4 Commits

18 changed files with 702 additions and 571 deletions

View File

@ -4,6 +4,6 @@ in vec2 texCoord;
out vec4 fragColor;
void main() {
fragColor = vec4(0.0, 0.0, 0.0, 1.0);
gl_FragDepth = 1.0;
fragColor = vec4(0.0,0.0,0.0,1.0);
gl_FragDepth = 0.0;
}

View File

@ -4,5 +4,5 @@ in vec2 texCoord;
out vec4 fragColor;
void main() {
gl_FragDepth = 1.0;
gl_FragDepth = 0.0;
}

View File

@ -2,12 +2,10 @@
#include "compiled.inc"
#include "std/gbuffer.glsl"
#ifdef _Clusters
#include "std/clusters.glsl"
#endif
#ifdef _Irr
#include "std/shirr.glsl"
#endif
#ifdef _SSS
#include "std/sss.glsl"
#endif
@ -15,9 +13,26 @@
#include "std/ssrs.glsl"
#endif
uniform sampler2D gbufferD;
uniform sampler2D gbuffer0;
uniform sampler2D gbuffer1;
// Environment map
uniform float envmapStrength;
#ifdef _Irr
uniform vec4 shirr[7];
uniform float ambientIntensity;
#include "std/shirr.glsl"
#endif
#include "std/environment_sample.glsl"
#include "std/light.glsl"
// Gbuffer
//uniform sampler2D depthtex; // Raw depth
uniform sampler2D gbufferD; // Depth (cheap)
uniform sampler2D gbuffer0; // Normal/Metal
uniform sampler2D gbuffer1; // Albedo
uniform vec2 cameraProj;
uniform vec3 eye;
uniform vec3 eyeLook;
uniform mat4 invVP;
#ifdef _gbuffer2
uniform sampler2D gbuffer2;
@ -39,10 +54,6 @@ uniform sampler3D voxelsSDF;
uniform float clipmaps[10 * voxelgiClipmapCount];
#endif
uniform float envmapStrength;
#ifdef _Irr
uniform vec4 shirr[7];
#endif
#ifdef _Brdf
uniform sampler2D senvmapBrdf;
#endif
@ -62,11 +73,6 @@ uniform sampler2D ssaotex;
uniform vec2 lightPlane;
#endif
#ifdef _SSRS
//!uniform mat4 VP;
uniform mat4 invVP;
#endif
#ifdef _LightIES
//!uniform sampler2D texIES;
#endif
@ -96,10 +102,6 @@ uniform mat4 invVP;
#endif
#endif
uniform vec2 cameraProj;
uniform vec3 eye;
uniform vec3 eyeLook;
#ifdef _Clusters
uniform vec4 lightsArray[maxLights * 3];
#ifdef _Spot
@ -201,6 +203,7 @@ in vec3 viewRay;
out vec4 fragColor;
void main() {
fragColor = vec4(0.0);
vec4 g0 = textureLod(gbuffer0, texCoord, 0.0); // Normal.xy, roughness, metallic/matid
vec3 n;
@ -215,13 +218,22 @@ void main() {
vec4 g1 = textureLod(gbuffer1, texCoord, 0.0); // Basecolor.rgb, spec/occ
vec2 occspec = unpackFloat2(g1.a);
vec3 albedo = surfaceAlbedo(g1.rgb, metallic); // g1.rgb - basecolor
vec3 albedo = surfaceAlbedo(g1.rgb, metallic); // g1.rgb - basecolor
vec3 f0 = surfaceF0(g1.rgb, metallic);
vec3 envl = vec3(0.0);
float depth = textureLod(gbufferD, texCoord, 0.0).r * 2.0 - 1.0;
vec3 p = getPos(eye, eyeLook, normalize(viewRay), depth, cameraProj);
vec3 v = normalize(eye - p);
float dotNV = max(dot(n, v), 0.0);
// world-space position:
float rawDepth = textureLod(gbufferD, texCoord, 0.0).r;
float clipZ = rawDepth * 2.0 - 1.0; // depth -> clip-space
vec4 clipPos = vec4(texCoord * 2.0 - 1.0, clipZ, 1.0);
vec4 worldPos = invVP * clipPos;
vec3 p = worldPos.xyz / worldPos.w;
vec3 v = normalize(eye - p);
float dotNV = max(dot(n, v), 0.0);
// view-space vector for reflection
vec3 viewPos = getPosView(viewRay, rawDepth, cameraProj);
vec3 viewDir = normalize(-viewPos);
#ifdef _gbuffer2
vec4 g2 = textureLod(gbuffer2, texCoord, 0.0);
@ -235,24 +247,17 @@ void main() {
vec2 envBRDF = texelFetch(senvmapBrdf, ivec2(vec2(dotNV, 1.0 - roughness) * 256.0), 0).xy;
#endif
// Envmap
#ifdef _Irr
// Sample ambient diffuse lighting
vec3 ambient = sampleDiffuseEnvironment(n);
vec3 envl = shIrradiance(n, shirr);
#ifdef _gbuffer2
if (g2.b >= 0.5) {
ambient = vec3(0.0); // Mask it if g2 says this surface wants no ambient lighting
}
#endif
#ifdef _gbuffer2
if (g2.b < 0.5) {
envl = envl;
} else {
envl = vec3(0.0);
}
#endif
#ifdef _EnvTex
envl /= PI;
#endif
#else
vec3 envl = vec3(0.0);
fragColor.rgb += ambient * ambientIntensity;
#endif
#ifdef _Rad
@ -295,28 +300,37 @@ void main() {
envl.rgb *= textureLod(voxels_ao, texCoord, 0.0).r;
#endif
// if voxel GI isn't enabled, we fall back to SSR (SSR also processes indirect)
#ifndef _VoxelGI
fragColor.rgb = envl;
fragColor.rgb += envl;
#ifndef _SSR
// if SSR is disabled, we fallback to simple environment texture
vec3 fallbackEnvColor = sampleSpecularEnvironment(reflect(viewDir, n), roughness);
fragColor.rgb += fallbackEnvColor;
#endif
#endif
// Show voxels
// vec3 origin = vec3(texCoord * 2.0 - 1.0, 0.99);
// vec3 direction = vec3(0.0, 0.0, -1.0);
// vec4 color = vec4(0.0f);
// for(uint step = 0; step < 400 && color.a < 0.99f; ++step) {
// vec3 point = origin + 0.005 * step * direction;
// color += (1.0f - color.a) * textureLod(voxels, point * 0.5 + 0.5, 0);
// }
// fragColor.rgb += color.rgb;
// Show SSAO
// fragColor.rgb = texture(ssaotex, texCoord).rrr;
// show voxel GI
#ifdef _VoxelGI
// Show voxels
vec3 origin = vec3(texCoord * 2.0 - 1.0, 0.99);
vec3 direction = vec3(0.0, 0.0, -1.0);
vec4 color = vec4(0.0f);
for(uint step = 0; step < 400 && color.a < 0.99f; ++step) {
vec3 point = origin + 0.005 * step * direction;
color += (1.0f - color.a) * textureLod(voxels, point * 0.5 + 0.5, 0);
}
fragColor.rgb += color.rgb;
#endif
// show SSAO
#ifdef _SSAO
// #ifdef _RTGI
// fragColor.rgb *= textureLod(ssaotex, texCoord, 0.0).rgb;
// #else
fragColor.rgb *= textureLod(ssaotex, texCoord, 0.0).r;
// #endif
fragColor.rgb = texture(ssaotex, texCoord).rrr;
// #ifdef _RTGI
// fragColor.rgb *= textureLod(ssaotex, texCoord, 0.0).rgb;
// #else
fragColor.rgb *= textureLod(ssaotex, texCoord, 0.0).r;
// #endif
#endif
#ifdef _EmissionShadeless
@ -464,7 +478,8 @@ void main() {
#endif
#ifdef _Clusters
float viewz = linearize(depth * 0.5 + 0.5, cameraProj);
// compute depth for clustering: use the view-space Z component (linearized depth)
float viewz = viewPos.z;
int clusterI = getClusterI(texCoord, viewz, cameraPlane);
int numLights = int(texelFetch(clustersData, ivec2(clusterI, 0), 0).r * 255);
@ -508,6 +523,7 @@ void main() {
#ifdef _MicroShadowing
, occspec.x
#endif
// TODO: Cleanup. Probably broken
#ifdef _SSRS
, gbufferD, invVP, eye
#endif

View File

@ -49,10 +49,6 @@
"link": "$brdf.png",
"ifdef": ["_Brdf"]
},
{
"name": "cameraProj",
"link": "_cameraPlaneProj"
},
{
"name": "envmapStrength",
"link": "_envmapStrength"

View File

@ -23,8 +23,9 @@ void main() {
// fullscreen triangle: http://de.slideshare.net/DevCentralAMD/vertex-shader-tricks-bill-bilodeau
// gl_Position = vec4((gl_VertexID % 2) * 4.0 - 1.0, (gl_VertexID / 2) * 4.0 - 1.0, 0.0, 1.0);
// NDC (at the back of cube)
vec4 v = vec4(pos.x, pos.y, 1.0, 1.0);
// For reverse-Z, the “far” plane lives at NDC z = 0
vec4 ndcFar = vec4(pos.x, pos.y, 0.0, 1.0);
vec4 v = invVP * ndcFar;
v = vec4(invVP * v);
v.xyz /= v.w;
viewRay = v.xyz - eye;

View File

@ -19,8 +19,9 @@ void main() {
gl_Position = vec4(pos.xy, 0.0, 1.0);
// NDC (at the back of cube)
vec4 v = vec4(pos.x, pos.y, 1.0, 1.0);
v = vec4(invP * v);
// For reverse-Z, far plane sits at NDC z = 0
vec4 clip = vec4(pos.x, pos.y, 0.0, 1.0);
vec4 v = invP * clip;
// reconstruct a viewspace direction
viewRay = vec3(v.xy / v.z, 1.0);
}

View File

@ -1,21 +1,35 @@
// TODO: Integrate with Blender UI
// TODO: Option to disable cone tracing
#version 450
#include "compiled.inc"
#include "std/math.glsl"
#include "std/gbuffer.glsl"
uniform sampler2D tex;
uniform sampler2D gbufferD;
uniform sampler2D gbuffer0; // Normal, roughness
uniform sampler2D gbuffer1; // basecol, spec
uniform mat4 P;
uniform mat3 V3;
uniform vec2 cameraProj;
#ifdef _CPostprocess
uniform vec3 PPComp9;
uniform vec3 PPComp10;
// Environment map
uniform float envmapStrength;
#ifdef _Irr
uniform vec4 shirr[7];
uniform float ambientIntensity;
#include "std/shirr.glsl"
#endif
#include "std/environment_sample.glsl"
uniform sampler2D tex; // Environment map
//uniform sampler2D depthtex; // Full Depth buffer
uniform sampler2D gbufferD; // Cheap Depth buffer
uniform sampler2D gbuffer0; // Normal, roughness
uniform sampler2D gbuffer1; // Base color, spec
uniform mat4 P; // Projection matrix
uniform mat3 V3; // View matrix
uniform vec2 cameraProj; // Camera projection params
uniform vec2 invScreenSize; // (1.0/width, 1.0/height)
const float ssrPrecision = 0.0; // 0.0 - 100.0 (user slider control)
//const float rayThickness = 0.1; // TODO: Adds some thickness to prevent gaps
uniform int ssrConetraceMode = 2; // 0 = no weighting, 1 = light, 2 = strong
const int ssrConetraceTaps = 18; // Number of taps (higher = more precision)
in vec3 viewRay;
in vec2 texCoord;
@ -24,98 +38,214 @@ out vec4 fragColor;
vec3 hitCoord;
float depth;
const int numBinarySearchSteps = 7;
const int maxSteps = int(ceil(1.0 / ssrRayStep) * ssrSearchDist);
const int baseBinarySearchSteps = 10; // Parameterize?
const int baseMaxSteps = int(ceil(1.0 / ssrRayStep) * ssrSearchDist);
int dynamicBinarySearchSteps() {
return int(mix(7.0, 20.0, clamp(ssrPrecision / 100.0, 0.0, 1.0)));
}
int dynamicMaxSteps() {
return int(mix(float(baseMaxSteps), 300.0, clamp(ssrPrecision / 100.0, 0.0, 1.0)));
}
vec2 getProjectedCoord(const vec3 hit) {
vec4 projectedCoord = P * vec4(hit, 1.0);
projectedCoord.xy /= projectedCoord.w;
projectedCoord.xy = projectedCoord.xy * 0.5 + 0.5;
#ifdef _InvY
projectedCoord.y = 1.0 - projectedCoord.y;
#endif
return projectedCoord.xy;
vec4 clip = P * vec4(hit, 1.0);
vec2 uv = clip.xy / clip.w;
uv = uv * 0.5 + 0.5;
#ifdef _InvY
uv.y = 1.0 - uv.y;
#endif
uv = clamp(uv, 0.0, 1.0);
uv += invScreenSize * 0.5; // half-pixel offset
return uv;
}
float getDeltaDepth(const vec3 hit) {
depth = textureLod(gbufferD, getProjectedCoord(hit), 0.0).r * 2.0 - 1.0;
vec3 viewPos = getPosView(viewRay, depth, cameraProj);
return viewPos.z - hit.z;
vec2 screenUV = getProjectedCoord(hit);
float raw = textureLod(gbufferD, screenUV, 0.0).r;
float sampledDepth = raw * 2.0 - 1.0;
float linearSampledDepth = linearize(sampledDepth, cameraProj);
return linearSampledDepth - hit.z;
}
vec4 binarySearch(vec3 dir) {
float ddepth;
for (int i = 0; i < numBinarySearchSteps; i++) {
dir *= 0.5;
hitCoord -= dir;
ddepth = getDeltaDepth(hitCoord);
if (ddepth < 0.0) hitCoord += dir;
}
// Ugly discard of hits too far away
#ifdef _CPostprocess
if (abs(ddepth) > PPComp9.z / 500) return vec4(0.0);
#else
if (abs(ddepth) > ssrSearchDist / 500) return vec4(0.0);
#endif
return vec4(getProjectedCoord(hitCoord), 0.0, 1.0);
float ddepth;
for (int i = 0; i < dynamicBinarySearchSteps(); i++) {
dir *= 0.5;
hitCoord -= dir;
ddepth = getDeltaDepth(hitCoord);
if (ddepth < 0.0) hitCoord += dir;
}
vec2 projectedCoord = getProjectedCoord(hitCoord);
float pixelSize = length(fwidth(projectedCoord)) * 0.5;
float epsilon = max(pixelSize * 10.0, 0.01);
if (abs(ddepth) > epsilon) return vec4(0.0);
hitCoord.xy = clamp(projectedCoord, 0.0, 1.0);
return vec4(projectedCoord, 0.0, 1.0);
}
vec4 rayCast(vec3 dir) {
#ifdef _CPostprocess
dir *= PPComp9.x;
#else
dir *= ssrRayStep;
#endif
for (int i = 0; i < maxSteps; i++) {
hitCoord += dir;
if (getDeltaDepth(hitCoord) > 0.0) return binarySearch(dir);
vec4 rayCast(vec3 dir, float roughness) {
vec3 stepDir = normalize(dir);
// Apply small jitter if high precision
if (ssrPrecision > 80.0 && roughness > 0.05) {
stepDir = normalize(stepDir + vec3(rand2(texCoord), 0.0) * 0.01);
}
return vec4(0.0);
float distance = length(hitCoord - viewRay);
float stepDivisor = mix(100.0, 300.0, clamp(ssrPrecision / 100.0, 0.0, 1.0));
float stepSize = max(0.01, distance / stepDivisor);
float maxStepSize = 0.1;
for (int i = 0; i < dynamicMaxSteps(); i++) {
hitCoord += stepDir * stepSize;
vec2 projCoord = getProjectedCoord(hitCoord);
float sampledDepth = textureLod(gbufferD, projCoord, 0.0).r;
float depthTolerance = fwidth(sampledDepth) * 2.0; // Dynamic tolerance
if (getDeltaDepth(hitCoord) > depthTolerance) {
return binarySearch(stepDir);
}
stepSize = min(stepSize * 1.1, maxStepSize);
}
return vec4(0.0);
}
vec3 coneTraceApprox(vec3 reflDir, float roughness) {
vec3 result = vec3(0.0);
float totalWeight = 0.0;
float randAngle = hash12(texCoord) * 6.2831853;
mat2 rot = mat2(cos(randAngle), -sin(randAngle), sin(randAngle), cos(randAngle));
float coneSpread = roughness * 0.5; // widen based on roughness
for (int i = 0; i < ssrConetraceTaps; ++i) {
float angle = float(i) / float(ssrConetraceTaps) * 6.2831853;
vec2 offset = rot * vec2(cos(angle), sin(angle)) * coneSpread;
vec3 sampleDir = normalize(reflDir + vec3(offset, 0.0));
float weight = 1.0;
if (ssrConetraceMode == 1) {
weight = pow(max(dot(reflDir, sampleDir), 0.0), 2.0); // Light cosine lobe
}
else if (ssrConetraceMode == 2) {
weight = pow(max(dot(reflDir, sampleDir), 0.0), 8.0); // Strong GGX lobe
}
// Approximate sampling by using tex at reflection direction
vec2 envUV = envMapEquirect(sampleDir);
vec3 sampleColor = textureLod(tex, envUV, 0.0).rgb;
result += sampleColor * weight;
totalWeight += weight;
}
return result / max(totalWeight, 0.0001);
}
vec3 tangentSpaceGGX(vec3 N, float roughness) {
float a = roughness * roughness;
float phi = rand(texCoord) * 6.2831853;
float cosTheta = sqrt((1.0 - rand(texCoord)) / (1.0 + (a * a - 1.0) * rand(texCoord)));
float sinTheta = sqrt(1.0 - cosTheta * cosTheta);
vec3 T = normalize(cross(N, vec3(0.0, 1.0, 0.0)));
if (length(T) < 0.01) T = normalize(cross(N, vec3(1.0, 0.0, 0.0)));
vec3 B = cross(N, T);
return normalize(T * cos(phi) * sinTheta + B * sin(phi) * sinTheta + N * cosTheta);
}
void main() {
vec4 g0 = textureLod(gbuffer0, texCoord, 0.0);
float roughness = unpackFloat(g0.b).y;
if (roughness == 1.0) { fragColor.rgb = vec3(0.0); return; }
float spec = fract(textureLod(gbuffer1, texCoord, 0.0).a);
if (spec == 0.0) { fragColor.rgb = vec3(0.0); return; }
vec4 g0 = textureLod(gbuffer0, texCoord, 0.0);
float roughness = unpackFloat(g0.b).y;
if (roughness == 1.0) { fragColor.rgb = vec3(0.0); return; }
float d = textureLod(gbufferD, texCoord, 0.0).r * 2.0 - 1.0;
if (d == 1.0) { fragColor.rgb = vec3(0.0); return; }
float spec = fract(textureLod(gbuffer1, texCoord, 0.0).a);
if (spec == 0.0) { fragColor.rgb = vec3(0.0); return; }
vec2 enc = g0.rg;
vec3 n;
n.z = 1.0 - abs(enc.x) - abs(enc.y);
n.xy = n.z >= 0.0 ? enc.xy : octahedronWrap(enc.xy);
n = normalize(n);
// sample raw depth, bail if empty
float dRaw = textureLod(gbufferD, texCoord, 0.0).r;
if (dRaw == 0.0) { fragColor.rgb = vec3(0.0); return; }
// convert to NDC z before reconstructing
float d = dRaw * 2.0 - 1.0;
vec3 viewNormal = V3 * n;
vec3 viewPos = getPosView(viewRay, d, cameraProj);
vec3 reflected = reflect(viewPos, viewNormal);
hitCoord = viewPos;
vec3 n = decode_oct(g0.rg);
vec3 viewNormal = V3 * n;
viewNormal = normalize(mix(viewNormal, normalize(-viewRay), 0.05)); // slightly bias the normal toward the view direction at glancing angles
vec3 viewPos = getPosView(viewRay, d, cameraProj);
vec3 viewDir = normalize(-viewPos);
vec3 idealReflection = reflect(normalize(viewPos), viewNormal);
hitCoord = viewPos;
#ifdef _CPostprocess
vec3 dir = reflected * (1.0 - rand(texCoord) * PPComp10.y * roughness) * 2.0;
// Apply GGX importance sampling in tangent space
vec3 jitteredDir = tangentSpaceGGX(viewNormal, roughness);
// Blend based on roughness (0 = perfect mirror, 1 = fully scattered)
vec3 dir = normalize(mix(idealReflection, jitteredDir, roughness));
vec4 coords = rayCast(dir, roughness);
vec2 deltaCoords = abs(vec2(0.5, 0.5) - coords.xy);
float screenEdgeFactor = clamp(1.0 - (deltaCoords.x + deltaCoords.y), 0.0, 1.0);
float reflectivity = 1.0 - roughness;
#ifdef _CPostprocess
// Postprocess mode intensity calculation...
#else
vec3 dir = reflected * (1.0 - rand(texCoord) * ssrJitter * roughness) * 2.0;
float intensity = 0.0;
if (coords.w > 0.0) {
// Ray hit in screen-space
intensity = pow(reflectivity, ssrFalloffExp) * screenEdgeFactor *
clamp(-idealReflection.z, 0.0, 1.0) *
clamp((ssrSearchDist - length(viewPos - hitCoord)) * (1.0 / ssrSearchDist), 0.0, 1.0);
}
else if (roughness < 0.7) {
// Ray miss, roughness low enough: do cone trace approximation
vec3 coneColor = coneTraceApprox(idealReflection, roughness);
vec3 envCol = sampleSpecularEnvironment(idealReflection, roughness);
coneColor = clamp(coneColor, 0.0, 1.0);
envCol = clamp(envCol, 0.0, 1.0);
vec3 finalColor = mix(envCol, mix(envCol, coneColor, intensity), coords.w);
fragColor.rgb = finalColor * 0.5; // match previous intensity scaling
return;
}
else {
// Ray miss, roughness too high: fallback to environment map
vec3 fallbackEnvColor = sampleSpecularEnvironment(reflect(viewDir, n), roughness);
fragColor.rgb = fallbackEnvColor;
return;
}
#endif
// * max(ssrMinRayStep, -viewPos.z)
vec4 coords = rayCast(dir);
vec3 reflCol = textureLod(tex, coords.xy, 0.0).rgb; // SSR reflection
vec3 envCol = textureLod(tex, texCoord, 0.0).rgb; // Background environment
vec2 deltaCoords = abs(vec2(0.5, 0.5) - coords.xy);
float screenEdgeFactor = clamp(1.0 - (deltaCoords.x + deltaCoords.y), 0.0, 1.0);
float reflectivity = 1.0 - roughness;
#ifdef _CPostprocess
float intensity = pow(reflectivity, PPComp10.x) * screenEdgeFactor * clamp(-reflected.z, 0.0, 1.0) * clamp((PPComp9.z - length(viewPos - hitCoord)) * (1.0 / PPComp9.z), 0.0, 1.0) * coords.w;
#else
float intensity = pow(reflectivity, ssrFalloffExp) * screenEdgeFactor * clamp(-reflected.z, 0.0, 1.0) * clamp((ssrSearchDist - length(viewPos - hitCoord)) * (1.0 / ssrSearchDist), 0.0, 1.0) * coords.w;
#endif
intensity = clamp(intensity, 0.0, 1.0);
vec3 reflCol = textureLod(tex, coords.xy, 0.0).rgb;
intensity = clamp(intensity, 0.0, 1.0);
reflCol = clamp(reflCol, 0.0, 1.0);
fragColor.rgb = reflCol * intensity * 0.5;
}
envCol = clamp(envCol, 0.0, 1.0);
// Roughness-based fade (smoothstep)
float roughFade = smoothstep(0.2, 0.7, roughness);
float ssrVisibility = coords.w * (1.0 - roughFade);
// Blend SSR
vec3 finalColor = mix(envCol, reflCol, ssrVisibility);
fragColor.rgb = finalColor;
}

View File

@ -4,6 +4,7 @@
"name": "ssr_pass",
"depth_write": false,
"compare_mode": "always",
"blend_mode": "replace",
"cull_mode": "none",
"links": [
{
@ -23,14 +24,12 @@
"link": "_cameraPlaneProj"
},
{
"name": "PPComp9",
"link": "_PPComp9",
"ifdef": ["_CPostprocess"]
"name": "coneTraceMode",
"link": "_coneTraceMode"
},
{
"name": "PPComp10",
"link": "_PPComp10",
"ifdef": ["_CPostprocess"]
"name": "coneTraceTapCount",
"link": "_coneTraceTapCount"
}
],
"texture_params": [],

View File

@ -1,8 +1,10 @@
#ifndef _BRDF_GLSL_
#define _BRDF_GLSL_
// http://xlgames-inc.github.io/posts/improvedibl/
// http://blog.selfshadow.com/publications/s2013-shading-course/
// Constants
//const float PI = 3.1415926535;
// Fresnel-Schlick with optimized exponential approximation
vec3 f_schlick(const vec3 f0, const float vh) {
return f0 + (1.0 - f0) * exp2((-5.55473 * vh - 6.98316) * vh);
}
@ -11,82 +13,11 @@ float v_smithschlick(const float nl, const float nv, const float a) {
return 1.0 / ((nl * (1.0 - a) + a) * (nv * (1.0 - a) + a));
}
//Uncorrelated masking/shadowing (info below) function
//Because it is uncorrelated, G1(NdotL, a) gives us shadowing, and G1(NdotV, a) gives us masking function.
//Approximation from: https://ubm-twvideo01.s3.amazonaws.com/o1/vault/gdc2017/Presentations/Hammon_Earl_PBR_Diffuse_Lighting.pdf
float g1_approx(const float NdotX, const float alpha)
{
return (2.0 * NdotX) * (1.0 / (NdotX * (2.0 - alpha) + alpha));
}
//Uncorrelated masking-shadowing function
//Approximation from: https://ubm-twvideo01.s3.amazonaws.com/o1/vault/gdc2017/Presentations/Hammon_Earl_PBR_Diffuse_Lighting.pdf
float g2_approx(const float NdotL, const float NdotV, const float alpha)
{
vec2 helper = (2.0 * vec2(NdotL, NdotV)) * (1.0 / (vec2(NdotL, NdotV) * (2.0 - alpha) + alpha));
return max(helper.x * helper.y, 0.0); //This can go negative, let's fix that
}
float d_ggx(const float nh, const float a) {
float a2 = a * a;
float denom = nh * nh * (a2 - 1.0) + 1.0;
denom = max(denom * denom, 0.00006103515625 /* 2^-14 = smallest possible half float value, prevent div by zero */);
return a2 * (1.0 / 3.1415926535) / denom;
}
vec3 specularBRDF(const vec3 f0, const float roughness, const float nl, const float nh, const float nv, const float vh) {
float a = roughness * roughness;
return d_ggx(nh, a) * g2_approx(nl, nv, a) * f_schlick(f0, vh) / max(4.0 * nv, 1e-5); //NdotL cancels out later
}
// John Hable - Optimizing GGX Shaders
// http://filmicworlds.com/blog/optimizing-ggx-shaders-with-dotlh/
vec3 specularBRDFb(const vec3 f0, const float roughness, const float dotNL, const float dotNH, const float dotLH) {
// D
const float pi = 3.1415926535;
float alpha = roughness * roughness;
float alphaSqr = alpha * alpha;
float denom = dotNH * dotNH * (alphaSqr - 1.0) + 1.0;
float D = alphaSqr / (pi * denom * denom);
// F
const float F_a = 1.0;
float F_b = pow(1.0 - dotLH, 5.0);
// V
float vis;
float k = alpha / 2.0;
float k2 = k * k;
float invK2 = 1.0 - k2;
vis = 1.0 / (dotLH * dotLH * invK2 + k2);
vec2 FV_helper = vec2((F_a - F_b) * vis, F_b * vis);
vec3 FV = f0 * FV_helper.x + FV_helper.y;
vec3 specular = clamp(dotNL, 0.0, 1.0) * D * FV;
return specular / 4.0; // TODO: get rid of / 4.0
}
vec3 orenNayarDiffuseBRDF(const vec3 albedo, const float roughness, const float nv, const float nl, const float vh) {
float a = roughness * roughness;
float s = a;
float s2 = s * s;
float vl = 2.0 * vh * vh - 1.0; // Double angle identity
float Cosri = vl - nv * nl;
float C1 = 1.0 - 0.5 * s2 / (s2 + 0.33);
float test = 1.0;
if (Cosri >= 0.0) test = (1.0 / (max(nl, nv)));
float C2 = 0.45 * s2 / (s2 + 0.09) * Cosri * test;
return albedo * max(0.0, nl) * (C1 + C2) * (1.0 + roughness * 0.5);
}
vec3 lambertDiffuseBRDF(const vec3 albedo, const float nl) {
return albedo * nl;
}
vec3 surfaceAlbedo(const vec3 baseColor, const float metalness) {
return mix(baseColor, vec3(0.0), metalness);
}
vec3 surfaceF0(const vec3 baseColor, const float metalness) {
return mix(vec3(0.04), baseColor, metalness);
denom = max(denom * denom, 2e-6);
return a2 / (PI * denom);
}
float getMipFromRoughness(const float roughness, const float numMipmaps) {
@ -94,47 +25,64 @@ float getMipFromRoughness(const float roughness, const float numMipmaps) {
return roughness * numMipmaps;
}
float wardSpecular(vec3 N, vec3 H, float dotNL, float dotNV, float dotNH, vec3 fiberDirection, float shinyParallel, float shinyPerpendicular) {
if(dotNL < 0.0 || dotNV < 0.0) {
return 0.0;
}
// fiberDirection - parse from rotation
// shinyParallel - roughness
// shinyPerpendicular - anisotropy
vec3 specularBRDF(vec3 N, vec3 V, vec3 L, vec3 F0, float roughness)
{
vec3 H = normalize(V + L);
vec3 fiberParallel = normalize(fiberDirection);
vec3 fiberPerpendicular = normalize(cross(N, fiberDirection));
float dotXH = dot(fiberParallel, H);
float dotYH = dot(fiberPerpendicular, H);
const float PI = 3.1415926535;
float coeff = sqrt(dotNL/dotNV) / (4.0 * PI * shinyParallel * shinyPerpendicular);
float theta = (pow(dotXH/shinyParallel, 2.0) + pow(dotYH/shinyPerpendicular, 2.0)) / (1.0 + dotNH);
return clamp(coeff * exp(-2.0 * theta), 0.0, 1.0);
float NdotL = max(dot(N, L), 0.0);
float NdotV = max(dot(N, V), 0.0);
float NdotH = max(dot(N, H), 0.0);
float VdotH = max(dot(V, H), 0.0);
float alpha = roughness * roughness;
float D = d_ggx(NdotH, alpha);
float k = alpha / 2.0;
float G_V = NdotV / (NdotV * (1.0 - k) + k + 1e-5);
float G_L = NdotL / (NdotL * (1.0 - k) + k + 1e-5);
float G = G_V * G_L;
vec3 F = f_schlick(F0, VdotH);
return F * D * G / max(4.0 * NdotL * NdotV, 1e-5);
}
// https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
// vec3 EnvBRDFApprox(vec3 SpecularColor, float Roughness, float NoV) {
// const vec4 c0 = { -1, -0.0275, -0.572, 0.022 };
// const vec4 c1 = { 1, 0.0425, 1.04, -0.04 };
// vec4 r = Roughness * c0 + c1;
// float a004 = min( r.x * r.x, exp2( -9.28 * NoV ) ) * r.x + r.y;
// vec2 AB = vec2( -1.04, 1.04 ) * a004 + r.zw;
// return SpecularColor * AB.x + AB.y;
// }
// float EnvBRDFApproxNonmetal(float Roughness, float NoV) {
// // Same as EnvBRDFApprox( 0.04, Roughness, NoV )
// const vec2 c0 = { -1, -0.0275 };
// const vec2 c1 = { 1, 0.0425 };
// vec2 r = Roughness * c0 + c1;
// return min( r.x * r.x, exp2( -9.28 * NoV ) ) * r.x + r.y;
// }
float D_Approx(const float Roughness, const float RoL) {
float a = Roughness * Roughness;
float a2 = a * a;
float rcp_a2 = 1.0 / a2;//rcp(a2);
// 0.5 / ln(2), 0.275 / ln(2)
float c = 0.72134752 * rcp_a2 + 0.39674113;
return rcp_a2 * exp2( c * RoL - c );
vec3 burleyDiffuseBRDF(vec3 N, vec3 V, vec3 L, vec3 albedo, float roughness)
{
float NdotL = max(dot(N, L), 0.0);
float NdotV = max(dot(N, V), 0.0);
float LdotH = max(dot(L, normalize(L + V)), 0.0);
float FD90 = 0.5 + 2.0 * LdotH * LdotH * roughness;
float FL = pow(1.0 - NdotL, 5.0);
float FV = pow(1.0 - NdotV, 5.0);
float diffuse = (1.0 + (FD90 - 1.0) * FL) * (1.0 + (FD90 - 1.0) * FV);
return albedo * (1.0 / PI) * diffuse * NdotL;
}
// Energy-conserving material albedo (fades out for metals)
vec3 surfaceAlbedo(const vec3 baseColor, const float metalness) {
return baseColor * (1.0 - metalness);
}
// Metal-aware F0 blending
vec3 surfaceF0(vec3 baseColor, float metalness) {
return mix(vec3(0.04), baseColor, metalness);
}
// LUT-based approximation of IBL BRDF (Unreal-style)
vec2 EnvBRDFApprox(float Roughness, float NoV) {
const vec4 c0 = vec4(-1, -0.0275, -0.572, 0.022);
const vec4 c1 = vec4(1, 0.0425, 1.04, -0.04);
vec4 r = Roughness * c0 + c1;
float a004 = min(r.x * r.x, exp2(-9.28 * NoV)) * r.x + r.y;
return vec2(-1.04, 1.04) * a004 + r.zw;
}
vec3 IBLSpecularApprox(vec3 specColor, float roughness, float NoV) {
vec2 brdf = EnvBRDFApprox(roughness, NoV);
return specColor * brdf.x + brdf.y;
}
#endif

View File

@ -0,0 +1,28 @@
#ifndef _ENVIRONMENT_SAMPLE_GLSL_
#define _ENVIRONMENT_SAMPLE_GLSL_
// Sample diffuse ambient environment lighting (irradiance)
vec3 sampleDiffuseEnvironment(vec3 normal) {
#ifdef _Irr
vec3 envl = shIrradiance(normal, shirr);
#ifdef _EnvTex
envl /= PI;
#endif
return envl;
#else
return vec3(0.0);
#endif
}
// Sample specular environment reflection (skybox or cubemap)
vec3 sampleSpecularEnvironment(vec3 viewDir, float roughness) {
#ifdef _EnvTex
return textureLod(texEnvironment, viewDir, roughness * 8.0).rgb;
#else
return vec3(0.0);
#endif
}
#endif

View File

@ -1,5 +1,6 @@
#ifndef _GBUFFER_GLSL_
#define _GBUFFER_GLSL_
#include "std/math.glsl"
vec2 octahedronWrap(const vec2 v) {
return (1.0 - abs(v.yx)) * (vec2(v.x >= 0.0 ? 1.0 : -1.0, v.y >= 0.0 ? 1.0 : -1.0));
@ -13,23 +14,17 @@ vec3 getNor(const vec2 enc) {
return n;
}
vec3 getPosView(const vec3 viewRay, const float depth, const vec2 cameraProj) {
float linearDepth = cameraProj.y / (cameraProj.x - depth);
//float linearDepth = cameraProj.y / ((depth * 0.5 + 0.5) - cameraProj.x);
return viewRay * linearDepth;
vec3 getPosView(const vec3 viewRay, float depth, vec2 cameraProj) {
return viewRay * linearize(depth, cameraProj);
}
vec3 getPos(const vec3 eye, const vec3 eyeLook, const vec3 viewRay, const float depth, const vec2 cameraProj) {
// eyeLook, viewRay should be normalized
float linearDepth = cameraProj.y / ((depth * 0.5 + 0.5) - cameraProj.x);
float viewZDist = dot(eyeLook, viewRay);
vec3 wposition = eye + viewRay * (linearDepth / viewZDist);
return wposition;
vec3 getPos(const vec3 eye, mat3 invV, const vec3 viewRay, float depth, vec2 cameraProj) {
vec3 pVS = viewRay * linearize(depth, cameraProj);
return eye + invV * pVS; // invV == inverse of view-rotation
}
vec3 getPosNoEye(const vec3 eyeLook, const vec3 viewRay, const float depth, const vec2 cameraProj) {
// eyeLook, viewRay should be normalized
float linearDepth = cameraProj.y / ((depth * 0.5 + 0.5) - cameraProj.x);
float linearDepth = linearize(depth, cameraProj);
float viewZDist = dot(eyeLook, viewRay);
vec3 wposition = viewRay * (linearDepth / viewZDist);
return wposition;
@ -47,30 +42,34 @@ vec3 getPos2(const mat4 invVP, const float depth, const vec2 coord) {
return pos.xyz;
}
#if defined(HLSL) || defined(METAL)
vec3 getPosView2(const mat4 invP, const float depth, vec2 coord) {
coord.y = 1.0 - coord.y;
#else
vec3 getPosView2(const mat4 invP, const float depth, const vec2 coord) {
#endif
//#if defined(HLSL) || defined(METAL)
//vec3 getPosView2(const mat4 invP, const float depth, vec2 coord) {
// coord.y = 1.0 - coord.y;
//#else
vec3 getPosView2(mat4 invP, float depth, vec2 coord) {
vec4 clip = vec4(coord * 2.0 - 1.0, depth, 1.0);
vec4 view = invP * clip;
return view.xyz / view.w;
//#endif
vec4 pos = vec4(coord * 2.0 - 1.0, depth, 1.0);
pos = invP * pos;
pos.xyz /= pos.w;
return pos.xyz;
}
#if defined(HLSL) || defined(METAL)
vec3 getPos2NoEye(const vec3 eye, const mat4 invVP, const float depth, vec2 coord) {
coord.y = 1.0 - coord.y;
#else
// Reconstruct view-space position from inverse View×Proj
vec3 getPos2NoEye(const vec3 eye, const mat4 invVP, const float depth, const vec2 coord) {
vec2 uv = coord;
#if defined(HLSL) || defined(METAL)
uv.y = 1.0 - uv.y;
#endif
vec4 pos = vec4(coord * 2.0 - 1.0, depth, 1.0);
pos = invVP * pos;
pos.xyz /= pos.w;
return pos.xyz - eye;
vec4 clip = vec4(uv * 2.0 - 1.0, depth, 1.0);
vec4 world = invVP * clip;
world.xyz /= world.w;
return world.xyz - eye;
}
// Updated to support separate roughness/metalness storage
float packFloat(const float f1, const float f2) {
return floor(f1 * 100.0) + min(f2, 1.0 - 1.0 / 100.0);
}
@ -80,7 +79,6 @@ vec2 unpackFloat(const float f) {
}
float packFloat2(const float f1, const float f2) {
// Higher f1 = less precise f2
return floor(f1 * 255.0) + min(f2, 1.0 - 1.0 / 100.0);
}
@ -101,24 +99,21 @@ vec3 decodeRGBM(const vec4 rgbm) {
return rgbm.rgb * rgbm.a * maxRange;
}
vec2 signNotZero(vec2 v)
{
vec2 signNotZero(vec2 v) {
return vec2((v.x >= 0.0) ? +1.0 : -1.0, (v.y >= 0.0) ? +1.0 : -1.0);
}
vec2 encode_oct(vec3 v)
{
// Project the sphere onto the octahedron, and then onto the xy plane
vec2 encode_oct(vec3 v) {
vec2 p = v.xy * (1.0 / (abs(v.x) + abs(v.y) + abs(v.z)));
// Reflect the folds of the lower hemisphere over the diagonals
return (v.z <= 0.0) ? ((1.0 - abs(p.yx)) * signNotZero(p)) : p;
}
vec3 decode_oct(vec2 e)
{
vec3 decode_oct(vec2 e) {
vec3 v = vec3(e.xy, 1.0 - abs(e.x) - abs(e.y));
if (v.z < 0) v.xy = (1.0 - abs(v.yx)) * signNotZero(v.xy);
return normalize(v);
if (v.z < 0.0) {
v.xy = (1.0 - abs(v.yx)) * (vec2(v.x >= 0.0 ? 1.0 : -1.0, v.y >= 0.0 ? 1.0 : -1.0));
}
return normalize(v);
}
uint encNor(vec3 n) {
@ -147,9 +142,6 @@ vec3 decNor(uint val) {
return normal;
}
/**
Packs a float in [0, 1] and an integer in [0..15] into a single 16 bit float value.
**/
float packFloatInt16(const float f, const uint i) {
const uint numBitFloat = 12;
const float maxValFloat = float((1 << numBitFloat) - 1);
@ -165,9 +157,8 @@ void unpackFloatInt16(const float val, out float f, out uint i) {
const float maxValFloat = float((1 << numBitFloat) - 1);
const uint bitsValue = uint(val);
i = bitsValue >> numBitFloat;
f = (bitsValue & ~(0xF << numBitFloat)) / maxValFloat;
}
#endif
#endif

View File

@ -1,239 +1,241 @@
#ifndef _LIGHT_GLSL_
#define _LIGHT_GLSL_
#include "compiled.inc"
#include "std/brdf.glsl"
#include "std/math.glsl"
#ifdef _ShadowMap
#include "std/shadows.glsl"
#endif
#ifdef _VoxelShadow
#include "std/conetrace.glsl"
//!uniform sampler2D voxels_shadows;
#endif
#ifdef _LTC
#include "std/ltc.glsl"
#endif
#ifdef _LightIES
#include "std/ies.glsl"
#endif
#ifdef _SSRS
#include "std/ssrs.glsl"
#endif
#ifdef _Spot
#include "std/light_common.glsl"
#endif
#ifdef _ShadowMap
#ifdef _SinglePoint
#ifdef _Spot
#ifndef _LTC
uniform sampler2DShadow shadowMapSpot[1];
uniform sampler2D shadowMapSpotTransparent[1];
uniform mat4 LWVPSpot[1];
#endif
#else
uniform samplerCubeShadow shadowMapPoint[1];
uniform samplerCube shadowMapPointTransparent[1];
uniform vec2 lightProj;
#endif
#endif
#ifdef _Clusters
#ifdef _SingleAtlas
//!uniform sampler2DShadow shadowMapAtlas;
//!uniform sampler2D shadowMapAtlasTransparent;
#endif
uniform vec2 lightProj;
#ifdef _ShadowMapAtlas
#ifndef _SingleAtlas
uniform sampler2DShadow shadowMapAtlasPoint;
uniform sampler2D shadowMapAtlasPointTransparent;
#endif
#else
uniform samplerCubeShadow shadowMapPoint[4];
uniform samplerCube shadowMapPointTransparent[4];
#endif
#ifdef _Spot
#ifdef _ShadowMapAtlas
#ifndef _SingleAtlas
uniform sampler2DShadow shadowMapAtlasSpot;
uniform sampler2D shadowMapAtlasSpotTransparent;
#endif
#else
uniform sampler2DShadow shadowMapSpot[4];
uniform sampler2D shadowMapSpotTransparent[4];
#endif
uniform mat4 LWVPSpotArray[maxLightsCluster];
#endif
#endif
#endif
#ifdef _LTC
uniform vec3 lightArea0;
uniform vec3 lightArea1;
uniform vec3 lightArea2;
uniform vec3 lightArea3;
uniform sampler2D sltcMat;
uniform sampler2D sltcMag;
#ifdef _ShadowMap
#ifndef _Spot
#ifdef _SinglePoint
uniform sampler2DShadow shadowMapSpot[1];
uniform sampler2D shadowMapSpotTransparent[1];
uniform mat4 LWVPSpot[1];
#endif
#ifdef _Clusters
uniform sampler2DShadow shadowMapSpot[maxLightsCluster];
uniform sampler2D shadowMapSpotTransparent[maxLightsCluster];
uniform mat4 LWVPSpotArray[maxLightsCluster];
#endif
#endif
#endif
#endif
vec3 sampleLight(const vec3 p, const vec3 n, const vec3 v, const float dotNV, const vec3 lp, const vec3 lightCol,
const vec3 albedo, const float rough, const float spec, const vec3 f0
#ifdef _ShadowMap
, int index, float bias, bool receiveShadow, bool transparent
#endif
#ifdef _Spot
, const bool isSpot, const float spotSize, float spotBlend, vec3 spotDir, vec2 scale, vec3 right
#endif
#ifdef _VoxelShadow
, sampler3D voxels, sampler3D voxelsSDF, float clipmaps[10 * voxelgiClipmapCount]
#endif
#ifdef _MicroShadowing
, float occ
#endif
#ifdef _SSRS
, sampler2D gbufferD, mat4 invVP, vec3 eye
#endif
) {
vec3 ld = lp - p;
vec3 l = normalize(ld);
vec3 h = normalize(v + l);
float dotNH = max(0.0, dot(n, h));
float dotVH = max(0.0, dot(v, h));
float dotNL = max(0.0, dot(n, l));
#ifdef _LTC
float theta = acos(dotNV);
vec2 tuv = vec2(rough, theta / (0.5 * PI));
tuv = tuv * LUT_SCALE + LUT_BIAS;
vec4 t = textureLod(sltcMat, tuv, 0.0);
mat3 invM = mat3(
vec3(1.0, 0.0, t.y),
vec3(0.0, t.z, 0.0),
vec3(t.w, 0.0, t.x));
float ltcspec = ltcEvaluate(n, v, dotNV, p, invM, lightArea0, lightArea1, lightArea2, lightArea3);
ltcspec *= textureLod(sltcMag, tuv, 0.0).a;
float ltcdiff = ltcEvaluate(n, v, dotNV, p, mat3(1.0), lightArea0, lightArea1, lightArea2, lightArea3);
vec3 direct = albedo * ltcdiff + ltcspec * spec * 0.05;
#else
vec3 direct = lambertDiffuseBRDF(albedo, dotNL) +
specularBRDF(f0, rough, dotNL, dotNH, dotNV, dotVH) * spec;
#endif
direct *= attenuate(distance(p, lp));
direct *= lightCol;
#ifdef _MicroShadowing
direct *= clamp(dotNL + 2.0 * occ * occ - 1.0, 0.0, 1.0);
#endif
#ifdef _SSRS
direct *= traceShadowSS(l, p, gbufferD, invVP, eye);
#endif
#ifdef _VoxelShadow
direct *= (1.0 - traceShadow(p, n, voxels, voxelsSDF, l, clipmaps, gl_FragCoord.xy).r) * voxelgiShad;
#endif
#ifdef _LTC
#ifdef _ShadowMap
if (receiveShadow) {
#ifdef _SinglePoint
vec4 lPos = LWVPSpotArray[0] * vec4(p + n * bias * 10, 1.0);
direct *= shadowTest(shadowMapSpot[0], shadowMapSpotTransparent[0], lPos.xyz / lPos.w, bias, transparent);
#endif
#ifdef _Clusters
vec4 lPos = LWVPSpotArray[index] * vec4(p + n * bias * 10, 1.0);
if (index == 0) direct *= shadowTest(shadowMapSpot[0], shadowMapSpotTransparent[0], lPos.xyz / lPos.w, bias, transparent);
else if (index == 1) direct *= shadowTest(shadowMapSpot[1], shadowMapSpotTransparent[1], lPos.xyz / lPos.w, bias, transparent);
else if (index == 2) direct *= shadowTest(shadowMapSpot[2], shadowMapSpotTransparent[2], lPos.xyz / lPos.w, bias, transparent);
else if (index == 3) direct *= shadowTest(shadowMapSpot[3], shadowMapSpotTransparent[3], lPos.xyz / lPos.w, bias, transparent);
#endif
}
#endif
return direct;
#endif
#ifdef _Spot
if (isSpot) {
direct *= spotlightMask(l, spotDir, right, scale, spotSize, spotBlend);
#ifdef _ShadowMap
if (receiveShadow) {
#ifdef _SinglePoint
vec4 lPos = LWVPSpot[0] * vec4(p + n * bias * 10, 1.0);
direct *= shadowTest(shadowMapSpot[0], shadowMapSpotTransparent[0], lPos.xyz / lPos.w, bias, transparent);
#endif
#ifdef _Clusters
vec4 lPos = LWVPSpotArray[index] * vec4(p + n * bias * 10, 1.0);
#ifdef _ShadowMapAtlas
direct *= shadowTest(
#ifndef _SingleAtlas
shadowMapAtlasSpot, shadowMapAtlasSpotTransparent
#else
shadowMapAtlas, shadowMapAtlasTransparent
#endif
, lPos.xyz / lPos.w, bias, transparent
);
#else
if (index == 0) direct *= shadowTest(shadowMapSpot[0], shadowMapSpotTransparent[0], lPos.xyz / lPos.w, bias, transparent);
else if (index == 1) direct *= shadowTest(shadowMapSpot[1], shadowMapSpotTransparent[1], lPos.xyz / lPos.w, bias, transparent);
else if (index == 2) direct *= shadowTest(shadowMapSpot[2], shadowMapSpotTransparent[2], lPos.xyz / lPos.w, bias, transparent);
else if (index == 3) direct *= shadowTest(shadowMapSpot[3], shadowMapSpotTransparent[3], lPos.xyz / lPos.w, bias, transparent);
#endif
#endif
}
#endif
return direct;
}
#endif
#ifdef _LightIES
direct *= iesAttenuation(-l);
#endif
#ifdef _ShadowMap
if (receiveShadow) {
#ifdef _SinglePoint
#ifndef _Spot
direct *= PCFCube(shadowMapPoint[0], shadowMapPointTransparent[0], ld, -l, bias, lightProj, n, transparent);
#endif
#endif
#ifdef _Clusters
#ifdef _ShadowMapAtlas
direct *= PCFFakeCube(
#ifndef _SingleAtlas
shadowMapAtlasPoint, shadowMapAtlasPointTransparent
#else
shadowMapAtlas, shadowMapAtlasTransparent
#endif
, ld, -l, bias, lightProj, n, index, transparent
);
#else
if (index == 0) direct *= PCFCube(shadowMapPoint[0], shadowMapPointTransparent[0], ld, -l, bias, lightProj, n, transparent);
else if (index == 1) direct *= PCFCube(shadowMapPoint[1], shadowMapPointTransparent[1], ld, -l, bias, lightProj, n, transparent);
else if (index == 2) direct *= PCFCube(shadowMapPoint[2], shadowMapPointTransparent[2], ld, -l, bias, lightProj, n, transparent);
else if (index == 3) direct *= PCFCube(shadowMapPoint[3], shadowMapPointTransparent[3], ld, -l, bias, lightProj, n, transparent);
#endif
#endif
}
#endif
return direct;
}
#endif
#ifndef _LIGHT_GLSL_
#define _LIGHT_GLSL_
#include "compiled.inc"
#include "std/brdf.glsl"
#include "std/math.glsl"
#ifdef _ShadowMap
#include "std/shadows.glsl"
#endif
#ifdef _VoxelShadow
#include "std/conetrace.glsl"
//!uniform sampler2D voxels_shadows;
#endif
#ifdef _LTC
#include "std/ltc.glsl"
#endif
#ifdef _LightIES
#include "std/ies.glsl"
#endif
#ifdef _SSRS
#include "std/ssrs.glsl"
#endif
#ifdef _Spot
#include "std/light_common.glsl"
#endif
#ifdef _ShadowMap
#ifdef _SinglePoint
#ifdef _Spot
#ifndef _LTC
uniform sampler2DShadow shadowMapSpot[1];
uniform sampler2D shadowMapSpotTransparent[1];
uniform mat4 LWVPSpot[1];
#endif
#else
uniform samplerCubeShadow shadowMapPoint[1];
uniform samplerCube shadowMapPointTransparent[1];
uniform vec2 lightProj;
#endif
#endif
#ifdef _Clusters
#ifdef _SingleAtlas
//!uniform sampler2DShadow shadowMapAtlas;
//!uniform sampler2D shadowMapAtlasTransparent;
#endif
uniform vec2 lightProj;
#ifdef _ShadowMapAtlas
#ifndef _SingleAtlas
uniform sampler2DShadow shadowMapAtlasPoint;
uniform sampler2D shadowMapAtlasPointTransparent;
#endif
#else
uniform samplerCubeShadow shadowMapPoint[4];
uniform samplerCube shadowMapPointTransparent[4];
#endif
#ifdef _Spot
#ifdef _ShadowMapAtlas
#ifndef _SingleAtlas
uniform sampler2DShadow shadowMapAtlasSpot;
uniform sampler2D shadowMapAtlasSpotTransparent;
#endif
#else
uniform sampler2DShadow shadowMapSpot[4];
uniform sampler2D shadowMapSpotTransparent[4];
#endif
uniform mat4 LWVPSpotArray[maxLightsCluster];
#endif
#endif
#endif
#ifdef _LTC
uniform vec3 lightArea0;
uniform vec3 lightArea1;
uniform vec3 lightArea2;
uniform vec3 lightArea3;
uniform sampler2D sltcMat;
uniform sampler2D sltcMag;
#ifdef _ShadowMap
#ifndef _Spot
#ifdef _SinglePoint
uniform sampler2DShadow shadowMapSpot[1];
uniform sampler2D shadowMapSpotTransparent[1];
uniform mat4 LWVPSpot[1];
#endif
#ifdef _Clusters
uniform sampler2DShadow shadowMapSpot[maxLightsCluster];
uniform sampler2D shadowMapSpotTransparent[maxLightsCluster];
uniform mat4 LWVPSpotArray[maxLightsCluster];
#endif
#endif
#endif
#endif
vec3 sampleLight(const vec3 p, const vec3 n, const vec3 v, const float dotNV, const vec3 lp, const vec3 lightCol,
const vec3 albedo, const float rough, const float spec, const vec3 f0
#ifdef _ShadowMap
, int index, float bias, bool receiveShadow, bool transparent
#endif
#ifdef _Spot
, const bool isSpot, const float spotSize, float spotBlend, vec3 spotDir, vec2 scale, vec3 right
#endif
#ifdef _VoxelShadow
, sampler3D voxels, sampler3D voxelsSDF, float clipmaps[10 * voxelgiClipmapCount]
#endif
#ifdef _MicroShadowing
, float occ
#endif
#ifdef _SSRS
, sampler2D gbufferD, mat4 invVP, vec3 eye
#endif
) {
vec3 ld = lp - p;
vec3 l = normalize(ld);
vec3 h = normalize(v + l);
float dotNH = max(0.0, dot(n, h));
float dotVH = max(0.0, dot(v, h));
float dotNL = max(0.0, dot(n, l));
#ifdef _LTC
float theta = acos(dotNV);
vec2 tuv = vec2(rough, theta / (0.5 * PI));
tuv = tuv * LUT_SCALE + LUT_BIAS;
vec4 t = textureLod(sltcMat, tuv, 0.0);
mat3 invM = mat3(
vec3(1.0, 0.0, t.y),
vec3(0.0, t.z, 0.0),
vec3(t.w, 0.0, t.x));
float ltcspec = ltcEvaluate(n, v, dotNV, p, invM, lightArea0, lightArea1, lightArea2, lightArea3);
ltcspec *= textureLod(sltcMag, tuv, 0.0).a;
float ltcdiff = ltcEvaluate(n, v, dotNV, p, mat3(1.0), lightArea0, lightArea1, lightArea2, lightArea3);
vec3 direct = albedo * ltcdiff + ltcspec * spec * 0.05;
#else
vec3 F0 = surfaceF0(albedo, spec); // spec used as the metalness value
vec3 direct = burleyDiffuseBRDF(n, v, l, albedo, rough) * (1.0 - spec) +
specularBRDF(n, v, l, f0, rough) * spec;
#endif
direct *= attenuate(distance(p, lp));
direct *= lightCol;
#ifdef _MicroShadowing
direct *= clamp(dotNL + 2.0 * occ * occ - 1.0, 0.0, 1.0);
#endif
#ifdef _SSRS
direct *= traceShadowSS(l, p, gbufferD, invVP, eye);
#endif
#ifdef _VoxelShadow
direct *= (1.0 - traceShadow(p, n, voxels, voxelsSDF, l, clipmaps, gl_FragCoord.xy).r) * voxelgiShad;
#endif
#ifdef _LTC
#ifdef _ShadowMap
if (receiveShadow) {
#ifdef _SinglePoint
vec4 lPos = LWVPSpotArray[0] * vec4(p + n * bias * 10, 1.0);
direct *= shadowTest(shadowMapSpot[0], shadowMapSpotTransparent[0], lPos.xyz / lPos.w, bias, transparent);
#endif
#ifdef _Clusters
vec4 lPos = LWVPSpotArray[index] * vec4(p + n * bias * 10, 1.0);
if (index == 0) direct *= shadowTest(shadowMapSpot[0], shadowMapSpotTransparent[0], lPos.xyz / lPos.w, bias, transparent);
else if (index == 1) direct *= shadowTest(shadowMapSpot[1], shadowMapSpotTransparent[1], lPos.xyz / lPos.w, bias, transparent);
else if (index == 2) direct *= shadowTest(shadowMapSpot[2], shadowMapSpotTransparent[2], lPos.xyz / lPos.w, bias, transparent);
else if (index == 3) direct *= shadowTest(shadowMapSpot[3], shadowMapSpotTransparent[3], lPos.xyz / lPos.w, bias, transparent);
#endif
}
#endif
return direct;
#endif
#ifdef _Spot
if (isSpot) {
direct *= spotlightMask(l, spotDir, right, scale, spotSize, spotBlend);
#ifdef _ShadowMap
if (receiveShadow) {
#ifdef _SinglePoint
vec4 lPos = LWVPSpot[0] * vec4(p + n * bias * 10, 1.0);
direct *= shadowTest(shadowMapSpot[0], shadowMapSpotTransparent[0], lPos.xyz / lPos.w, bias, transparent);
#endif
#ifdef _Clusters
vec4 lPos = LWVPSpotArray[index] * vec4(p + n * bias * 10, 1.0);
#ifdef _ShadowMapAtlas
direct *= shadowTest(
#ifndef _SingleAtlas
shadowMapAtlasSpot, shadowMapAtlasSpotTransparent
#else
shadowMapAtlas, shadowMapAtlasTransparent
#endif
, lPos.xyz / lPos.w, bias, transparent
);
#else
if (index == 0) direct *= shadowTest(shadowMapSpot[0], shadowMapSpotTransparent[0], lPos.xyz / lPos.w, bias, transparent);
else if (index == 1) direct *= shadowTest(shadowMapSpot[1], shadowMapSpotTransparent[1], lPos.xyz / lPos.w, bias, transparent);
else if (index == 2) direct *= shadowTest(shadowMapSpot[2], shadowMapSpotTransparent[2], lPos.xyz / lPos.w, bias, transparent);
else if (index == 3) direct *= shadowTest(shadowMapSpot[3], shadowMapSpotTransparent[3], lPos.xyz / lPos.w, bias, transparent);
#endif
#endif
}
#endif
return direct;
}
#endif
#ifdef _LightIES
direct *= iesAttenuation(-l);
#endif
#ifdef _ShadowMap
if (receiveShadow) {
#ifdef _SinglePoint
#ifndef _Spot
direct *= PCFCube(shadowMapPoint[0], shadowMapPointTransparent[0], ld, -l, bias, lightProj, n, transparent);
#endif
#endif
#ifdef _Clusters
#ifdef _ShadowMapAtlas
direct *= PCFFakeCube(
#ifndef _SingleAtlas
shadowMapAtlasPoint, shadowMapAtlasPointTransparent
#else
shadowMapAtlas, shadowMapAtlasTransparent
#endif
, ld, -l, bias, lightProj, n, index, transparent
);
#else
if (index == 0) direct *= PCFCube(shadowMapPoint[0], shadowMapPointTransparent[0], ld, -l, bias, lightProj, n, transparent);
else if (index == 1) direct *= PCFCube(shadowMapPoint[1], shadowMapPointTransparent[1], ld, -l, bias, lightProj, n, transparent);
else if (index == 2) direct *= PCFCube(shadowMapPoint[2], shadowMapPointTransparent[2], ld, -l, bias, lightProj, n, transparent);
else if (index == 3) direct *= PCFCube(shadowMapPoint[3], shadowMapPointTransparent[3], ld, -l, bias, lightProj, n, transparent);
#endif
#endif
}
#endif
return direct;
}
#endif

View File

@ -7,6 +7,12 @@ float hash(const vec2 p) {
return fract(sin(h) * 43758.5453123);
}
float hash12(vec2 p) {
vec3 p3 = fract(vec3(p.xyx) * 0.1031);
p3 += dot(p3, p3.yzx + 33.33);
return fract((p3.x + p3.y) * p3.z);
}
vec2 envMapEquirect(const vec3 normal) {
const float PI = 3.1415926535;
const float PI2 = PI * 2.0;
@ -27,9 +33,9 @@ vec2 rand2(const vec2 coord) {
return vec2(noiseX, noiseY);
}
float linearize(const float depth, vec2 cameraProj) {
// to viewz
return cameraProj.y / (depth - cameraProj.x);
float linearize(float depth, vec2 cameraProj) {
return cameraProj.y / (cameraProj.x - max(depth, 1e-6));
//return cameraProj.y / (cameraProj.x - depth);
}
float attenuate(const float dist) {

View File

@ -234,7 +234,7 @@ class Inc {
var shadowmap = getShadowMapAtlas(atlas, false);
path.setTargetStream(shadowmap);
path.clearTarget(null, 1.0);
path.clearTarget(null, 0.0);
for (tile in atlas.activeTiles) {
if (tile.light == null || !tile.light.visible || tile.light.culledLight
@ -490,7 +490,7 @@ class Inc {
for (i in 0...faces) {
if (faces > 1) path.currentFace = i;
path.setTarget(shadowmap);
path.clearTarget(null, 1.0);
path.clearTarget(null, 0.0);
if (l.data.raw.cast_shadow) {
path.drawMeshes("shadowmap");
}
@ -1091,8 +1091,8 @@ class Inc {
var near = camera.data.raw.near_plane;
var far = camera.data.raw.far_plane;
var v = new iron.math.Vec2();
v.x = far / (far - near);
v.y = (-far * near) / (far - near);
v.x = 0.0;
v.y = near;
kha.compute.Compute.setFloat2(voxel_cc3, v.x, v.y);
@ -1166,9 +1166,8 @@ class Inc {
var near = camera.data.raw.near_plane;
var far = camera.data.raw.far_plane;
var v = new iron.math.Vec2();
v.x = far / (far - near);
v.y = (-far * near) / (far - near);
v.x = 0.0;
v.y = near;
kha.compute.Compute.setFloat2(voxel_cc3, v.x, v.y);
@ -1244,8 +1243,8 @@ class Inc {
var near = camera.data.raw.near_plane;
var far = camera.data.raw.far_plane;
var v = new iron.math.Vec2();
v.x = far / (far - near);
v.y = (-far * near) / (far - near);
v.x = 0.0;
v.y = near;
kha.compute.Compute.setFloat2(voxel_cc4, v.x, v.y);

View File

@ -159,7 +159,7 @@ class RenderPathDeferred {
#if rp_depth_texture
{
var t = new RenderTargetRaw();
t.name = "depthtex";
t.name = "gbufferD";
t.width = 0;
t.height = 0;
t.displayp = Inc.getDisplayp();
@ -451,11 +451,11 @@ class RenderPathDeferred {
path.setTarget("gbuffer0"); // Only clear gbuffer0
#if (rp_background == "Clear")
{
path.clearTarget(-1, 1.0);
path.clearTarget(null, 0.0);
}
#else
{
path.clearTarget(null, 1.0);
path.clearTarget(null, 0.0);
}
#end
@ -1017,7 +1017,7 @@ class RenderPathDeferred {
#if rp_overlays
{
path.setTarget(target);
path.clearTarget(null, 1.0);
path.clearTarget(null, 0.0);
path.drawMeshes("overlay");
}
#end
@ -1086,6 +1086,8 @@ class RenderPathDeferred {
path.setTarget("depthtex");
path.bindTarget("_main", "tex");
path.drawShader("shader_datas/copy_pass/copy_pass");
path.drawShader("shader_datas/deferred_light/deferred_light.frag.glsl");
path.drawShader("shader_datas/ssr_pass/ssr_pass.frag.glsl");
#if (!kha_opengl)
path.setDepthFrom("gbuffer0", "tex"); // Re-bind depth

View File

@ -428,11 +428,11 @@ class RenderPathForward {
#if (rp_background == "Clear")
{
path.clearTarget(-1, 1.0);
path.clearTarget(null, 0.0);
}
#else
{
path.clearTarget(null, 1.0);
path.clearTarget(null, 0.0);
}
#end
@ -703,7 +703,7 @@ class RenderPathForward {
#if rp_overlays
{
path.clearTarget(null, 1.0);
path.clearTarget(null, 0.0);
path.drawMeshes("overlay");
}
#end

View File

@ -571,10 +571,18 @@ class LnxRPListItem(bpy.types.PropertyGroup):
update=assets.invalidate_shader_cache
)
lnx_motion_blur_intensity: FloatProperty(name="Intensity", default=1.0, update=assets.invalidate_shader_cache)
lnx_ssr_precision: FloatProperty(name="Precision", default=0, min=0, max=100, subtype='PERCENTAGE', update=assets.invalidate_shader_cache)
lnx_ssr_ray_step: FloatProperty(name="Step", default=0.03, update=assets.invalidate_shader_cache)
lnx_ssr_search_dist: FloatProperty(name="Search", default=5.0, update=assets.invalidate_shader_cache)
lnx_ssr_search_dist: FloatProperty(name="Search", default=100.0, update=assets.invalidate_shader_cache)
lnx_ssr_falloff_exp: FloatProperty(name="Falloff", default=5.0, update=assets.invalidate_shader_cache)
lnx_ssr_jitter: FloatProperty(name="Jitter", default=0.6, update=assets.invalidate_shader_cache)
#lnx_ssr_conetrace_mode: EnumProperty(
# items=[(0, 'Fixed', 'Fastest', 'least quality'),
# (1, 'Slightly Weighted', 'Samples weighted a bit for realism'),
# (2, 'Weighted', 'Samples fully weighted for maximum realism'),
# ],
# name="Conetrace Mode", description="Fastest is fixed, best is weighted", default=2, update=assets.invalidate_shader_cache)
lnx_ssr_conetrace_taps: IntProperty(name="Conetrace Taps", default=18, min=1, update=assets.invalidate_shader_cache)
lnx_ss_refraction_ray_step: FloatProperty(name="Step", default=0.05, update=assets.invalidate_shader_cache)
lnx_ss_refraction_search_dist: FloatProperty(name="Search", default=5.0, update=assets.invalidate_shader_cache)
lnx_ss_refraction_falloff_exp: FloatProperty(name="Falloff", default=5.0, update=assets.invalidate_shader_cache)

View File

@ -1880,10 +1880,14 @@ class LNX_PT_RenderPathPostProcessPanel(bpy.types.Panel):
col.prop(rpdat, 'lnx_ssr_half_res')
col = col.column()
col.enabled = rpdat.rp_ssr
col.prop(rpdat, 'lnx_ssr_precision')
col.prop(rpdat, 'lnx_ssr_ray_step')
col.prop(rpdat, 'lnx_ssr_search_dist')
col.prop(rpdat, 'lnx_ssr_falloff_exp')
col.prop(rpdat, 'lnx_ssr_jitter')
col = col.column()
col.prop(rpdat, 'lnx_ssr_conetrace_taps')
#col.prop(rpdat, 'lnx_ssr_conetrace_mode')
layout.separator()
col = layout.column()