Update Files
This commit is contained in:
@ -0,0 +1,306 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef BT_SOLVER_BODY_H
|
||||
#define BT_SOLVER_BODY_H
|
||||
|
||||
class btRigidBody;
|
||||
#include "LinearMath/btVector3.h"
|
||||
#include "LinearMath/btMatrix3x3.h"
|
||||
|
||||
#include "LinearMath/btAlignedAllocator.h"
|
||||
#include "LinearMath/btTransformUtil.h"
|
||||
|
||||
///Until we get other contributions, only use SIMD on Windows, when using Visual Studio 2008 or later, and not double precision
|
||||
#ifdef BT_USE_SSE
|
||||
#define USE_SIMD 1
|
||||
#endif //
|
||||
|
||||
|
||||
#ifdef USE_SIMD
|
||||
|
||||
struct btSimdScalar
|
||||
{
|
||||
SIMD_FORCE_INLINE btSimdScalar()
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE btSimdScalar(float fl)
|
||||
:m_vec128 (_mm_set1_ps(fl))
|
||||
{
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE btSimdScalar(__m128 v128)
|
||||
:m_vec128(v128)
|
||||
{
|
||||
}
|
||||
union
|
||||
{
|
||||
__m128 m_vec128;
|
||||
float m_floats[4];
|
||||
int m_ints[4];
|
||||
btScalar m_unusedPadding;
|
||||
};
|
||||
SIMD_FORCE_INLINE __m128 get128()
|
||||
{
|
||||
return m_vec128;
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE const __m128 get128() const
|
||||
{
|
||||
return m_vec128;
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE void set128(__m128 v128)
|
||||
{
|
||||
m_vec128 = v128;
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE operator __m128()
|
||||
{
|
||||
return m_vec128;
|
||||
}
|
||||
SIMD_FORCE_INLINE operator const __m128() const
|
||||
{
|
||||
return m_vec128;
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE operator float() const
|
||||
{
|
||||
return m_floats[0];
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
///@brief Return the elementwise product of two btSimdScalar
|
||||
SIMD_FORCE_INLINE btSimdScalar
|
||||
operator*(const btSimdScalar& v1, const btSimdScalar& v2)
|
||||
{
|
||||
return btSimdScalar(_mm_mul_ps(v1.get128(),v2.get128()));
|
||||
}
|
||||
|
||||
///@brief Return the elementwise product of two btSimdScalar
|
||||
SIMD_FORCE_INLINE btSimdScalar
|
||||
operator+(const btSimdScalar& v1, const btSimdScalar& v2)
|
||||
{
|
||||
return btSimdScalar(_mm_add_ps(v1.get128(),v2.get128()));
|
||||
}
|
||||
|
||||
|
||||
#else
|
||||
#define btSimdScalar btScalar
|
||||
#endif
|
||||
|
||||
///The btSolverBody is an internal datastructure for the constraint solver. Only necessary data is packed to increase cache coherence/performance.
|
||||
ATTRIBUTE_ALIGNED16 (struct) btSolverBody
|
||||
{
|
||||
BT_DECLARE_ALIGNED_ALLOCATOR();
|
||||
btTransform m_worldTransform;
|
||||
btVector3 m_deltaLinearVelocity;
|
||||
btVector3 m_deltaAngularVelocity;
|
||||
btVector3 m_angularFactor;
|
||||
btVector3 m_linearFactor;
|
||||
btVector3 m_invMass;
|
||||
btVector3 m_pushVelocity;
|
||||
btVector3 m_turnVelocity;
|
||||
btVector3 m_linearVelocity;
|
||||
btVector3 m_angularVelocity;
|
||||
btVector3 m_externalForceImpulse;
|
||||
btVector3 m_externalTorqueImpulse;
|
||||
|
||||
btRigidBody* m_originalBody;
|
||||
void setWorldTransform(const btTransform& worldTransform)
|
||||
{
|
||||
m_worldTransform = worldTransform;
|
||||
}
|
||||
|
||||
const btTransform& getWorldTransform() const
|
||||
{
|
||||
return m_worldTransform;
|
||||
}
|
||||
|
||||
|
||||
|
||||
SIMD_FORCE_INLINE void getVelocityInLocalPointNoDelta(const btVector3& rel_pos, btVector3& velocity ) const
|
||||
{
|
||||
if (m_originalBody)
|
||||
velocity = m_linearVelocity + m_externalForceImpulse + (m_angularVelocity+m_externalTorqueImpulse).cross(rel_pos);
|
||||
else
|
||||
velocity.setValue(0,0,0);
|
||||
}
|
||||
|
||||
|
||||
SIMD_FORCE_INLINE void getVelocityInLocalPointObsolete(const btVector3& rel_pos, btVector3& velocity ) const
|
||||
{
|
||||
if (m_originalBody)
|
||||
velocity = m_linearVelocity+m_deltaLinearVelocity + (m_angularVelocity+m_deltaAngularVelocity).cross(rel_pos);
|
||||
else
|
||||
velocity.setValue(0,0,0);
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE void getAngularVelocity(btVector3& angVel) const
|
||||
{
|
||||
if (m_originalBody)
|
||||
angVel =m_angularVelocity+m_deltaAngularVelocity;
|
||||
else
|
||||
angVel.setValue(0,0,0);
|
||||
}
|
||||
|
||||
|
||||
//Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
|
||||
SIMD_FORCE_INLINE void applyImpulse(const btVector3& linearComponent, const btVector3& angularComponent,const btScalar impulseMagnitude)
|
||||
{
|
||||
if (m_originalBody)
|
||||
{
|
||||
m_deltaLinearVelocity += linearComponent*impulseMagnitude*m_linearFactor;
|
||||
m_deltaAngularVelocity += angularComponent*(impulseMagnitude*m_angularFactor);
|
||||
}
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE void internalApplyPushImpulse(const btVector3& linearComponent, const btVector3& angularComponent,btScalar impulseMagnitude)
|
||||
{
|
||||
if (m_originalBody)
|
||||
{
|
||||
m_pushVelocity += linearComponent*impulseMagnitude*m_linearFactor;
|
||||
m_turnVelocity += angularComponent*(impulseMagnitude*m_angularFactor);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
const btVector3& getDeltaLinearVelocity() const
|
||||
{
|
||||
return m_deltaLinearVelocity;
|
||||
}
|
||||
|
||||
const btVector3& getDeltaAngularVelocity() const
|
||||
{
|
||||
return m_deltaAngularVelocity;
|
||||
}
|
||||
|
||||
const btVector3& getPushVelocity() const
|
||||
{
|
||||
return m_pushVelocity;
|
||||
}
|
||||
|
||||
const btVector3& getTurnVelocity() const
|
||||
{
|
||||
return m_turnVelocity;
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////////////////
|
||||
///some internal methods, don't use them
|
||||
|
||||
btVector3& internalGetDeltaLinearVelocity()
|
||||
{
|
||||
return m_deltaLinearVelocity;
|
||||
}
|
||||
|
||||
btVector3& internalGetDeltaAngularVelocity()
|
||||
{
|
||||
return m_deltaAngularVelocity;
|
||||
}
|
||||
|
||||
const btVector3& internalGetAngularFactor() const
|
||||
{
|
||||
return m_angularFactor;
|
||||
}
|
||||
|
||||
const btVector3& internalGetInvMass() const
|
||||
{
|
||||
return m_invMass;
|
||||
}
|
||||
|
||||
void internalSetInvMass(const btVector3& invMass)
|
||||
{
|
||||
m_invMass = invMass;
|
||||
}
|
||||
|
||||
btVector3& internalGetPushVelocity()
|
||||
{
|
||||
return m_pushVelocity;
|
||||
}
|
||||
|
||||
btVector3& internalGetTurnVelocity()
|
||||
{
|
||||
return m_turnVelocity;
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE void internalGetVelocityInLocalPointObsolete(const btVector3& rel_pos, btVector3& velocity ) const
|
||||
{
|
||||
velocity = m_linearVelocity+m_deltaLinearVelocity + (m_angularVelocity+m_deltaAngularVelocity).cross(rel_pos);
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE void internalGetAngularVelocity(btVector3& angVel) const
|
||||
{
|
||||
angVel = m_angularVelocity+m_deltaAngularVelocity;
|
||||
}
|
||||
|
||||
|
||||
//Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
|
||||
SIMD_FORCE_INLINE void internalApplyImpulse(const btVector3& linearComponent, const btVector3& angularComponent,const btScalar impulseMagnitude)
|
||||
{
|
||||
if (m_originalBody)
|
||||
{
|
||||
m_deltaLinearVelocity += linearComponent*impulseMagnitude*m_linearFactor;
|
||||
m_deltaAngularVelocity += angularComponent*(impulseMagnitude*m_angularFactor);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void writebackVelocity()
|
||||
{
|
||||
if (m_originalBody)
|
||||
{
|
||||
m_linearVelocity +=m_deltaLinearVelocity;
|
||||
m_angularVelocity += m_deltaAngularVelocity;
|
||||
|
||||
//m_originalBody->setCompanionId(-1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void writebackVelocityAndTransform(btScalar timeStep, btScalar splitImpulseTurnErp)
|
||||
{
|
||||
(void) timeStep;
|
||||
if (m_originalBody)
|
||||
{
|
||||
m_linearVelocity += m_deltaLinearVelocity;
|
||||
m_angularVelocity += m_deltaAngularVelocity;
|
||||
|
||||
//correct the position/orientation based on push/turn recovery
|
||||
btTransform newTransform;
|
||||
if (m_pushVelocity[0]!=0.f || m_pushVelocity[1]!=0 || m_pushVelocity[2]!=0 || m_turnVelocity[0]!=0.f || m_turnVelocity[1]!=0 || m_turnVelocity[2]!=0)
|
||||
{
|
||||
// btQuaternion orn = m_worldTransform.getRotation();
|
||||
btTransformUtil::integrateTransform(m_worldTransform,m_pushVelocity,m_turnVelocity*splitImpulseTurnErp,timeStep,newTransform);
|
||||
m_worldTransform = newTransform;
|
||||
}
|
||||
//m_worldTransform.setRotation(orn);
|
||||
//m_originalBody->setCompanionId(-1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
};
|
||||
|
||||
#endif //BT_SOLVER_BODY_H
|
||||
|
||||
|
Reference in New Issue
Block a user