = a.w - b.w;
|
|||
|
return this;
|
|||
|
}
|
|||
|
|
|||
|
public inline function fromAxisAngle(axis: Vec4, angle: FastFloat): Quat {
|
|||
|
var s: FastFloat = Math.sin(angle * 0.5);
|
|||
|
x = axis.x * s;
|
|||
|
y = axis.y * s;
|
|||
|
z = axis.z * s;
|
|||
|
w = Math.cos(angle * 0.5);
|
|||
|
return normalize();
|
|||
|
}
|
|||
|
|
|||
|
public inline function toAxisAngle(axis: Vec4): FastFloat {
|
|||
|
normalize();
|
|||
|
var angle = 2 * Math.acos(w);
|
|||
|
var s = Math.sqrt(1 - w * w);
|
|||
|
if (s < 0.001) {
|
|||
|
axis.x = this.x;
|
|||
|
axis.y = this.y;
|
|||
|
axis.z = this.z;
|
|||
|
}
|
|||
|
else {
|
|||
|
axis.x = this.x / s;
|
|||
|
axis.y = this.y / s;
|
|||
|
axis.z = this.z / s;
|
|||
|
}
|
|||
|
return angle;
|
|||
|
}
|
|||
|
|
|||
|
public inline function fromMat(m: Mat4): Quat {
|
|||
|
helpMat.setFrom(m);
|
|||
|
helpMat.toRotation();
|
|||
|
return fromRotationMat(helpMat);
|
|||
|
}
|
|||
|
|
|||
|
public inline function fromRotationMat(m: Mat4): Quat {
|
|||
|
// Assumes the upper 3x3 is a pure rotation matrix
|
|||
|
var m11 = m._00; var m12 = m._10; var m13 = m._20;
|
|||
|
var m21 = m._01; var m22 = m._11; var m23 = m._21;
|
|||
|
var m31 = m._02; var m32 = m._12; var m33 = m._22;
|
|||
|
var tr = m11 + m22 + m33;
|
|||
|
var s = 0.0;
|
|||
|
|
|||
|
if (tr > 0) {
|
|||
|
s = 0.5 / Math.sqrt(tr + 1.0);
|
|||
|
this.w = 0.25 / s;
|
|||
|
this.x = (m32 - m23) * s;
|
|||
|
this.y = (m13 - m31) * s;
|
|||
|
this.z = (m21 - m12) * s;
|
|||
|
}
|
|||
|
else if (m11 > m22 && m11 > m33) {
|
|||
|
s = 2.0 * Math.sqrt(1.0 + m11 - m22 - m33);
|
|||
|
this.w = (m32 - m23) / s;
|
|||
|
this.x = 0.25 * s;
|
|||
|
this.y = (m12 + m21) / s;
|
|||
|
this.z = (m13 + m31) / s;
|
|||
|
}
|
|||
|
else if (m22 > m33) {
|
|||
|
s = 2.0 * Math.sqrt(1.0 + m22 - m11 - m33);
|
|||
|
this.w = (m13 - m31) / s;
|
|||
|
this.x = (m12 + m21) / s;
|
|||
|
this.y = 0.25 * s;
|
|||
|
this.z = (m23 + m32) / s;
|
|||
|
}
|
|||
|
else {
|
|||
|
s = 2.0 * Math.sqrt(1.0 + m33 - m11 - m22);
|
|||
|
this.w = (m21 - m12) / s;
|
|||
|
this.x = (m13 + m31) / s;
|
|||
|
this.y = (m23 + m32) / s;
|
|||
|
this.z = 0.25 * s;
|
|||
|
}
|
|||
|
return this;
|
|||
|
}
|
|||
|
|
|||
|
// Multiply this quaternion by float
|
|||
|
public inline function scale(scale: FastFloat): Quat {
|
|||
|
this.x *= scale;
|
|||
|
this.y *= scale;
|
|||
|
this.z *= scale;
|
|||
|
this.w *= scale;
|
|||
|
return this;
|
|||
|
}
|
|||
|
|
|||
|
public inline function scalequat(q: Quat, scale: FastFloat): Quat {
|
|||
|
q.x *= scale;
|
|||
|
q.y *= scale;
|
|||
|
q.z *= scale;
|
|||
|
q.w *= scale;
|
|||
|
return q;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
Multiply this quaternion by another.
|
|||
|
@param q The quaternion to multiply this one with.
|
|||
|
@return This quaternion.
|
|||
|
**/
|
|||
|
public inline function mult(q: Quat): Quat {
|
|||
|
return multquats(this, q);
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
Multiply two other quaternions and store the result in this one.
|
|||
|
@param q1 The first operand.
|
|||
|
@param q2 The second operand.
|
|||
|
@return This quaternion.
|
|||
|
**/
|
|||
|
public inline function multquats(q1: Quat, q2: Quat): Quat {
|
|||
|
var q1x = q1.x; var q1y = q1.y; var q1z = q1.z; var q1w = q1.w;
|
|||
|
var q2x = q2.x; var q2y = q2.y; var q2z = q2.z; var q2w = q2.w;
|
|||
|
x = q1x * q2w + q1w * q2x + q1y * q2z - q1z * q2y;
|
|||
|
y = q1w * q2y - q1x * q2z + q1y * q2w + q1z * q2x;
|
|||
|
z = q1w * q2z + q1x * q2y - q1y * q2x + q1z * q2w;
|
|||
|
w = q1w * q2w - q1x * q2x - q1y * q2y - q1z * q2z;
|
|||
|
return this;
|
|||
|
}
|
|||
|
|
|||
|
public inline function module(): FastFloat {
|
|||
|
return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w);
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
Scale this quaternion to have a magnitude of 1.
|
|||
|
@return This quaternion.
|
|||
|
**/
|
|||
|
public inline function normalize(): Quat {
|
|||
|
var l = Math.sqrt(x * x + y * y + z * z + w * w);
|
|||
|
if (l == 0.0) {
|
|||
|
x = 0;
|
|||
|
y = 0;
|
|||
|
z = 0;
|
|||
|
w = 0;
|
|||
|
}
|
|||
|
else {
|
|||
|
l = 1.0 / l;
|
|||
|
x *= l;
|
|||
|
y *= l;
|
|||
|
z *= l;
|
|||
|
w *= l;
|
|||
|
}
|
|||
|
return this;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
Invert the given quaternion and store the result in this one.
|
|||
|
@param q Quaternion to invert.
|
|||
|
@return This quaternion.
|
|||
|
**/
|
|||
|
public inline function inverse(q: Quat): Quat {
|
|||
|
var sqsum = q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w;
|
|||
|
sqsum = -1 / sqsum;
|
|||
|
x = q.x * sqsum;
|
|||
|
y = q.y * sqsum;
|
|||
|
z = q.z * sqsum;
|
|||
|
w = -q.w * sqsum;
|
|||
|
return this;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
Copy the rotation of another quaternion to this one.
|
|||
|
@param q A quaternion to copy.
|
|||
|
@return This quaternion.
|
|||
|
**/
|
|||
|
public inline function setFrom(q: Quat): Quat {
|
|||
|
x = q.x;
|
|||
|
y = q.y;
|
|||
|
z = q.z;
|
|||
|
w = q.w;
|
|||
|
return this;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
Convert this quaternion to a YZX Euler (note: XZY in blender order terms).
|
|||
|
@return A new YZX Euler that represents the same rotation as this
|
|||
|
quaternion.
|
|||
|
**/
|
|||
|
public inline function getEuler(): Vec4 {
|
|||
|
var a = -2 * (x * z - w * y);
|
|||
|
var b = w * w + x * x - y * y - z * z;
|
|||
|
var c = 2 * (x * y + w * z);
|
|||
|
var d = -2 * (y * z - w * x);
|
|||
|
var e = w * w - x * x + y * y - z * z;
|
|||
|
return new Vec4(Math.atan2(d, e), Math.atan2(a, b), Math.asin(c));
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
Set this quaternion to the rotation represented by a YZX Euler (XZY in blender terms).
|
|||
|
@param x The Euler's x component.
|
|||
|
@param y The Euler's y component.
|
|||
|
@param z The Euler's z component.
|
|||
|
@return This quaternion.
|
|||
|
**/
|
|||
|
public inline function fromEuler(x: FastFloat, y: FastFloat, z: FastFloat): Quat {
|
|||
|
var f = x / 2;
|
|||
|
var c1 = Math.cos(f);
|
|||
|
var s1 = Math.sin(f);
|
|||
|
f = y / 2;
|
|||
|
var c2 = Math.cos(f);
|
|||
|
var s2 = Math.sin(f);
|
|||
|
f = z / 2;
|
|||
|
var c3 = Math.cos(f);
|
|||
|
var s3 = Math.sin(f);
|
|||
|
// YZX
|
|||
|
this.x = s1 * c2 * c3 + c1 * s2 * s3;
|
|||
|
this.y = c1 * s2 * c3 + s1 * c2 * s3;
|
|||
|
this.z = c1 * c2 * s3 - s1 * s2 * c3;
|
|||
|
this.w = c1 * c2 * c3 - s1 * s2 * s3;
|
|||
|
return this;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
Convert this quaternion to an Euler of arbitrary order.
|
|||
|
@param the order of the euler to obtain
|
|||
|
(in blender order, opposite from mathematical order)
|
|||
|
can be "XYZ", "XZY", "YXZ", "YZX", "ZXY", or "ZYX".
|
|||
|
@return A new YZX Euler that represents the same rotation as this
|
|||
|
quaternion.
|
|||
|
**/
|
|||
|
// this method use matrices as a middle ground
|
|||
|
// (and is copied from blender's internal code in mathutils)
|
|||
|
// note: there are two possible eulers for the same rotation, blender defines the 'best' as the one with the smallest sum of absolute components
|
|||
|
// should we actually make that choice, or is just getting one of them randomly good?
|
|||
|
// note2: it seems that this engine transforms a vector by using vector×matrix instead of matrix×vector, meaning that the outer transformations are on the RIGHT.
|
|||
|
// (…Except for quaternions, where the outer quaternions are on the LEFT.)
|
|||
|
// anywho, the way the elements of the matrix are ordered makes sense (first digit-> row ID, second digit->column ID) in this system.
|
|||
|
public inline function toEulerOrdered(p: String): Vec4{
|
|||
|
// normalize quat ?
|
|||
|
|
|||
|
var q0: FastFloat = SQRT2 * this.w;
|
|||
|
var q1: FastFloat = SQRT2 * this.x;
|
|||
|
var q2: FastFloat = SQRT2 * this.y;
|
|||
|
var q3: FastFloat = SQRT2 * this.z;
|
|||
|
|
|||
|
var qda: FastFloat = q0 * q1;
|
|||
|
var qdb: FastFloat = q0 * q2;
|
|||
|
var qdc: FastFloat = q0 * q3;
|
|||
|
var qaa: FastFloat = q1 * q1;
|
|||
|
var qab: FastFloat = q1 * q2;
|
|||
|
var qac: FastFloat = q1 * q3;
|
|||
|
var qbb: FastFloat = q2 * q2;
|
|||
|
var qbc: FastFloat = q2 * q3;
|
|||
|
var qcc: FastFloat = q3 * q3;
|
|||
|
|
|||
|
var m = new Mat3(
|
|||
|
// OK, *this* matrix is transposed with respect to what leenkx expects.
|
|||
|
// it is transposed again in the next step though
|
|||
|
|
|||
|
(1.0 - qbb - qcc),
|
|||
|
(qdc + qab),
|
|||
|
(-qdb + qac),
|
|||
|
|
|||
|
(-qdc + qab),
|
|||
|
(1.0 - qaa - qcc),
|
|||
|
(qda + qbc),
|
|||
|
|
|||
|
(qdb + qac),
|
|||
|
(-qda + qbc),
|
|||
|
(1.0 - qaa - qbb)
|
|||
|
);
|
|||
|
|
|||
|
// now define what is necessary to perform look-ups in that matrix
|
|||
|
var ml: Array<Array<FastFloat>> = [[m._00, m._10, m._20],
|
|||
|
[m._01, m._11, m._21],
|
|||
|
[m._02, m._12, m._22]];
|
|||
|
var eull: Array<FastFloat> = [0, 0, 0];
|
|||
|
|
|||
|
var i: Int = p.charCodeAt(0) - "X".charCodeAt(0);
|
|||
|
var j: Int = p.charCodeAt(1) - "X".charCodeAt(0);
|
|||
|
var k: Int = p.charCodeAt(2) - "X".charCodeAt(0);
|
|||
|
|
|||
|
// now the dumber version (isolating code)
|
|||
|
if (p.charAt(0) == "X") i = 0;
|
|||
|
else if (p.charAt(0) == "Y") i = 1;
|
|||
|
else i = 2;
|
|||
|
if (p.charAt(1) == "X") j = 0;
|
|||
|
else if (p.charAt(1) == "Y") j = 1;
|
|||
|
else j = 2;
|
|||
|
if (p.charAt(2) == "X") k = 0;
|
|||
|
else if (p.charAt(2) == "Y") k = 1;
|
|||
|
else k = 2;
|
|||
|
|
|||
|
var cy: FastFloat = Math.sqrt(ml[i][i] * ml[i][i] + ml[i][j] * ml[i][j]);
|
|||
|
|
|||
|
var eul1 = new Vec4();
|
|||
|
|
|||
|
if (cy > 16.0 * 1e-3) {
|
|||
|
eull[i] = Math.atan2(ml[j][k], ml[k][k]);
|
|||
|
eull[j] = Math.atan2(-ml[i][k], cy);
|
|||
|
eull[k] = Math.atan2(ml[i][j], ml[i][i]);
|
|||
|
}
|
|||
|
else {
|
|||
|
eull[i] = Math.atan2(-ml[k][j], ml[j][j]);
|
|||
|
eull[j] = Math.atan2(-ml[i][k], cy);
|
|||
|
eull[k] = 0; // 2 * Math.PI;
|
|||
|
}
|
|||
|
eul1.x = eull[0];
|
|||
|
eul1.y = eull[1];
|
|||
|
eul1.z = eull[2];
|
|||
|
|
|||
|
if (p == "XZY" || p == "YXZ" || p == "ZYX") {
|
|||
|
eul1.x *= -1;
|
|||
|
eul1.y *= -1;
|
|||
|
eul1.z *= -1;
|
|||
|
}
|
|||
|
return eul1;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
Set this quaternion to the rotation represented by an Euler.
|
|||
|
@param x The Euler's x component.
|
|||
|
@param y The Euler's y component.
|
|||
|
@param z The Euler's z component.
|
|||
|
@param order: the (blender) order of the euler
|
|||
|
(which is the OPPOSITE of the mathematical order)
|
|||
|
can be "XYZ", "XZY", "YXZ", "YZX", "ZXY", or "ZYX".
|
|||
|
@return This quaternion.
|
|||
|
**/
|
|||
|
public inline function fromEulerOrdered(e: Vec4, order: String): Quat {
|
|||
|
var c1 = Math.cos(e.x / 2);
|
|||
|
var c2 = Math.cos(e.y / 2);
|
|||
|
var c3 = Math.cos(e.z / 2);
|
|||
|
var s1 = Math.sin(e.x / 2);
|
|||
|
var s2 = Math.sin(e.y / 2);
|
|||
|
var s3 = Math.sin(e.z / 2);
|
|||
|
|
|||
|
var qx = new Quat(s1, 0, 0, c1);
|
|||
|
var qy = new Quat(0, s2, 0, c2);
|
|||
|
var qz = new Quat(0, 0, s3, c3);
|
|||
|
|
|||
|
if (order.charAt(2) == 'X')
|
|||
|
this.setFrom(qx);
|
|||
|
else if (order.charAt(2) == 'Y')
|
|||
|
this.setFrom(qy);
|
|||
|
else
|
|||
|
this.setFrom(qz);
|
|||
|
if (order.charAt(1) == 'X')
|
|||
|
this.mult(qx);
|
|||
|
else if (order.charAt(1) == 'Y')
|
|||
|
this.mult(qy);
|
|||
|
else
|
|||
|
this.mult(qz);
|
|||
|
if (order.charAt(0) == 'X')
|
|||
|
this.mult(qx);
|
|||
|
else if (order.charAt(0) == 'Y')
|
|||
|
this.mult(qy);
|
|||
|
else
|
|||
|
this.mult(qz);
|
|||
|
|
|||
|
return this;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
Linearly interpolate between two other quaterions, and store the
|
|||
|
result in this one. This is not a so-called slerp operation.
|
|||
|
@param from The quaterion to interpolate from.
|
|||
|
@param to The quaterion to interpolate to.
|
|||
|
@param s The amount to interpolate, with 0 being `from` and 1 being
|
|||
|
`to`, and 0.5 being half way between the two.
|
|||
|
@return This quaternion.
|
|||
|
**/
|
|||
|
public inline function lerp(from: Quat, to: Quat, s: FastFloat): Quat {
|
|||
|
var fromx = from.x;
|
|||
|
var fromy = from.y;
|
|||
|
var fromz = from.z;
|
|||
|
var fromw = from.w;
|
|||
|
var dot: FastFloat = from.dot(to);
|
|||
|
if (dot < 0.0) {
|
|||
|
fromx = -fromx;
|
|||
|
fromy = -fromy;
|
|||
|
fromz = -fromz;
|
|||
|
fromw = -fromw;
|
|||
|
}
|
|||
|
x = fromx + (to.x - fromx) * s;
|
|||
|
y = fromy + (to.y - fromy) * s;
|
|||
|
z = fromz + (to.z - fromz) * s;
|
|||
|
w = fromw + (to.w - fromw) * s;
|
|||
|
return normalize();
|
|||
|
}
|
|||
|
|
|||
|
// Slerp is shorthand for spherical linear interpolation
|
|||
|
public inline function slerp(from: Quat, to: Quat, t: FastFloat): Quat {
|
|||
|
var epsilon: Float = 0.0005;
|
|||
|
|
|||
|
var dot = from.dot(to);
|
|||
|
if (dot > 1 - epsilon) {
|
|||
|
var result: Quat = to.add((from.sub(to)).scale(t));
|
|||
|
result.normalize();
|
|||
|
return result;
|
|||
|
}
|
|||
|
if (dot < 0) dot = 0;
|
|||
|
if (dot > 1) dot = 1;
|
|||
|
|
|||
|
var theta0: Float = Math.acos(dot);
|
|||
|
var theta: Float = theta0 * t;
|
|||
|
var q2: Quat = to.sub(scale(dot));
|
|||
|
q2.normalize();
|
|||
|
var result: Quat = scale(Math.cos(theta)).add(q2.scale(Math.sin(theta)));
|
|||
|
result.normalize();
|
|||
|
return result;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
Find the dot product of this quaternion with another.
|
|||
|
@param q The other quaternion.
|
|||
|
@return The dot product.
|
|||
|
**/
|
|||
|
public inline function dot(q: Quat): FastFloat {
|
|||
|
return (x * q.x) + (y * q.y) + (z * q.z) + (w * q.w);
|
|||
|
}
|
|||
|
|
|||
|
public inline function fromTo(v1: Vec4, v2: Vec4): Quat {
|
|||
|
// Rotation formed by direction vectors
|
|||
|
// v1 and v2 should be normalized first
|
|||
|
var a = helpVec0;
|
|||
|
var dot = v1.dot(v2);
|
|||
|
if (dot < -0.999999) {
|
|||
|
a.crossvecs(xAxis, v1);
|
|||
|
if (a.length() < 0.000001) a.crossvecs(yAxis, v1);
|
|||
|
a.normalize();
|
|||
|
fromAxisAngle(a, Math.PI);
|
|||
|
}
|
|||
|
else if (dot > 0.999999) {
|
|||
|
set(0, 0, 0, 1);
|
|||
|
}
|
|||
|
else {
|
|||
|
a.crossvecs(v1, v2);
|
|||
|
set(a.x, a.y, a.z, 1 + dot);
|
|||
|
normalize();
|
|||
|
}
|
|||
|
return this;
|
|||
|
}
|
|||
|
|
|||
|
public function toString(): String {
|
|||
|
return this.x + ", " + this.y + ", " + this.z + ", " + this.w;
|
|||
|
}
|
|||
|
}
|