1574 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			1574 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|  | #ifndef GIM_LINEAR_H_INCLUDED
 | ||
|  | #define GIM_LINEAR_H_INCLUDED
 | ||
|  | 
 | ||
|  | /*! \file gim_linear_math.h
 | ||
|  | *\author Francisco Leon Najera | ||
|  | Type Independant Vector and matrix operations. | ||
|  | */ | ||
|  | /*
 | ||
|  | ----------------------------------------------------------------------------- | ||
|  | This source file is part of GIMPACT Library. | ||
|  | 
 | ||
|  | For the latest info, see http://gimpact.sourceforge.net/
 | ||
|  | 
 | ||
|  | Copyright (c) 2006 Francisco Leon Najera. C.C. 80087371. | ||
|  | email: projectileman@yahoo.com | ||
|  | 
 | ||
|  |  This library is free software; you can redistribute it and/or | ||
|  |  modify it under the terms of EITHER: | ||
|  |    (1) The GNU Lesser General Public License as published by the Free | ||
|  |        Software Foundation; either version 2.1 of the License, or (at | ||
|  |        your option) any later version. The text of the GNU Lesser | ||
|  |        General Public License is included with this library in the | ||
|  |        file GIMPACT-LICENSE-LGPL.TXT. | ||
|  |    (2) The BSD-style license that is included with this library in | ||
|  |        the file GIMPACT-LICENSE-BSD.TXT. | ||
|  |    (3) The zlib/libpng license that is included with this library in | ||
|  |        the file GIMPACT-LICENSE-ZLIB.TXT. | ||
|  | 
 | ||
|  |  This library is distributed in the hope that it will be useful, | ||
|  |  but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files | ||
|  |  GIMPACT-LICENSE-LGPL.TXT, GIMPACT-LICENSE-ZLIB.TXT and GIMPACT-LICENSE-BSD.TXT for more details. | ||
|  | 
 | ||
|  | ----------------------------------------------------------------------------- | ||
|  | */ | ||
|  | 
 | ||
|  | 
 | ||
|  | #include "gim_math.h"
 | ||
|  | #include "gim_geom_types.h"
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | //! Zero out a 2D vector
 | ||
|  | #define VEC_ZERO_2(a)				\
 | ||
|  | {						\ | ||
|  |    (a)[0] = (a)[1] = 0.0f;			\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | //! Zero out a 3D vector
 | ||
|  | #define VEC_ZERO(a)				\
 | ||
|  | {						\ | ||
|  |    (a)[0] = (a)[1] = (a)[2] = 0.0f;		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /// Zero out a 4D vector
 | ||
|  | #define VEC_ZERO_4(a)				\
 | ||
|  | {						\ | ||
|  |    (a)[0] = (a)[1] = (a)[2] = (a)[3] = 0.0f;	\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /// Vector copy
 | ||
|  | #define VEC_COPY_2(b,a)				\
 | ||
|  | {						\ | ||
|  |    (b)[0] = (a)[0];				\ | ||
|  |    (b)[1] = (a)[1];				\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /// Copy 3D vector
 | ||
|  | #define VEC_COPY(b,a)				\
 | ||
|  | {						\ | ||
|  |    (b)[0] = (a)[0];				\ | ||
|  |    (b)[1] = (a)[1];				\ | ||
|  |    (b)[2] = (a)[2];				\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /// Copy 4D vector
 | ||
|  | #define VEC_COPY_4(b,a)				\
 | ||
|  | {						\ | ||
|  |    (b)[0] = (a)[0];				\ | ||
|  |    (b)[1] = (a)[1];				\ | ||
|  |    (b)[2] = (a)[2];				\ | ||
|  |    (b)[3] = (a)[3];				\ | ||
|  | }\ | ||
|  | 
 | ||
|  | /// VECTOR SWAP
 | ||
|  | #define VEC_SWAP(b,a)				\
 | ||
|  | {  \ | ||
|  |     GIM_SWAP_NUMBERS((b)[0],(a)[0]);\ | ||
|  |     GIM_SWAP_NUMBERS((b)[1],(a)[1]);\ | ||
|  |     GIM_SWAP_NUMBERS((b)[2],(a)[2]);\ | ||
|  | }\ | ||
|  | 
 | ||
|  | /// Vector difference
 | ||
|  | #define VEC_DIFF_2(v21,v2,v1)			\
 | ||
|  | {						\ | ||
|  |    (v21)[0] = (v2)[0] - (v1)[0];		\ | ||
|  |    (v21)[1] = (v2)[1] - (v1)[1];		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /// Vector difference
 | ||
|  | #define VEC_DIFF(v21,v2,v1)			\
 | ||
|  | {						\ | ||
|  |    (v21)[0] = (v2)[0] - (v1)[0];		\ | ||
|  |    (v21)[1] = (v2)[1] - (v1)[1];		\ | ||
|  |    (v21)[2] = (v2)[2] - (v1)[2];		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /// Vector difference
 | ||
|  | #define VEC_DIFF_4(v21,v2,v1)			\
 | ||
|  | {						\ | ||
|  |    (v21)[0] = (v2)[0] - (v1)[0];		\ | ||
|  |    (v21)[1] = (v2)[1] - (v1)[1];		\ | ||
|  |    (v21)[2] = (v2)[2] - (v1)[2];		\ | ||
|  |    (v21)[3] = (v2)[3] - (v1)[3];		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /// Vector sum
 | ||
|  | #define VEC_SUM_2(v21,v2,v1)			\
 | ||
|  | {						\ | ||
|  |    (v21)[0] = (v2)[0] + (v1)[0];		\ | ||
|  |    (v21)[1] = (v2)[1] + (v1)[1];		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /// Vector sum
 | ||
|  | #define VEC_SUM(v21,v2,v1)			\
 | ||
|  | {						\ | ||
|  |    (v21)[0] = (v2)[0] + (v1)[0];		\ | ||
|  |    (v21)[1] = (v2)[1] + (v1)[1];		\ | ||
|  |    (v21)[2] = (v2)[2] + (v1)[2];		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /// Vector sum
 | ||
|  | #define VEC_SUM_4(v21,v2,v1)			\
 | ||
|  | {						\ | ||
|  |    (v21)[0] = (v2)[0] + (v1)[0];		\ | ||
|  |    (v21)[1] = (v2)[1] + (v1)[1];		\ | ||
|  |    (v21)[2] = (v2)[2] + (v1)[2];		\ | ||
|  |    (v21)[3] = (v2)[3] + (v1)[3];		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /// scalar times vector
 | ||
|  | #define VEC_SCALE_2(c,a,b)			\
 | ||
|  | {						\ | ||
|  |    (c)[0] = (a)*(b)[0];				\ | ||
|  |    (c)[1] = (a)*(b)[1];				\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /// scalar times vector
 | ||
|  | #define VEC_SCALE(c,a,b)			\
 | ||
|  | {						\ | ||
|  |    (c)[0] = (a)*(b)[0];				\ | ||
|  |    (c)[1] = (a)*(b)[1];				\ | ||
|  |    (c)[2] = (a)*(b)[2];				\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /// scalar times vector
 | ||
|  | #define VEC_SCALE_4(c,a,b)			\
 | ||
|  | {						\ | ||
|  |    (c)[0] = (a)*(b)[0];				\ | ||
|  |    (c)[1] = (a)*(b)[1];				\ | ||
|  |    (c)[2] = (a)*(b)[2];				\ | ||
|  |    (c)[3] = (a)*(b)[3];				\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /// accumulate scaled vector
 | ||
|  | #define VEC_ACCUM_2(c,a,b)			\
 | ||
|  | {						\ | ||
|  |    (c)[0] += (a)*(b)[0];			\ | ||
|  |    (c)[1] += (a)*(b)[1];			\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /// accumulate scaled vector
 | ||
|  | #define VEC_ACCUM(c,a,b)			\
 | ||
|  | {						\ | ||
|  |    (c)[0] += (a)*(b)[0];			\ | ||
|  |    (c)[1] += (a)*(b)[1];			\ | ||
|  |    (c)[2] += (a)*(b)[2];			\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /// accumulate scaled vector
 | ||
|  | #define VEC_ACCUM_4(c,a,b)			\
 | ||
|  | {						\ | ||
|  |    (c)[0] += (a)*(b)[0];			\ | ||
|  |    (c)[1] += (a)*(b)[1];			\ | ||
|  |    (c)[2] += (a)*(b)[2];			\ | ||
|  |    (c)[3] += (a)*(b)[3];			\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /// Vector dot product
 | ||
|  | #define VEC_DOT_2(a,b) ((a)[0]*(b)[0] + (a)[1]*(b)[1])
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /// Vector dot product
 | ||
|  | #define VEC_DOT(a,b) ((a)[0]*(b)[0] + (a)[1]*(b)[1] + (a)[2]*(b)[2])
 | ||
|  | 
 | ||
|  | /// Vector dot product
 | ||
|  | #define VEC_DOT_4(a,b)	((a)[0]*(b)[0] + (a)[1]*(b)[1] + (a)[2]*(b)[2] + (a)[3]*(b)[3])
 | ||
|  | 
 | ||
|  | /// vector impact parameter (squared)
 | ||
|  | #define VEC_IMPACT_SQ(bsq,direction,position) {\
 | ||
|  |    GREAL _llel_ = VEC_DOT(direction, position);\ | ||
|  |    bsq = VEC_DOT(position, position) - _llel_*_llel_;\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /// vector impact parameter
 | ||
|  | #define VEC_IMPACT(bsq,direction,position)	{\
 | ||
|  |    VEC_IMPACT_SQ(bsq,direction,position);		\ | ||
|  |    GIM_SQRT(bsq,bsq);					\ | ||
|  | }\ | ||
|  | 
 | ||
|  | /// Vector length
 | ||
|  | #define VEC_LENGTH_2(a,l)\
 | ||
|  | {\ | ||
|  |     GREAL _pp = VEC_DOT_2(a,a);\ | ||
|  |     GIM_SQRT(_pp,l);\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /// Vector length
 | ||
|  | #define VEC_LENGTH(a,l)\
 | ||
|  | {\ | ||
|  |     GREAL _pp = VEC_DOT(a,a);\ | ||
|  |     GIM_SQRT(_pp,l);\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /// Vector length
 | ||
|  | #define VEC_LENGTH_4(a,l)\
 | ||
|  | {\ | ||
|  |     GREAL _pp = VEC_DOT_4(a,a);\ | ||
|  |     GIM_SQRT(_pp,l);\ | ||
|  | }\ | ||
|  | 
 | ||
|  | /// Vector inv length
 | ||
|  | #define VEC_INV_LENGTH_2(a,l)\
 | ||
|  | {\ | ||
|  |     GREAL _pp = VEC_DOT_2(a,a);\ | ||
|  |     GIM_INV_SQRT(_pp,l);\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /// Vector inv length
 | ||
|  | #define VEC_INV_LENGTH(a,l)\
 | ||
|  | {\ | ||
|  |     GREAL _pp = VEC_DOT(a,a);\ | ||
|  |     GIM_INV_SQRT(_pp,l);\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /// Vector inv length
 | ||
|  | #define VEC_INV_LENGTH_4(a,l)\
 | ||
|  | {\ | ||
|  |     GREAL _pp = VEC_DOT_4(a,a);\ | ||
|  |     GIM_INV_SQRT(_pp,l);\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /// distance between two points
 | ||
|  | #define VEC_DISTANCE(_len,_va,_vb) {\
 | ||
|  |     vec3f _tmp_;				\ | ||
|  |     VEC_DIFF(_tmp_, _vb, _va);			\ | ||
|  |     VEC_LENGTH(_tmp_,_len);			\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /// Vector length
 | ||
|  | #define VEC_CONJUGATE_LENGTH(a,l)\
 | ||
|  | {\ | ||
|  |     GREAL _pp = 1.0 - a[0]*a[0] - a[1]*a[1] - a[2]*a[2];\ | ||
|  |     GIM_SQRT(_pp,l);\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /// Vector length
 | ||
|  | #define VEC_NORMALIZE(a) {	\
 | ||
|  |     GREAL len;\ | ||
|  |     VEC_INV_LENGTH(a,len); \ | ||
|  |     if(len<G_REAL_INFINITY)\ | ||
|  |     {\ | ||
|  |         a[0] *= len;				\ | ||
|  |         a[1] *= len;				\ | ||
|  |         a[2] *= len;				\ | ||
|  |     }						\ | ||
|  | }\ | ||
|  | 
 | ||
|  | /// Set Vector size
 | ||
|  | #define VEC_RENORMALIZE(a,newlen) {	\
 | ||
|  |     GREAL len;\ | ||
|  |     VEC_INV_LENGTH(a,len); \ | ||
|  |     if(len<G_REAL_INFINITY)\ | ||
|  |     {\ | ||
|  |         len *= newlen;\ | ||
|  |         a[0] *= len;				\ | ||
|  |         a[1] *= len;				\ | ||
|  |         a[2] *= len;				\ | ||
|  |     }						\ | ||
|  | }\ | ||
|  | 
 | ||
|  | /// Vector cross
 | ||
|  | #define VEC_CROSS(c,a,b)		\
 | ||
|  | {						\ | ||
|  |    c[0] = (a)[1] * (b)[2] - (a)[2] * (b)[1];	\ | ||
|  |    c[1] = (a)[2] * (b)[0] - (a)[0] * (b)[2];	\ | ||
|  |    c[2] = (a)[0] * (b)[1] - (a)[1] * (b)[0];	\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /*! Vector perp -- assumes that n is of unit length
 | ||
|  |  * accepts vector v, subtracts out any component parallel to n */ | ||
|  | #define VEC_PERPENDICULAR(vp,v,n)			\
 | ||
|  | {						\ | ||
|  |    GREAL dot = VEC_DOT(v, n);			\ | ||
|  |    vp[0] = (v)[0] - dot*(n)[0];		\ | ||
|  |    vp[1] = (v)[1] - dot*(n)[1];		\ | ||
|  |    vp[2] = (v)[2] - dot*(n)[2];		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /*! Vector parallel -- assumes that n is of unit length */ | ||
|  | #define VEC_PARALLEL(vp,v,n)			\
 | ||
|  | {						\ | ||
|  |    GREAL dot = VEC_DOT(v, n);			\ | ||
|  |    vp[0] = (dot) * (n)[0];			\ | ||
|  |    vp[1] = (dot) * (n)[1];			\ | ||
|  |    vp[2] = (dot) * (n)[2];			\ | ||
|  | }\ | ||
|  | 
 | ||
|  | /*! Same as Vector parallel --  n can have any length
 | ||
|  |  * accepts vector v, subtracts out any component perpendicular to n */ | ||
|  | #define VEC_PROJECT(vp,v,n)			\
 | ||
|  | { \ | ||
|  | 	GREAL scalar = VEC_DOT(v, n);			\ | ||
|  | 	scalar/= VEC_DOT(n, n); \ | ||
|  | 	vp[0] = (scalar) * (n)[0];			\ | ||
|  |     vp[1] = (scalar) * (n)[1];			\ | ||
|  |     vp[2] = (scalar) * (n)[2];			\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /*! accepts vector v*/ | ||
|  | #define VEC_UNPROJECT(vp,v,n)			\
 | ||
|  | { \ | ||
|  | 	GREAL scalar = VEC_DOT(v, n);			\ | ||
|  | 	scalar = VEC_DOT(n, n)/scalar; \ | ||
|  | 	vp[0] = (scalar) * (n)[0];			\ | ||
|  |     vp[1] = (scalar) * (n)[1];			\ | ||
|  |     vp[2] = (scalar) * (n)[2];			\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /*! Vector reflection -- assumes n is of unit length
 | ||
|  |  Takes vector v, reflects it against reflector n, and returns vr */ | ||
|  | #define VEC_REFLECT(vr,v,n)			\
 | ||
|  | {						\ | ||
|  |    GREAL dot = VEC_DOT(v, n);			\ | ||
|  |    vr[0] = (v)[0] - 2.0 * (dot) * (n)[0];	\ | ||
|  |    vr[1] = (v)[1] - 2.0 * (dot) * (n)[1];	\ | ||
|  |    vr[2] = (v)[2] - 2.0 * (dot) * (n)[2];	\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /*! Vector blending
 | ||
|  | Takes two vectors a, b, blends them together with two scalars */ | ||
|  | #define VEC_BLEND_AB(vr,sa,a,sb,b)			\
 | ||
|  | {						\ | ||
|  |    vr[0] = (sa) * (a)[0] + (sb) * (b)[0];	\ | ||
|  |    vr[1] = (sa) * (a)[1] + (sb) * (b)[1];	\ | ||
|  |    vr[2] = (sa) * (a)[2] + (sb) * (b)[2];	\ | ||
|  | }\ | ||
|  | 
 | ||
|  | /*! Vector blending
 | ||
|  | Takes two vectors a, b, blends them together with s <=1 */ | ||
|  | #define VEC_BLEND(vr,a,b,s) VEC_BLEND_AB(vr,(1-s),a,s,b)
 | ||
|  | 
 | ||
|  | #define VEC_SET3(a,b,op,c) a[0]=b[0] op c[0]; a[1]=b[1] op c[1]; a[2]=b[2] op c[2];
 | ||
|  | 
 | ||
|  | //! Finds the bigger cartesian coordinate from a vector
 | ||
|  | #define VEC_MAYOR_COORD(vec, maxc)\
 | ||
|  | {\ | ||
|  | 	GREAL A[] = {fabs(vec[0]),fabs(vec[1]),fabs(vec[2])};\ | ||
|  |     maxc =  A[0]>A[1]?(A[0]>A[2]?0:2):(A[1]>A[2]?1:2);\ | ||
|  | }\ | ||
|  | 
 | ||
|  | //! Finds the 2 smallest cartesian coordinates from a vector
 | ||
|  | #define VEC_MINOR_AXES(vec, i0, i1)\
 | ||
|  | {\ | ||
|  | 	VEC_MAYOR_COORD(vec,i0);\ | ||
|  | 	i0 = (i0+1)%3;\ | ||
|  | 	i1 = (i0+1)%3;\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #define VEC_EQUAL(v1,v2) (v1[0]==v2[0]&&v1[1]==v2[1]&&v1[2]==v2[2])
 | ||
|  | 
 | ||
|  | #define VEC_NEAR_EQUAL(v1,v2) (GIM_NEAR_EQUAL(v1[0],v2[0])&&GIM_NEAR_EQUAL(v1[1],v2[1])&&GIM_NEAR_EQUAL(v1[2],v2[2]))
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /// Vector cross
 | ||
|  | #define X_AXIS_CROSS_VEC(dst,src)\
 | ||
|  | {					   \ | ||
|  | 	dst[0] = 0.0f;     \ | ||
|  | 	dst[1] = -src[2];  \ | ||
|  | 	dst[2] = src[1];  \ | ||
|  | }\ | ||
|  | 
 | ||
|  | #define Y_AXIS_CROSS_VEC(dst,src)\
 | ||
|  | {					   \ | ||
|  | 	dst[0] = src[2];     \ | ||
|  | 	dst[1] = 0.0f;  \ | ||
|  | 	dst[2] = -src[0];  \ | ||
|  | }\ | ||
|  | 
 | ||
|  | #define Z_AXIS_CROSS_VEC(dst,src)\
 | ||
|  | {					   \ | ||
|  | 	dst[0] = -src[1];     \ | ||
|  | 	dst[1] = src[0];  \ | ||
|  | 	dst[2] = 0.0f;  \ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /// initialize matrix
 | ||
|  | #define IDENTIFY_MATRIX_3X3(m)			\
 | ||
|  | {						\ | ||
|  |    m[0][0] = 1.0;				\ | ||
|  |    m[0][1] = 0.0;				\ | ||
|  |    m[0][2] = 0.0;				\ | ||
|  | 						\ | ||
|  |    m[1][0] = 0.0;				\ | ||
|  |    m[1][1] = 1.0;				\ | ||
|  |    m[1][2] = 0.0;				\ | ||
|  | 						\ | ||
|  |    m[2][0] = 0.0;				\ | ||
|  |    m[2][1] = 0.0;				\ | ||
|  |    m[2][2] = 1.0;				\ | ||
|  | }\ | ||
|  | 
 | ||
|  | /*! initialize matrix */ | ||
|  | #define IDENTIFY_MATRIX_4X4(m)			\
 | ||
|  | {						\ | ||
|  |    m[0][0] = 1.0;				\ | ||
|  |    m[0][1] = 0.0;				\ | ||
|  |    m[0][2] = 0.0;				\ | ||
|  |    m[0][3] = 0.0;				\ | ||
|  | 						\ | ||
|  |    m[1][0] = 0.0;				\ | ||
|  |    m[1][1] = 1.0;				\ | ||
|  |    m[1][2] = 0.0;				\ | ||
|  |    m[1][3] = 0.0;				\ | ||
|  | 						\ | ||
|  |    m[2][0] = 0.0;				\ | ||
|  |    m[2][1] = 0.0;				\ | ||
|  |    m[2][2] = 1.0;				\ | ||
|  |    m[2][3] = 0.0;				\ | ||
|  | 						\ | ||
|  |    m[3][0] = 0.0;				\ | ||
|  |    m[3][1] = 0.0;				\ | ||
|  |    m[3][2] = 0.0;				\ | ||
|  |    m[3][3] = 1.0;				\ | ||
|  | }\ | ||
|  | 
 | ||
|  | /*! initialize matrix */ | ||
|  | #define ZERO_MATRIX_4X4(m)			\
 | ||
|  | {						\ | ||
|  |    m[0][0] = 0.0;				\ | ||
|  |    m[0][1] = 0.0;				\ | ||
|  |    m[0][2] = 0.0;				\ | ||
|  |    m[0][3] = 0.0;				\ | ||
|  | 						\ | ||
|  |    m[1][0] = 0.0;				\ | ||
|  |    m[1][1] = 0.0;				\ | ||
|  |    m[1][2] = 0.0;				\ | ||
|  |    m[1][3] = 0.0;				\ | ||
|  | 						\ | ||
|  |    m[2][0] = 0.0;				\ | ||
|  |    m[2][1] = 0.0;				\ | ||
|  |    m[2][2] = 0.0;				\ | ||
|  |    m[2][3] = 0.0;				\ | ||
|  | 						\ | ||
|  |    m[3][0] = 0.0;				\ | ||
|  |    m[3][1] = 0.0;				\ | ||
|  |    m[3][2] = 0.0;				\ | ||
|  |    m[3][3] = 0.0;				\ | ||
|  | }\ | ||
|  | 
 | ||
|  | /*! matrix rotation  X */ | ||
|  | #define ROTX_CS(m,cosine,sine)		\
 | ||
|  | {					\ | ||
|  |    /* rotation about the x-axis */	\ | ||
|  | 					\ | ||
|  |    m[0][0] = 1.0;			\ | ||
|  |    m[0][1] = 0.0;			\ | ||
|  |    m[0][2] = 0.0;			\ | ||
|  |    m[0][3] = 0.0;			\ | ||
|  | 					\ | ||
|  |    m[1][0] = 0.0;			\ | ||
|  |    m[1][1] = (cosine);			\ | ||
|  |    m[1][2] = (sine);			\ | ||
|  |    m[1][3] = 0.0;			\ | ||
|  | 					\ | ||
|  |    m[2][0] = 0.0;			\ | ||
|  |    m[2][1] = -(sine);			\ | ||
|  |    m[2][2] = (cosine);			\ | ||
|  |    m[2][3] = 0.0;			\ | ||
|  | 					\ | ||
|  |    m[3][0] = 0.0;			\ | ||
|  |    m[3][1] = 0.0;			\ | ||
|  |    m[3][2] = 0.0;			\ | ||
|  |    m[3][3] = 1.0;			\ | ||
|  | }\ | ||
|  | 
 | ||
|  | /*! matrix rotation  Y */ | ||
|  | #define ROTY_CS(m,cosine,sine)		\
 | ||
|  | {					\ | ||
|  |    /* rotation about the y-axis */	\ | ||
|  | 					\ | ||
|  |    m[0][0] = (cosine);			\ | ||
|  |    m[0][1] = 0.0;			\ | ||
|  |    m[0][2] = -(sine);			\ | ||
|  |    m[0][3] = 0.0;			\ | ||
|  | 					\ | ||
|  |    m[1][0] = 0.0;			\ | ||
|  |    m[1][1] = 1.0;			\ | ||
|  |    m[1][2] = 0.0;			\ | ||
|  |    m[1][3] = 0.0;			\ | ||
|  | 					\ | ||
|  |    m[2][0] = (sine);			\ | ||
|  |    m[2][1] = 0.0;			\ | ||
|  |    m[2][2] = (cosine);			\ | ||
|  |    m[2][3] = 0.0;			\ | ||
|  | 					\ | ||
|  |    m[3][0] = 0.0;			\ | ||
|  |    m[3][1] = 0.0;			\ | ||
|  |    m[3][2] = 0.0;			\ | ||
|  |    m[3][3] = 1.0;			\ | ||
|  | }\ | ||
|  | 
 | ||
|  | /*! matrix rotation  Z */ | ||
|  | #define ROTZ_CS(m,cosine,sine)		\
 | ||
|  | {					\ | ||
|  |    /* rotation about the z-axis */	\ | ||
|  | 					\ | ||
|  |    m[0][0] = (cosine);			\ | ||
|  |    m[0][1] = (sine);			\ | ||
|  |    m[0][2] = 0.0;			\ | ||
|  |    m[0][3] = 0.0;			\ | ||
|  | 					\ | ||
|  |    m[1][0] = -(sine);			\ | ||
|  |    m[1][1] = (cosine);			\ | ||
|  |    m[1][2] = 0.0;			\ | ||
|  |    m[1][3] = 0.0;			\ | ||
|  | 					\ | ||
|  |    m[2][0] = 0.0;			\ | ||
|  |    m[2][1] = 0.0;			\ | ||
|  |    m[2][2] = 1.0;			\ | ||
|  |    m[2][3] = 0.0;			\ | ||
|  | 					\ | ||
|  |    m[3][0] = 0.0;			\ | ||
|  |    m[3][1] = 0.0;			\ | ||
|  |    m[3][2] = 0.0;			\ | ||
|  |    m[3][3] = 1.0;			\ | ||
|  | }\ | ||
|  | 
 | ||
|  | /*! matrix copy */ | ||
|  | #define COPY_MATRIX_2X2(b,a)	\
 | ||
|  | {				\ | ||
|  |    b[0][0] = a[0][0];		\ | ||
|  |    b[0][1] = a[0][1];		\ | ||
|  | 				\ | ||
|  |    b[1][0] = a[1][0];		\ | ||
|  |    b[1][1] = a[1][1];		\ | ||
|  | 				\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /*! matrix copy */ | ||
|  | #define COPY_MATRIX_2X3(b,a)	\
 | ||
|  | {				\ | ||
|  |    b[0][0] = a[0][0];		\ | ||
|  |    b[0][1] = a[0][1];		\ | ||
|  |    b[0][2] = a[0][2];		\ | ||
|  | 				\ | ||
|  |    b[1][0] = a[1][0];		\ | ||
|  |    b[1][1] = a[1][1];		\ | ||
|  |    b[1][2] = a[1][2];		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /*! matrix copy */ | ||
|  | #define COPY_MATRIX_3X3(b,a)	\
 | ||
|  | {				\ | ||
|  |    b[0][0] = a[0][0];		\ | ||
|  |    b[0][1] = a[0][1];		\ | ||
|  |    b[0][2] = a[0][2];		\ | ||
|  | 				\ | ||
|  |    b[1][0] = a[1][0];		\ | ||
|  |    b[1][1] = a[1][1];		\ | ||
|  |    b[1][2] = a[1][2];		\ | ||
|  | 				\ | ||
|  |    b[2][0] = a[2][0];		\ | ||
|  |    b[2][1] = a[2][1];		\ | ||
|  |    b[2][2] = a[2][2];		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /*! matrix copy */ | ||
|  | #define COPY_MATRIX_4X4(b,a)	\
 | ||
|  | {				\ | ||
|  |    b[0][0] = a[0][0];		\ | ||
|  |    b[0][1] = a[0][1];		\ | ||
|  |    b[0][2] = a[0][2];		\ | ||
|  |    b[0][3] = a[0][3];		\ | ||
|  | 				\ | ||
|  |    b[1][0] = a[1][0];		\ | ||
|  |    b[1][1] = a[1][1];		\ | ||
|  |    b[1][2] = a[1][2];		\ | ||
|  |    b[1][3] = a[1][3];		\ | ||
|  | 				\ | ||
|  |    b[2][0] = a[2][0];		\ | ||
|  |    b[2][1] = a[2][1];		\ | ||
|  |    b[2][2] = a[2][2];		\ | ||
|  |    b[2][3] = a[2][3];		\ | ||
|  | 				\ | ||
|  |    b[3][0] = a[3][0];		\ | ||
|  |    b[3][1] = a[3][1];		\ | ||
|  |    b[3][2] = a[3][2];		\ | ||
|  |    b[3][3] = a[3][3];		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /*! matrix transpose */ | ||
|  | #define TRANSPOSE_MATRIX_2X2(b,a)	\
 | ||
|  | {				\ | ||
|  |    b[0][0] = a[0][0];		\ | ||
|  |    b[0][1] = a[1][0];		\ | ||
|  | 				\ | ||
|  |    b[1][0] = a[0][1];		\ | ||
|  |    b[1][1] = a[1][1];		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /*! matrix transpose */ | ||
|  | #define TRANSPOSE_MATRIX_3X3(b,a)	\
 | ||
|  | {				\ | ||
|  |    b[0][0] = a[0][0];		\ | ||
|  |    b[0][1] = a[1][0];		\ | ||
|  |    b[0][2] = a[2][0];		\ | ||
|  | 				\ | ||
|  |    b[1][0] = a[0][1];		\ | ||
|  |    b[1][1] = a[1][1];		\ | ||
|  |    b[1][2] = a[2][1];		\ | ||
|  | 				\ | ||
|  |    b[2][0] = a[0][2];		\ | ||
|  |    b[2][1] = a[1][2];		\ | ||
|  |    b[2][2] = a[2][2];		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /*! matrix transpose */ | ||
|  | #define TRANSPOSE_MATRIX_4X4(b,a)	\
 | ||
|  | {				\ | ||
|  |    b[0][0] = a[0][0];		\ | ||
|  |    b[0][1] = a[1][0];		\ | ||
|  |    b[0][2] = a[2][0];		\ | ||
|  |    b[0][3] = a[3][0];		\ | ||
|  | 				\ | ||
|  |    b[1][0] = a[0][1];		\ | ||
|  |    b[1][1] = a[1][1];		\ | ||
|  |    b[1][2] = a[2][1];		\ | ||
|  |    b[1][3] = a[3][1];		\ | ||
|  | 				\ | ||
|  |    b[2][0] = a[0][2];		\ | ||
|  |    b[2][1] = a[1][2];		\ | ||
|  |    b[2][2] = a[2][2];		\ | ||
|  |    b[2][3] = a[3][2];		\ | ||
|  | 				\ | ||
|  |    b[3][0] = a[0][3];		\ | ||
|  |    b[3][1] = a[1][3];		\ | ||
|  |    b[3][2] = a[2][3];		\ | ||
|  |    b[3][3] = a[3][3];		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /*! multiply matrix by scalar */ | ||
|  | #define SCALE_MATRIX_2X2(b,s,a)		\
 | ||
|  | {					\ | ||
|  |    b[0][0] = (s) * a[0][0];		\ | ||
|  |    b[0][1] = (s) * a[0][1];		\ | ||
|  | 					\ | ||
|  |    b[1][0] = (s) * a[1][0];		\ | ||
|  |    b[1][1] = (s) * a[1][1];		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /*! multiply matrix by scalar */ | ||
|  | #define SCALE_MATRIX_3X3(b,s,a)		\
 | ||
|  | {					\ | ||
|  |    b[0][0] = (s) * a[0][0];		\ | ||
|  |    b[0][1] = (s) * a[0][1];		\ | ||
|  |    b[0][2] = (s) * a[0][2];		\ | ||
|  | 					\ | ||
|  |    b[1][0] = (s) * a[1][0];		\ | ||
|  |    b[1][1] = (s) * a[1][1];		\ | ||
|  |    b[1][2] = (s) * a[1][2];		\ | ||
|  | 					\ | ||
|  |    b[2][0] = (s) * a[2][0];		\ | ||
|  |    b[2][1] = (s) * a[2][1];		\ | ||
|  |    b[2][2] = (s) * a[2][2];		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /*! multiply matrix by scalar */ | ||
|  | #define SCALE_MATRIX_4X4(b,s,a)		\
 | ||
|  | {					\ | ||
|  |    b[0][0] = (s) * a[0][0];		\ | ||
|  |    b[0][1] = (s) * a[0][1];		\ | ||
|  |    b[0][2] = (s) * a[0][2];		\ | ||
|  |    b[0][3] = (s) * a[0][3];		\ | ||
|  | 					\ | ||
|  |    b[1][0] = (s) * a[1][0];		\ | ||
|  |    b[1][1] = (s) * a[1][1];		\ | ||
|  |    b[1][2] = (s) * a[1][2];		\ | ||
|  |    b[1][3] = (s) * a[1][3];		\ | ||
|  | 					\ | ||
|  |    b[2][0] = (s) * a[2][0];		\ | ||
|  |    b[2][1] = (s) * a[2][1];		\ | ||
|  |    b[2][2] = (s) * a[2][2];		\ | ||
|  |    b[2][3] = (s) * a[2][3];		\ | ||
|  | 					\ | ||
|  |    b[3][0] = s * a[3][0];		\ | ||
|  |    b[3][1] = s * a[3][1];		\ | ||
|  |    b[3][2] = s * a[3][2];		\ | ||
|  |    b[3][3] = s * a[3][3];		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /*! multiply matrix by scalar */ | ||
|  | #define SCALE_VEC_MATRIX_2X2(b,svec,a)		\
 | ||
|  | {					\ | ||
|  |    b[0][0] = svec[0] * a[0][0];		\ | ||
|  |    b[1][0] = svec[0] * a[1][0];		\ | ||
|  | 					\ | ||
|  |    b[0][1] = svec[1] * a[0][1];		\ | ||
|  |    b[1][1] = svec[1] * a[1][1];		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /*! multiply matrix by scalar. Each columns is scaled by each scalar vector component */ | ||
|  | #define SCALE_VEC_MATRIX_3X3(b,svec,a)		\
 | ||
|  | {					\ | ||
|  |    b[0][0] = svec[0] * a[0][0];		\ | ||
|  |    b[1][0] = svec[0] * a[1][0];		\ | ||
|  |    b[2][0] = svec[0] * a[2][0];		\ | ||
|  | 					\ | ||
|  |    b[0][1] = svec[1] * a[0][1];		\ | ||
|  |    b[1][1] = svec[1] * a[1][1];		\ | ||
|  |    b[2][1] = svec[1] * a[2][1];		\ | ||
|  | 					\ | ||
|  |    b[0][2] = svec[2] * a[0][2];		\ | ||
|  |    b[1][2] = svec[2] * a[1][2];		\ | ||
|  |    b[2][2] = svec[2] * a[2][2];		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /*! multiply matrix by scalar */ | ||
|  | #define SCALE_VEC_MATRIX_4X4(b,svec,a)		\
 | ||
|  | {					\ | ||
|  |    b[0][0] = svec[0] * a[0][0];		\ | ||
|  |    b[1][0] = svec[0] * a[1][0];		\ | ||
|  |    b[2][0] = svec[0] * a[2][0];		\ | ||
|  |    b[3][0] = svec[0] * a[3][0];		\ | ||
|  | 					\ | ||
|  |    b[0][1] = svec[1] * a[0][1];		\ | ||
|  |    b[1][1] = svec[1] * a[1][1];		\ | ||
|  |    b[2][1] = svec[1] * a[2][1];		\ | ||
|  |    b[3][1] = svec[1] * a[3][1];		\ | ||
|  | 					\ | ||
|  |    b[0][2] = svec[2] * a[0][2];		\ | ||
|  |    b[1][2] = svec[2] * a[1][2];		\ | ||
|  |    b[2][2] = svec[2] * a[2][2];		\ | ||
|  |    b[3][2] = svec[2] * a[3][2];		\ | ||
|  |    \ | ||
|  |    b[0][3] = svec[3] * a[0][3];		\ | ||
|  |    b[1][3] = svec[3] * a[1][3];		\ | ||
|  |    b[2][3] = svec[3] * a[2][3];		\ | ||
|  |    b[3][3] = svec[3] * a[3][3];		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /*! multiply matrix by scalar */ | ||
|  | #define ACCUM_SCALE_MATRIX_2X2(b,s,a)		\
 | ||
|  | {					\ | ||
|  |    b[0][0] += (s) * a[0][0];		\ | ||
|  |    b[0][1] += (s) * a[0][1];		\ | ||
|  | 					\ | ||
|  |    b[1][0] += (s) * a[1][0];		\ | ||
|  |    b[1][1] += (s) * a[1][1];		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /*! multiply matrix by scalar */ | ||
|  | #define ACCUM_SCALE_MATRIX_3X3(b,s,a)		\
 | ||
|  | {					\ | ||
|  |    b[0][0] += (s) * a[0][0];		\ | ||
|  |    b[0][1] += (s) * a[0][1];		\ | ||
|  |    b[0][2] += (s) * a[0][2];		\ | ||
|  | 					\ | ||
|  |    b[1][0] += (s) * a[1][0];		\ | ||
|  |    b[1][1] += (s) * a[1][1];		\ | ||
|  |    b[1][2] += (s) * a[1][2];		\ | ||
|  | 					\ | ||
|  |    b[2][0] += (s) * a[2][0];		\ | ||
|  |    b[2][1] += (s) * a[2][1];		\ | ||
|  |    b[2][2] += (s) * a[2][2];		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /*! multiply matrix by scalar */ | ||
|  | #define ACCUM_SCALE_MATRIX_4X4(b,s,a)		\
 | ||
|  | {					\ | ||
|  |    b[0][0] += (s) * a[0][0];		\ | ||
|  |    b[0][1] += (s) * a[0][1];		\ | ||
|  |    b[0][2] += (s) * a[0][2];		\ | ||
|  |    b[0][3] += (s) * a[0][3];		\ | ||
|  | 					\ | ||
|  |    b[1][0] += (s) * a[1][0];		\ | ||
|  |    b[1][1] += (s) * a[1][1];		\ | ||
|  |    b[1][2] += (s) * a[1][2];		\ | ||
|  |    b[1][3] += (s) * a[1][3];		\ | ||
|  | 					\ | ||
|  |    b[2][0] += (s) * a[2][0];		\ | ||
|  |    b[2][1] += (s) * a[2][1];		\ | ||
|  |    b[2][2] += (s) * a[2][2];		\ | ||
|  |    b[2][3] += (s) * a[2][3];		\ | ||
|  | 					\ | ||
|  |    b[3][0] += (s) * a[3][0];		\ | ||
|  |    b[3][1] += (s) * a[3][1];		\ | ||
|  |    b[3][2] += (s) * a[3][2];		\ | ||
|  |    b[3][3] += (s) * a[3][3];		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | /*! matrix product */ | ||
|  | /*! c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y];*/ | ||
|  | #define MATRIX_PRODUCT_2X2(c,a,b)		\
 | ||
|  | {						\ | ||
|  |    c[0][0] = a[0][0]*b[0][0]+a[0][1]*b[1][0];	\ | ||
|  |    c[0][1] = a[0][0]*b[0][1]+a[0][1]*b[1][1];	\ | ||
|  | 						\ | ||
|  |    c[1][0] = a[1][0]*b[0][0]+a[1][1]*b[1][0];	\ | ||
|  |    c[1][1] = a[1][0]*b[0][1]+a[1][1]*b[1][1];	\ | ||
|  | 						\ | ||
|  | }\ | ||
|  | 
 | ||
|  | /*! matrix product */ | ||
|  | /*! c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y];*/ | ||
|  | #define MATRIX_PRODUCT_3X3(c,a,b)				\
 | ||
|  | {								\ | ||
|  |    c[0][0] = a[0][0]*b[0][0]+a[0][1]*b[1][0]+a[0][2]*b[2][0];	\ | ||
|  |    c[0][1] = a[0][0]*b[0][1]+a[0][1]*b[1][1]+a[0][2]*b[2][1];	\ | ||
|  |    c[0][2] = a[0][0]*b[0][2]+a[0][1]*b[1][2]+a[0][2]*b[2][2];	\ | ||
|  | 								\ | ||
|  |    c[1][0] = a[1][0]*b[0][0]+a[1][1]*b[1][0]+a[1][2]*b[2][0];	\ | ||
|  |    c[1][1] = a[1][0]*b[0][1]+a[1][1]*b[1][1]+a[1][2]*b[2][1];	\ | ||
|  |    c[1][2] = a[1][0]*b[0][2]+a[1][1]*b[1][2]+a[1][2]*b[2][2];	\ | ||
|  | 								\ | ||
|  |    c[2][0] = a[2][0]*b[0][0]+a[2][1]*b[1][0]+a[2][2]*b[2][0];	\ | ||
|  |    c[2][1] = a[2][0]*b[0][1]+a[2][1]*b[1][1]+a[2][2]*b[2][1];	\ | ||
|  |    c[2][2] = a[2][0]*b[0][2]+a[2][1]*b[1][2]+a[2][2]*b[2][2];	\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /*! matrix product */ | ||
|  | /*! c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y];*/ | ||
|  | #define MATRIX_PRODUCT_4X4(c,a,b)		\
 | ||
|  | {						\ | ||
|  |    c[0][0] = a[0][0]*b[0][0]+a[0][1]*b[1][0]+a[0][2]*b[2][0]+a[0][3]*b[3][0];\ | ||
|  |    c[0][1] = a[0][0]*b[0][1]+a[0][1]*b[1][1]+a[0][2]*b[2][1]+a[0][3]*b[3][1];\ | ||
|  |    c[0][2] = a[0][0]*b[0][2]+a[0][1]*b[1][2]+a[0][2]*b[2][2]+a[0][3]*b[3][2];\ | ||
|  |    c[0][3] = a[0][0]*b[0][3]+a[0][1]*b[1][3]+a[0][2]*b[2][3]+a[0][3]*b[3][3];\ | ||
|  | 						\ | ||
|  |    c[1][0] = a[1][0]*b[0][0]+a[1][1]*b[1][0]+a[1][2]*b[2][0]+a[1][3]*b[3][0];\ | ||
|  |    c[1][1] = a[1][0]*b[0][1]+a[1][1]*b[1][1]+a[1][2]*b[2][1]+a[1][3]*b[3][1];\ | ||
|  |    c[1][2] = a[1][0]*b[0][2]+a[1][1]*b[1][2]+a[1][2]*b[2][2]+a[1][3]*b[3][2];\ | ||
|  |    c[1][3] = a[1][0]*b[0][3]+a[1][1]*b[1][3]+a[1][2]*b[2][3]+a[1][3]*b[3][3];\ | ||
|  | 						\ | ||
|  |    c[2][0] = a[2][0]*b[0][0]+a[2][1]*b[1][0]+a[2][2]*b[2][0]+a[2][3]*b[3][0];\ | ||
|  |    c[2][1] = a[2][0]*b[0][1]+a[2][1]*b[1][1]+a[2][2]*b[2][1]+a[2][3]*b[3][1];\ | ||
|  |    c[2][2] = a[2][0]*b[0][2]+a[2][1]*b[1][2]+a[2][2]*b[2][2]+a[2][3]*b[3][2];\ | ||
|  |    c[2][3] = a[2][0]*b[0][3]+a[2][1]*b[1][3]+a[2][2]*b[2][3]+a[2][3]*b[3][3];\ | ||
|  | 						\ | ||
|  |    c[3][0] = a[3][0]*b[0][0]+a[3][1]*b[1][0]+a[3][2]*b[2][0]+a[3][3]*b[3][0];\ | ||
|  |    c[3][1] = a[3][0]*b[0][1]+a[3][1]*b[1][1]+a[3][2]*b[2][1]+a[3][3]*b[3][1];\ | ||
|  |    c[3][2] = a[3][0]*b[0][2]+a[3][1]*b[1][2]+a[3][2]*b[2][2]+a[3][3]*b[3][2];\ | ||
|  |    c[3][3] = a[3][0]*b[0][3]+a[3][1]*b[1][3]+a[3][2]*b[2][3]+a[3][3]*b[3][3];\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /*! matrix times vector */ | ||
|  | #define MAT_DOT_VEC_2X2(p,m,v)					\
 | ||
|  | {								\ | ||
|  |    p[0] = m[0][0]*v[0] + m[0][1]*v[1];				\ | ||
|  |    p[1] = m[1][0]*v[0] + m[1][1]*v[1];				\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /*! matrix times vector */ | ||
|  | #define MAT_DOT_VEC_3X3(p,m,v)					\
 | ||
|  | {								\ | ||
|  |    p[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2];		\ | ||
|  |    p[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2];		\ | ||
|  |    p[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2];		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /*! matrix times vector
 | ||
|  | v is a vec4f | ||
|  | */ | ||
|  | #define MAT_DOT_VEC_4X4(p,m,v)					\
 | ||
|  | {								\ | ||
|  |    p[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2] + m[0][3]*v[3];	\ | ||
|  |    p[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2] + m[1][3]*v[3];	\ | ||
|  |    p[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2] + m[2][3]*v[3];	\ | ||
|  |    p[3] = m[3][0]*v[0] + m[3][1]*v[1] + m[3][2]*v[2] + m[3][3]*v[3];	\ | ||
|  | }\ | ||
|  | 
 | ||
|  | /*! matrix times vector
 | ||
|  | v is a vec3f | ||
|  | and m is a mat4f<br> | ||
|  | Last column is added as the position | ||
|  | */ | ||
|  | #define MAT_DOT_VEC_3X4(p,m,v)					\
 | ||
|  | {								\ | ||
|  |    p[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2] + m[0][3];	\ | ||
|  |    p[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2] + m[1][3];	\ | ||
|  |    p[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2] + m[2][3];	\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /*! vector transpose times matrix */ | ||
|  | /*! p[j] = v[0]*m[0][j] + v[1]*m[1][j] + v[2]*m[2][j]; */ | ||
|  | #define VEC_DOT_MAT_3X3(p,v,m)					\
 | ||
|  | {								\ | ||
|  |    p[0] = v[0]*m[0][0] + v[1]*m[1][0] + v[2]*m[2][0];		\ | ||
|  |    p[1] = v[0]*m[0][1] + v[1]*m[1][1] + v[2]*m[2][1];		\ | ||
|  |    p[2] = v[0]*m[0][2] + v[1]*m[1][2] + v[2]*m[2][2];		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /*! affine matrix times vector */ | ||
|  | /** The matrix is assumed to be an affine matrix, with last two
 | ||
|  |  * entries representing a translation */ | ||
|  | #define MAT_DOT_VEC_2X3(p,m,v)					\
 | ||
|  | {								\ | ||
|  |    p[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2];		\ | ||
|  |    p[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2];		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | //! Transform a plane
 | ||
|  | #define MAT_TRANSFORM_PLANE_4X4(pout,m,plane)\
 | ||
|  | {								\ | ||
|  |    pout[0] = m[0][0]*plane[0] + m[0][1]*plane[1]  + m[0][2]*plane[2];\ | ||
|  |    pout[1] = m[1][0]*plane[0] + m[1][1]*plane[1]  + m[1][2]*plane[2];\ | ||
|  |    pout[2] = m[2][0]*plane[0] + m[2][1]*plane[1]  + m[2][2]*plane[2];\ | ||
|  |    pout[3] = m[0][3]*pout[0] + m[1][3]*pout[1]  + m[2][3]*pout[2] + plane[3];\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /** inverse transpose of matrix times vector
 | ||
|  |  * | ||
|  |  * This macro computes inverse transpose of matrix m, | ||
|  |  * and multiplies vector v into it, to yeild vector p | ||
|  |  * | ||
|  |  * DANGER !!! Do Not use this on normal vectors!!! | ||
|  |  * It will leave normals the wrong length !!! | ||
|  |  * See macro below for use on normals. | ||
|  |  */ | ||
|  | #define INV_TRANSP_MAT_DOT_VEC_2X2(p,m,v)			\
 | ||
|  | {								\ | ||
|  |    GREAL det;						\ | ||
|  | 								\ | ||
|  |    det = m[0][0]*m[1][1] - m[0][1]*m[1][0];			\ | ||
|  |    p[0] = m[1][1]*v[0] - m[1][0]*v[1];				\ | ||
|  |    p[1] = - m[0][1]*v[0] + m[0][0]*v[1];			\ | ||
|  | 								\ | ||
|  |    /* if matrix not singular, and not orthonormal, then renormalize */ \ | ||
|  |    if ((det!=1.0f) && (det != 0.0f)) {				\ | ||
|  |       det = 1.0f / det;						\ | ||
|  |       p[0] *= det;						\ | ||
|  |       p[1] *= det;						\ | ||
|  |    }								\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /** transform normal vector by inverse transpose of matrix
 | ||
|  |  * and then renormalize the vector | ||
|  |  * | ||
|  |  * This macro computes inverse transpose of matrix m, | ||
|  |  * and multiplies vector v into it, to yeild vector p | ||
|  |  * Vector p is then normalized. | ||
|  |  */ | ||
|  | #define NORM_XFORM_2X2(p,m,v)					\
 | ||
|  | {								\ | ||
|  |    GREAL len;							\ | ||
|  | 								\ | ||
|  |    /* do nothing if off-diagonals are zero and diagonals are 	\
 | ||
|  |     * equal */							\ | ||
|  |    if ((m[0][1] != 0.0) || (m[1][0] != 0.0) || (m[0][0] != m[1][1])) { \ | ||
|  |       p[0] = m[1][1]*v[0] - m[1][0]*v[1];			\ | ||
|  |       p[1] = - m[0][1]*v[0] + m[0][0]*v[1];			\ | ||
|  | 								\ | ||
|  |       len = p[0]*p[0] + p[1]*p[1];				\ | ||
|  |       GIM_INV_SQRT(len,len);					\ | ||
|  |       p[0] *= len;						\ | ||
|  |       p[1] *= len;						\ | ||
|  |    } else {							\ | ||
|  |       VEC_COPY_2 (p, v);					\ | ||
|  |    }								\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /** outer product of vector times vector transpose
 | ||
|  |  * | ||
|  |  * The outer product of vector v and vector transpose t yeilds | ||
|  |  * dyadic matrix m. | ||
|  |  */ | ||
|  | #define OUTER_PRODUCT_2X2(m,v,t)				\
 | ||
|  | {								\ | ||
|  |    m[0][0] = v[0] * t[0];					\ | ||
|  |    m[0][1] = v[0] * t[1];					\ | ||
|  | 								\ | ||
|  |    m[1][0] = v[1] * t[0];					\ | ||
|  |    m[1][1] = v[1] * t[1];					\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /** outer product of vector times vector transpose
 | ||
|  |  * | ||
|  |  * The outer product of vector v and vector transpose t yeilds | ||
|  |  * dyadic matrix m. | ||
|  |  */ | ||
|  | #define OUTER_PRODUCT_3X3(m,v,t)				\
 | ||
|  | {								\ | ||
|  |    m[0][0] = v[0] * t[0];					\ | ||
|  |    m[0][1] = v[0] * t[1];					\ | ||
|  |    m[0][2] = v[0] * t[2];					\ | ||
|  | 								\ | ||
|  |    m[1][0] = v[1] * t[0];					\ | ||
|  |    m[1][1] = v[1] * t[1];					\ | ||
|  |    m[1][2] = v[1] * t[2];					\ | ||
|  | 								\ | ||
|  |    m[2][0] = v[2] * t[0];					\ | ||
|  |    m[2][1] = v[2] * t[1];					\ | ||
|  |    m[2][2] = v[2] * t[2];					\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /** outer product of vector times vector transpose
 | ||
|  |  * | ||
|  |  * The outer product of vector v and vector transpose t yeilds | ||
|  |  * dyadic matrix m. | ||
|  |  */ | ||
|  | #define OUTER_PRODUCT_4X4(m,v,t)				\
 | ||
|  | {								\ | ||
|  |    m[0][0] = v[0] * t[0];					\ | ||
|  |    m[0][1] = v[0] * t[1];					\ | ||
|  |    m[0][2] = v[0] * t[2];					\ | ||
|  |    m[0][3] = v[0] * t[3];					\ | ||
|  | 								\ | ||
|  |    m[1][0] = v[1] * t[0];					\ | ||
|  |    m[1][1] = v[1] * t[1];					\ | ||
|  |    m[1][2] = v[1] * t[2];					\ | ||
|  |    m[1][3] = v[1] * t[3];					\ | ||
|  | 								\ | ||
|  |    m[2][0] = v[2] * t[0];					\ | ||
|  |    m[2][1] = v[2] * t[1];					\ | ||
|  |    m[2][2] = v[2] * t[2];					\ | ||
|  |    m[2][3] = v[2] * t[3];					\ | ||
|  | 								\ | ||
|  |    m[3][0] = v[3] * t[0];					\ | ||
|  |    m[3][1] = v[3] * t[1];					\ | ||
|  |    m[3][2] = v[3] * t[2];					\ | ||
|  |    m[3][3] = v[3] * t[3];					\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /** outer product of vector times vector transpose
 | ||
|  |  * | ||
|  |  * The outer product of vector v and vector transpose t yeilds | ||
|  |  * dyadic matrix m. | ||
|  |  */ | ||
|  | #define ACCUM_OUTER_PRODUCT_2X2(m,v,t)				\
 | ||
|  | {								\ | ||
|  |    m[0][0] += v[0] * t[0];					\ | ||
|  |    m[0][1] += v[0] * t[1];					\ | ||
|  | 								\ | ||
|  |    m[1][0] += v[1] * t[0];					\ | ||
|  |    m[1][1] += v[1] * t[1];					\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /** outer product of vector times vector transpose
 | ||
|  |  * | ||
|  |  * The outer product of vector v and vector transpose t yeilds | ||
|  |  * dyadic matrix m. | ||
|  |  */ | ||
|  | #define ACCUM_OUTER_PRODUCT_3X3(m,v,t)				\
 | ||
|  | {								\ | ||
|  |    m[0][0] += v[0] * t[0];					\ | ||
|  |    m[0][1] += v[0] * t[1];					\ | ||
|  |    m[0][2] += v[0] * t[2];					\ | ||
|  | 								\ | ||
|  |    m[1][0] += v[1] * t[0];					\ | ||
|  |    m[1][1] += v[1] * t[1];					\ | ||
|  |    m[1][2] += v[1] * t[2];					\ | ||
|  | 								\ | ||
|  |    m[2][0] += v[2] * t[0];					\ | ||
|  |    m[2][1] += v[2] * t[1];					\ | ||
|  |    m[2][2] += v[2] * t[2];					\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /** outer product of vector times vector transpose
 | ||
|  |  * | ||
|  |  * The outer product of vector v and vector transpose t yeilds | ||
|  |  * dyadic matrix m. | ||
|  |  */ | ||
|  | #define ACCUM_OUTER_PRODUCT_4X4(m,v,t)				\
 | ||
|  | {								\ | ||
|  |    m[0][0] += v[0] * t[0];					\ | ||
|  |    m[0][1] += v[0] * t[1];					\ | ||
|  |    m[0][2] += v[0] * t[2];					\ | ||
|  |    m[0][3] += v[0] * t[3];					\ | ||
|  | 								\ | ||
|  |    m[1][0] += v[1] * t[0];					\ | ||
|  |    m[1][1] += v[1] * t[1];					\ | ||
|  |    m[1][2] += v[1] * t[2];					\ | ||
|  |    m[1][3] += v[1] * t[3];					\ | ||
|  | 								\ | ||
|  |    m[2][0] += v[2] * t[0];					\ | ||
|  |    m[2][1] += v[2] * t[1];					\ | ||
|  |    m[2][2] += v[2] * t[2];					\ | ||
|  |    m[2][3] += v[2] * t[3];					\ | ||
|  | 								\ | ||
|  |    m[3][0] += v[3] * t[0];					\ | ||
|  |    m[3][1] += v[3] * t[1];					\ | ||
|  |    m[3][2] += v[3] * t[2];					\ | ||
|  |    m[3][3] += v[3] * t[3];					\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /** determinant of matrix
 | ||
|  |  * | ||
|  |  * Computes determinant of matrix m, returning d | ||
|  |  */ | ||
|  | #define DETERMINANT_2X2(d,m)					\
 | ||
|  | {								\ | ||
|  |    d = m[0][0] * m[1][1] - m[0][1] * m[1][0];			\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /** determinant of matrix
 | ||
|  |  * | ||
|  |  * Computes determinant of matrix m, returning d | ||
|  |  */ | ||
|  | #define DETERMINANT_3X3(d,m)					\
 | ||
|  | {								\ | ||
|  |    d = m[0][0] * (m[1][1]*m[2][2] - m[1][2] * m[2][1]);		\ | ||
|  |    d -= m[0][1] * (m[1][0]*m[2][2] - m[1][2] * m[2][0]);	\ | ||
|  |    d += m[0][2] * (m[1][0]*m[2][1] - m[1][1] * m[2][0]);	\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /** i,j,th cofactor of a 4x4 matrix
 | ||
|  |  * | ||
|  |  */ | ||
|  | #define COFACTOR_4X4_IJ(fac,m,i,j) 				\
 | ||
|  | {								\ | ||
|  |    GUINT __ii[4], __jj[4], __k;						\ | ||
|  | 								\ | ||
|  |    for (__k=0; __k<i; __k++) __ii[__k] = __k;				\ | ||
|  |    for (__k=i; __k<3; __k++) __ii[__k] = __k+1;				\ | ||
|  |    for (__k=0; __k<j; __k++) __jj[__k] = __k;				\ | ||
|  |    for (__k=j; __k<3; __k++) __jj[__k] = __k+1;				\ | ||
|  | 								\ | ||
|  |    (fac) = m[__ii[0]][__jj[0]] * (m[__ii[1]][__jj[1]]*m[__ii[2]][__jj[2]] 	\ | ||
|  |                             - m[__ii[1]][__jj[2]]*m[__ii[2]][__jj[1]]); \ | ||
|  |    (fac) -= m[__ii[0]][__jj[1]] * (m[__ii[1]][__jj[0]]*m[__ii[2]][__jj[2]]	\ | ||
|  |                              - m[__ii[1]][__jj[2]]*m[__ii[2]][__jj[0]]);\ | ||
|  |    (fac) += m[__ii[0]][__jj[2]] * (m[__ii[1]][__jj[0]]*m[__ii[2]][__jj[1]]	\ | ||
|  |                              - m[__ii[1]][__jj[1]]*m[__ii[2]][__jj[0]]);\ | ||
|  | 								\ | ||
|  |    __k = i+j;							\ | ||
|  |    if ( __k != (__k/2)*2) {						\ | ||
|  |       (fac) = -(fac);						\ | ||
|  |    }								\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /** determinant of matrix
 | ||
|  |  * | ||
|  |  * Computes determinant of matrix m, returning d | ||
|  |  */ | ||
|  | #define DETERMINANT_4X4(d,m)					\
 | ||
|  | {								\ | ||
|  |    GREAL cofac;						\ | ||
|  |    COFACTOR_4X4_IJ (cofac, m, 0, 0);				\ | ||
|  |    d = m[0][0] * cofac;						\ | ||
|  |    COFACTOR_4X4_IJ (cofac, m, 0, 1);				\ | ||
|  |    d += m[0][1] * cofac;					\ | ||
|  |    COFACTOR_4X4_IJ (cofac, m, 0, 2);				\ | ||
|  |    d += m[0][2] * cofac;					\ | ||
|  |    COFACTOR_4X4_IJ (cofac, m, 0, 3);				\ | ||
|  |    d += m[0][3] * cofac;					\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /** cofactor of matrix
 | ||
|  |  * | ||
|  |  * Computes cofactor of matrix m, returning a | ||
|  |  */ | ||
|  | #define COFACTOR_2X2(a,m)					\
 | ||
|  | {								\ | ||
|  |    a[0][0] = (m)[1][1];						\ | ||
|  |    a[0][1] = - (m)[1][0];						\ | ||
|  |    a[1][0] = - (m)[0][1];						\ | ||
|  |    a[1][1] = (m)[0][0];						\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /** cofactor of matrix
 | ||
|  |  * | ||
|  |  * Computes cofactor of matrix m, returning a | ||
|  |  */ | ||
|  | #define COFACTOR_3X3(a,m)					\
 | ||
|  | {								\ | ||
|  |    a[0][0] = m[1][1]*m[2][2] - m[1][2]*m[2][1];			\ | ||
|  |    a[0][1] = - (m[1][0]*m[2][2] - m[2][0]*m[1][2]);		\ | ||
|  |    a[0][2] = m[1][0]*m[2][1] - m[1][1]*m[2][0];			\ | ||
|  |    a[1][0] = - (m[0][1]*m[2][2] - m[0][2]*m[2][1]);		\ | ||
|  |    a[1][1] = m[0][0]*m[2][2] - m[0][2]*m[2][0];			\ | ||
|  |    a[1][2] = - (m[0][0]*m[2][1] - m[0][1]*m[2][0]);		\ | ||
|  |    a[2][0] = m[0][1]*m[1][2] - m[0][2]*m[1][1];			\ | ||
|  |    a[2][1] = - (m[0][0]*m[1][2] - m[0][2]*m[1][0]);		\ | ||
|  |    a[2][2] = m[0][0]*m[1][1] - m[0][1]*m[1][0]);		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /** cofactor of matrix
 | ||
|  |  * | ||
|  |  * Computes cofactor of matrix m, returning a | ||
|  |  */ | ||
|  | #define COFACTOR_4X4(a,m)					\
 | ||
|  | {								\ | ||
|  |    int i,j;							\ | ||
|  | 								\ | ||
|  |    for (i=0; i<4; i++) {					\ | ||
|  |       for (j=0; j<4; j++) {					\ | ||
|  |          COFACTOR_4X4_IJ (a[i][j], m, i, j);			\ | ||
|  |       }								\ | ||
|  |    }								\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /** adjoint of matrix
 | ||
|  |  * | ||
|  |  * Computes adjoint of matrix m, returning a | ||
|  |  * (Note that adjoint is just the transpose of the cofactor matrix) | ||
|  |  */ | ||
|  | #define ADJOINT_2X2(a,m)					\
 | ||
|  | {								\ | ||
|  |    a[0][0] = (m)[1][1];						\ | ||
|  |    a[1][0] = - (m)[1][0];						\ | ||
|  |    a[0][1] = - (m)[0][1];						\ | ||
|  |    a[1][1] = (m)[0][0];						\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /** adjoint of matrix
 | ||
|  |  * | ||
|  |  * Computes adjoint of matrix m, returning a | ||
|  |  * (Note that adjoint is just the transpose of the cofactor matrix) | ||
|  |  */ | ||
|  | #define ADJOINT_3X3(a,m)					\
 | ||
|  | {								\ | ||
|  |    a[0][0] = m[1][1]*m[2][2] - m[1][2]*m[2][1];			\ | ||
|  |    a[1][0] = - (m[1][0]*m[2][2] - m[2][0]*m[1][2]);		\ | ||
|  |    a[2][0] = m[1][0]*m[2][1] - m[1][1]*m[2][0];			\ | ||
|  |    a[0][1] = - (m[0][1]*m[2][2] - m[0][2]*m[2][1]);		\ | ||
|  |    a[1][1] = m[0][0]*m[2][2] - m[0][2]*m[2][0];			\ | ||
|  |    a[2][1] = - (m[0][0]*m[2][1] - m[0][1]*m[2][0]);		\ | ||
|  |    a[0][2] = m[0][1]*m[1][2] - m[0][2]*m[1][1];			\ | ||
|  |    a[1][2] = - (m[0][0]*m[1][2] - m[0][2]*m[1][0]);		\ | ||
|  |    a[2][2] = m[0][0]*m[1][1] - m[0][1]*m[1][0]);		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /** adjoint of matrix
 | ||
|  |  * | ||
|  |  * Computes adjoint of matrix m, returning a | ||
|  |  * (Note that adjoint is just the transpose of the cofactor matrix) | ||
|  |  */ | ||
|  | #define ADJOINT_4X4(a,m)					\
 | ||
|  | {								\ | ||
|  |    char _i_,_j_;							\ | ||
|  | 								\ | ||
|  |    for (_i_=0; _i_<4; _i_++) {					\ | ||
|  |       for (_j_=0; _j_<4; _j_++) {					\ | ||
|  |          COFACTOR_4X4_IJ (a[_j_][_i_], m, _i_, _j_);			\ | ||
|  |       }								\ | ||
|  |    }								\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /** compute adjoint of matrix and scale
 | ||
|  |  * | ||
|  |  * Computes adjoint of matrix m, scales it by s, returning a | ||
|  |  */ | ||
|  | #define SCALE_ADJOINT_2X2(a,s,m)				\
 | ||
|  | {								\ | ||
|  |    a[0][0] = (s) * m[1][1];					\ | ||
|  |    a[1][0] = - (s) * m[1][0];					\ | ||
|  |    a[0][1] = - (s) * m[0][1];					\ | ||
|  |    a[1][1] = (s) * m[0][0];					\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /** compute adjoint of matrix and scale
 | ||
|  |  * | ||
|  |  * Computes adjoint of matrix m, scales it by s, returning a | ||
|  |  */ | ||
|  | #define SCALE_ADJOINT_3X3(a,s,m)				\
 | ||
|  | {								\ | ||
|  |    a[0][0] = (s) * (m[1][1] * m[2][2] - m[1][2] * m[2][1]);	\ | ||
|  |    a[1][0] = (s) * (m[1][2] * m[2][0] - m[1][0] * m[2][2]);	\ | ||
|  |    a[2][0] = (s) * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);	\ | ||
|  | 								\ | ||
|  |    a[0][1] = (s) * (m[0][2] * m[2][1] - m[0][1] * m[2][2]);	\ | ||
|  |    a[1][1] = (s) * (m[0][0] * m[2][2] - m[0][2] * m[2][0]);	\ | ||
|  |    a[2][1] = (s) * (m[0][1] * m[2][0] - m[0][0] * m[2][1]);	\ | ||
|  | 								\ | ||
|  |    a[0][2] = (s) * (m[0][1] * m[1][2] - m[0][2] * m[1][1]);	\ | ||
|  |    a[1][2] = (s) * (m[0][2] * m[1][0] - m[0][0] * m[1][2]);	\ | ||
|  |    a[2][2] = (s) * (m[0][0] * m[1][1] - m[0][1] * m[1][0]);	\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /** compute adjoint of matrix and scale
 | ||
|  |  * | ||
|  |  * Computes adjoint of matrix m, scales it by s, returning a | ||
|  |  */ | ||
|  | #define SCALE_ADJOINT_4X4(a,s,m)				\
 | ||
|  | {								\ | ||
|  |    char _i_,_j_; \ | ||
|  |    for (_i_=0; _i_<4; _i_++) {					\ | ||
|  |       for (_j_=0; _j_<4; _j_++) {					\ | ||
|  |          COFACTOR_4X4_IJ (a[_j_][_i_], m, _i_, _j_);			\ | ||
|  |          a[_j_][_i_] *= s;						\ | ||
|  |       }								\ | ||
|  |    }								\ | ||
|  | }\ | ||
|  | 
 | ||
|  | /** inverse of matrix
 | ||
|  |  * | ||
|  |  * Compute inverse of matrix a, returning determinant m and | ||
|  |  * inverse b | ||
|  |  */ | ||
|  | #define INVERT_2X2(b,det,a)			\
 | ||
|  | {						\ | ||
|  |    GREAL _tmp_;					\ | ||
|  |    DETERMINANT_2X2 (det, a);			\ | ||
|  |    _tmp_ = 1.0 / (det);				\ | ||
|  |    SCALE_ADJOINT_2X2 (b, _tmp_, a);		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /** inverse of matrix
 | ||
|  |  * | ||
|  |  * Compute inverse of matrix a, returning determinant m and | ||
|  |  * inverse b | ||
|  |  */ | ||
|  | #define INVERT_3X3(b,det,a)			\
 | ||
|  | {						\ | ||
|  |    GREAL _tmp_;					\ | ||
|  |    DETERMINANT_3X3 (det, a);			\ | ||
|  |    _tmp_ = 1.0 / (det);				\ | ||
|  |    SCALE_ADJOINT_3X3 (b, _tmp_, a);		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | /** inverse of matrix
 | ||
|  |  * | ||
|  |  * Compute inverse of matrix a, returning determinant m and | ||
|  |  * inverse b | ||
|  |  */ | ||
|  | #define INVERT_4X4(b,det,a)			\
 | ||
|  | {						\ | ||
|  |    GREAL _tmp_;					\ | ||
|  |    DETERMINANT_4X4 (det, a);			\ | ||
|  |    _tmp_ = 1.0 / (det);				\ | ||
|  |    SCALE_ADJOINT_4X4 (b, _tmp_, a);		\ | ||
|  | }\ | ||
|  | 
 | ||
|  | //! Get the triple(3) row of a transform matrix
 | ||
|  | #define MAT_GET_ROW(mat,vec3,rowindex)\
 | ||
|  | {\ | ||
|  |     vec3[0] = mat[rowindex][0];\ | ||
|  |     vec3[1] = mat[rowindex][1];\ | ||
|  |     vec3[2] = mat[rowindex][2]; \ | ||
|  | }\ | ||
|  | 
 | ||
|  | //! Get the tuple(2) row of a transform matrix
 | ||
|  | #define MAT_GET_ROW2(mat,vec2,rowindex)\
 | ||
|  | {\ | ||
|  |     vec2[0] = mat[rowindex][0];\ | ||
|  |     vec2[1] = mat[rowindex][1];\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | //! Get the quad (4) row of a transform matrix
 | ||
|  | #define MAT_GET_ROW4(mat,vec4,rowindex)\
 | ||
|  | {\ | ||
|  |     vec4[0] = mat[rowindex][0];\ | ||
|  |     vec4[1] = mat[rowindex][1];\ | ||
|  |     vec4[2] = mat[rowindex][2];\ | ||
|  |     vec4[3] = mat[rowindex][3];\ | ||
|  | }\ | ||
|  | 
 | ||
|  | //! Get the triple(3) col of a transform matrix
 | ||
|  | #define MAT_GET_COL(mat,vec3,colindex)\
 | ||
|  | {\ | ||
|  |     vec3[0] = mat[0][colindex];\ | ||
|  |     vec3[1] = mat[1][colindex];\ | ||
|  |     vec3[2] = mat[2][colindex]; \ | ||
|  | }\ | ||
|  | 
 | ||
|  | //! Get the tuple(2) col of a transform matrix
 | ||
|  | #define MAT_GET_COL2(mat,vec2,colindex)\
 | ||
|  | {\ | ||
|  |     vec2[0] = mat[0][colindex];\ | ||
|  |     vec2[1] = mat[1][colindex];\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | //! Get the quad (4) col of a transform matrix
 | ||
|  | #define MAT_GET_COL4(mat,vec4,colindex)\
 | ||
|  | {\ | ||
|  |     vec4[0] = mat[0][colindex];\ | ||
|  |     vec4[1] = mat[1][colindex];\ | ||
|  |     vec4[2] = mat[2][colindex];\ | ||
|  |     vec4[3] = mat[3][colindex];\ | ||
|  | }\ | ||
|  | 
 | ||
|  | //! Get the triple(3) col of a transform matrix
 | ||
|  | #define MAT_GET_X(mat,vec3)\
 | ||
|  | {\ | ||
|  |     MAT_GET_COL(mat,vec3,0);\ | ||
|  | }\ | ||
|  | 
 | ||
|  | //! Get the triple(3) col of a transform matrix
 | ||
|  | #define MAT_GET_Y(mat,vec3)\
 | ||
|  | {\ | ||
|  |     MAT_GET_COL(mat,vec3,1);\ | ||
|  | }\ | ||
|  | 
 | ||
|  | //! Get the triple(3) col of a transform matrix
 | ||
|  | #define MAT_GET_Z(mat,vec3)\
 | ||
|  | {\ | ||
|  |     MAT_GET_COL(mat,vec3,2);\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | //! Get the triple(3) col of a transform matrix
 | ||
|  | #define MAT_SET_X(mat,vec3)\
 | ||
|  | {\ | ||
|  |     mat[0][0] = vec3[0];\ | ||
|  |     mat[1][0] = vec3[1];\ | ||
|  |     mat[2][0] = vec3[2];\ | ||
|  | }\ | ||
|  | 
 | ||
|  | //! Get the triple(3) col of a transform matrix
 | ||
|  | #define MAT_SET_Y(mat,vec3)\
 | ||
|  | {\ | ||
|  |     mat[0][1] = vec3[0];\ | ||
|  |     mat[1][1] = vec3[1];\ | ||
|  |     mat[2][1] = vec3[2];\ | ||
|  | }\ | ||
|  | 
 | ||
|  | //! Get the triple(3) col of a transform matrix
 | ||
|  | #define MAT_SET_Z(mat,vec3)\
 | ||
|  | {\ | ||
|  |     mat[0][2] = vec3[0];\ | ||
|  |     mat[1][2] = vec3[1];\ | ||
|  |     mat[2][2] = vec3[2];\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | //! Get the triple(3) col of a transform matrix
 | ||
|  | #define MAT_GET_TRANSLATION(mat,vec3)\
 | ||
|  | {\ | ||
|  |     vec3[0] = mat[0][3];\ | ||
|  |     vec3[1] = mat[1][3];\ | ||
|  |     vec3[2] = mat[2][3]; \ | ||
|  | }\ | ||
|  | 
 | ||
|  | //! Set the triple(3) col of a transform matrix
 | ||
|  | #define MAT_SET_TRANSLATION(mat,vec3)\
 | ||
|  | {\ | ||
|  |     mat[0][3] = vec3[0];\ | ||
|  |     mat[1][3] = vec3[1];\ | ||
|  |     mat[2][3] = vec3[2]; \ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | //! Returns the dot product between a vec3f and the row of a matrix
 | ||
|  | #define MAT_DOT_ROW(mat,vec3,rowindex) (vec3[0]*mat[rowindex][0] + vec3[1]*mat[rowindex][1] + vec3[2]*mat[rowindex][2])
 | ||
|  | 
 | ||
|  | //! Returns the dot product between a vec2f and the row of a matrix
 | ||
|  | #define MAT_DOT_ROW2(mat,vec2,rowindex) (vec2[0]*mat[rowindex][0] + vec2[1]*mat[rowindex][1])
 | ||
|  | 
 | ||
|  | //! Returns the dot product between a vec4f and the row of a matrix
 | ||
|  | #define MAT_DOT_ROW4(mat,vec4,rowindex) (vec4[0]*mat[rowindex][0] + vec4[1]*mat[rowindex][1] + vec4[2]*mat[rowindex][2] + vec4[3]*mat[rowindex][3])
 | ||
|  | 
 | ||
|  | 
 | ||
|  | //! Returns the dot product between a vec3f and the col of a matrix
 | ||
|  | #define MAT_DOT_COL(mat,vec3,colindex) (vec3[0]*mat[0][colindex] + vec3[1]*mat[1][colindex] + vec3[2]*mat[2][colindex])
 | ||
|  | 
 | ||
|  | //! Returns the dot product between a vec2f and the col of a matrix
 | ||
|  | #define MAT_DOT_COL2(mat,vec2,colindex) (vec2[0]*mat[0][colindex] + vec2[1]*mat[1][colindex])
 | ||
|  | 
 | ||
|  | //! Returns the dot product between a vec4f and the col of a matrix
 | ||
|  | #define MAT_DOT_COL4(mat,vec4,colindex) (vec4[0]*mat[0][colindex] + vec4[1]*mat[1][colindex] + vec4[2]*mat[2][colindex] + vec4[3]*mat[3][colindex])
 | ||
|  | 
 | ||
|  | /*!Transpose matrix times vector
 | ||
|  | v is a vec3f | ||
|  | and m is a mat4f<br> | ||
|  | */ | ||
|  | #define INV_MAT_DOT_VEC_3X3(p,m,v)					\
 | ||
|  | {								\ | ||
|  |    p[0] = MAT_DOT_COL(m,v,0); \ | ||
|  |    p[1] = MAT_DOT_COL(m,v,1);	\ | ||
|  |    p[2] = MAT_DOT_COL(m,v,2);	\ | ||
|  | }\ | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #endif // GIM_VECTOR_H_INCLUDED
 |