468 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			468 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Bullet Continuous Collision Detection and Physics Library
 | |
| Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose, 
 | |
| including commercial applications, and to alter it and redistribute it freely, 
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| #include "btGjkPairDetector.h"
 | |
| #include "BulletCollision/CollisionShapes/btConvexShape.h"
 | |
| #include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h"
 | |
| #include "BulletCollision/NarrowPhaseCollision/btConvexPenetrationDepthSolver.h"
 | |
| 
 | |
| 
 | |
| 
 | |
| #if defined(DEBUG) || defined (_DEBUG)
 | |
| //#define TEST_NON_VIRTUAL 1
 | |
| #include <stdio.h> //for debug printf
 | |
| #ifdef __SPU__
 | |
| #include <spu_printf.h>
 | |
| #define printf spu_printf
 | |
| #endif //__SPU__
 | |
| #endif
 | |
| 
 | |
| //must be above the machine epsilon
 | |
| #ifdef  BT_USE_DOUBLE_PRECISION
 | |
| 	#define REL_ERROR2 btScalar(1.0e-12)
 | |
| 	btScalar gGjkEpaPenetrationTolerance = 1e-7;
 | |
| #else
 | |
| 	#define REL_ERROR2 btScalar(1.0e-6)
 | |
| 	btScalar gGjkEpaPenetrationTolerance = 0.001;
 | |
| #endif
 | |
| 
 | |
| //temp globals, to improve GJK/EPA/penetration calculations
 | |
| int gNumDeepPenetrationChecks = 0;
 | |
| int gNumGjkChecks = 0;
 | |
| 
 | |
| 
 | |
| btGjkPairDetector::btGjkPairDetector(const btConvexShape* objectA,const btConvexShape* objectB,btSimplexSolverInterface* simplexSolver,btConvexPenetrationDepthSolver*	penetrationDepthSolver)
 | |
| :m_cachedSeparatingAxis(btScalar(0.),btScalar(1.),btScalar(0.)),
 | |
| m_penetrationDepthSolver(penetrationDepthSolver),
 | |
| m_simplexSolver(simplexSolver),
 | |
| m_minkowskiA(objectA),
 | |
| m_minkowskiB(objectB),
 | |
| m_shapeTypeA(objectA->getShapeType()),
 | |
| m_shapeTypeB(objectB->getShapeType()),
 | |
| m_marginA(objectA->getMargin()),
 | |
| m_marginB(objectB->getMargin()),
 | |
| m_ignoreMargin(false),
 | |
| m_lastUsedMethod(-1),
 | |
| m_catchDegeneracies(1),
 | |
| m_fixContactNormalDirection(1)
 | |
| {
 | |
| }
 | |
| btGjkPairDetector::btGjkPairDetector(const btConvexShape* objectA,const btConvexShape* objectB,int shapeTypeA,int shapeTypeB,btScalar marginA, btScalar marginB, btSimplexSolverInterface* simplexSolver,btConvexPenetrationDepthSolver*	penetrationDepthSolver)
 | |
| :m_cachedSeparatingAxis(btScalar(0.),btScalar(1.),btScalar(0.)),
 | |
| m_penetrationDepthSolver(penetrationDepthSolver),
 | |
| m_simplexSolver(simplexSolver),
 | |
| m_minkowskiA(objectA),
 | |
| m_minkowskiB(objectB),
 | |
| m_shapeTypeA(shapeTypeA),
 | |
| m_shapeTypeB(shapeTypeB),
 | |
| m_marginA(marginA),
 | |
| m_marginB(marginB),
 | |
| m_ignoreMargin(false),
 | |
| m_lastUsedMethod(-1),
 | |
| m_catchDegeneracies(1),
 | |
| m_fixContactNormalDirection(1)
 | |
| {
 | |
| }
 | |
| 
 | |
| void	btGjkPairDetector::getClosestPoints(const ClosestPointInput& input,Result& output,class btIDebugDraw* debugDraw,bool swapResults)
 | |
| {
 | |
| 	(void)swapResults;
 | |
| 
 | |
| 	getClosestPointsNonVirtual(input,output,debugDraw);
 | |
| }
 | |
| 
 | |
| #ifdef __SPU__
 | |
| void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& input,Result& output,class btIDebugDraw* debugDraw)
 | |
| #else
 | |
| void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& input, Result& output, class btIDebugDraw* debugDraw)
 | |
| #endif
 | |
| {
 | |
| 	m_cachedSeparatingDistance = 0.f;
 | |
| 
 | |
| 	btScalar distance=btScalar(0.);
 | |
| 	btVector3	normalInB(btScalar(0.),btScalar(0.),btScalar(0.));
 | |
| 
 | |
| 	btVector3 pointOnA,pointOnB;
 | |
| 	btTransform	localTransA = input.m_transformA;
 | |
| 	btTransform localTransB = input.m_transformB;
 | |
| 	btVector3 positionOffset=(localTransA.getOrigin() + localTransB.getOrigin()) * btScalar(0.5);
 | |
| 	localTransA.getOrigin() -= positionOffset;
 | |
| 	localTransB.getOrigin() -= positionOffset;
 | |
| 
 | |
| 	bool check2d = m_minkowskiA->isConvex2d() && m_minkowskiB->isConvex2d();
 | |
| 
 | |
| 	btScalar marginA = m_marginA;
 | |
| 	btScalar marginB = m_marginB;
 | |
| 
 | |
| 	gNumGjkChecks++;
 | |
| 
 | |
| 	//for CCD we don't use margins
 | |
| 	if (m_ignoreMargin)
 | |
| 	{
 | |
| 		marginA = btScalar(0.);
 | |
| 		marginB = btScalar(0.);
 | |
| 	}
 | |
| 
 | |
| 	m_curIter = 0;
 | |
| 	int gGjkMaxIter = 1000;//this is to catch invalid input, perhaps check for #NaN?
 | |
| 	m_cachedSeparatingAxis.setValue(0,1,0);
 | |
| 
 | |
| 	bool isValid = false;
 | |
| 	bool checkSimplex = false;
 | |
| 	bool checkPenetration = true;
 | |
| 	m_degenerateSimplex = 0;
 | |
| 
 | |
| 	m_lastUsedMethod = -1;
 | |
| 
 | |
| 	{
 | |
| 		btScalar squaredDistance = BT_LARGE_FLOAT;
 | |
| 		btScalar delta = btScalar(0.);
 | |
| 		
 | |
| 		btScalar margin = marginA + marginB;
 | |
| 		
 | |
| 		
 | |
| 
 | |
| 		m_simplexSolver->reset();
 | |
| 		
 | |
| 		for ( ; ; )
 | |
| 		//while (true)
 | |
| 		{
 | |
| 
 | |
| 			btVector3 seperatingAxisInA = (-m_cachedSeparatingAxis)* input.m_transformA.getBasis();
 | |
| 			btVector3 seperatingAxisInB = m_cachedSeparatingAxis* input.m_transformB.getBasis();
 | |
| 
 | |
| 
 | |
| 			btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInA);
 | |
| 			btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInB);
 | |
| 
 | |
| 			btVector3  pWorld = localTransA(pInA);	
 | |
| 			btVector3  qWorld = localTransB(qInB);
 | |
| 
 | |
| 
 | |
| 			if (check2d)
 | |
| 			{
 | |
| 				pWorld[2] = 0.f;
 | |
| 				qWorld[2] = 0.f;
 | |
| 			}
 | |
| 
 | |
| 			btVector3 w	= pWorld - qWorld;
 | |
| 			delta = m_cachedSeparatingAxis.dot(w);
 | |
| 
 | |
| 			// potential exit, they don't overlap
 | |
| 			if ((delta > btScalar(0.0)) && (delta * delta > squaredDistance * input.m_maximumDistanceSquared)) 
 | |
| 			{
 | |
| 				m_degenerateSimplex = 10;
 | |
| 				checkSimplex=true;
 | |
| 				//checkPenetration = false;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			//exit 0: the new point is already in the simplex, or we didn't come any closer
 | |
| 			if (m_simplexSolver->inSimplex(w))
 | |
| 			{
 | |
| 				m_degenerateSimplex = 1;
 | |
| 				checkSimplex = true;
 | |
| 				break;
 | |
| 			}
 | |
| 			// are we getting any closer ?
 | |
| 			btScalar f0 = squaredDistance - delta;
 | |
| 			btScalar f1 = squaredDistance * REL_ERROR2;
 | |
| 
 | |
| 			if (f0 <= f1)
 | |
| 			{
 | |
| 				if (f0 <= btScalar(0.))
 | |
| 				{
 | |
| 					m_degenerateSimplex = 2;
 | |
| 				} else
 | |
| 				{
 | |
| 					m_degenerateSimplex = 11;
 | |
| 				}
 | |
| 				checkSimplex = true;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			//add current vertex to simplex
 | |
| 			m_simplexSolver->addVertex(w, pWorld, qWorld);
 | |
| 			btVector3 newCachedSeparatingAxis;
 | |
| 
 | |
| 			//calculate the closest point to the origin (update vector v)
 | |
| 			if (!m_simplexSolver->closest(newCachedSeparatingAxis))
 | |
| 			{
 | |
| 				m_degenerateSimplex = 3;
 | |
| 				checkSimplex = true;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			if(newCachedSeparatingAxis.length2()<REL_ERROR2)
 | |
|             {
 | |
| 				m_cachedSeparatingAxis = newCachedSeparatingAxis;
 | |
|                 m_degenerateSimplex = 6;
 | |
|                 checkSimplex = true;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
| 			btScalar previousSquaredDistance = squaredDistance;
 | |
| 			squaredDistance = newCachedSeparatingAxis.length2();
 | |
| #if 0
 | |
| ///warning: this termination condition leads to some problems in 2d test case see Bullet/Demos/Box2dDemo
 | |
| 			if (squaredDistance>previousSquaredDistance)
 | |
| 			{
 | |
| 				m_degenerateSimplex = 7;
 | |
| 				squaredDistance = previousSquaredDistance;
 | |
|                 checkSimplex = false;
 | |
|                 break;
 | |
| 			}
 | |
| #endif //
 | |
| 			
 | |
| 
 | |
| 			//redundant m_simplexSolver->compute_points(pointOnA, pointOnB);
 | |
| 
 | |
| 			//are we getting any closer ?
 | |
| 			if (previousSquaredDistance - squaredDistance <= SIMD_EPSILON * previousSquaredDistance) 
 | |
| 			{ 
 | |
| //				m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
 | |
| 				checkSimplex = true;
 | |
| 				m_degenerateSimplex = 12;
 | |
| 				
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			m_cachedSeparatingAxis = newCachedSeparatingAxis;
 | |
| 
 | |
| 			  //degeneracy, this is typically due to invalid/uninitialized worldtransforms for a btCollisionObject   
 | |
|               if (m_curIter++ > gGjkMaxIter)   
 | |
|               {   
 | |
|                       #if defined(DEBUG) || defined (_DEBUG)
 | |
| 
 | |
|                               printf("btGjkPairDetector maxIter exceeded:%i\n",m_curIter);   
 | |
|                               printf("sepAxis=(%f,%f,%f), squaredDistance = %f, shapeTypeA=%i,shapeTypeB=%i\n",   
 | |
|                               m_cachedSeparatingAxis.getX(),   
 | |
|                               m_cachedSeparatingAxis.getY(),   
 | |
|                               m_cachedSeparatingAxis.getZ(),   
 | |
|                               squaredDistance,   
 | |
|                               m_minkowskiA->getShapeType(),   
 | |
|                               m_minkowskiB->getShapeType());   
 | |
| 
 | |
|                       #endif   
 | |
|                       break;   
 | |
| 
 | |
|               } 
 | |
| 
 | |
| 
 | |
| 			bool check = (!m_simplexSolver->fullSimplex());
 | |
| 			//bool check = (!m_simplexSolver->fullSimplex() && squaredDistance > SIMD_EPSILON * m_simplexSolver->maxVertex());
 | |
| 
 | |
| 			if (!check)
 | |
| 			{
 | |
| 				//do we need this backup_closest here ?
 | |
| //				m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
 | |
| 				m_degenerateSimplex = 13;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (checkSimplex)
 | |
| 		{
 | |
| 			m_simplexSolver->compute_points(pointOnA, pointOnB);
 | |
| 			normalInB = m_cachedSeparatingAxis;
 | |
| 
 | |
| 			btScalar lenSqr =m_cachedSeparatingAxis.length2();
 | |
| 			
 | |
| 			//valid normal
 | |
| 			if (lenSqr < REL_ERROR2)
 | |
| 			{
 | |
| 				m_degenerateSimplex = 5;
 | |
| 			} 
 | |
| 			if (lenSqr > SIMD_EPSILON*SIMD_EPSILON)
 | |
| 			{
 | |
| 				btScalar rlen = btScalar(1.) / btSqrt(lenSqr );
 | |
| 				normalInB *= rlen; //normalize
 | |
| 
 | |
| 				btScalar s = btSqrt(squaredDistance);
 | |
| 			
 | |
| 				btAssert(s > btScalar(0.0));
 | |
| 				pointOnA -= m_cachedSeparatingAxis * (marginA / s);
 | |
| 				pointOnB += m_cachedSeparatingAxis * (marginB / s);
 | |
| 				distance = ((btScalar(1.)/rlen) - margin);
 | |
| 				isValid = true;
 | |
| 				
 | |
| 				m_lastUsedMethod = 1;
 | |
| 			} else
 | |
| 			{
 | |
| 				m_lastUsedMethod = 2;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		bool catchDegeneratePenetrationCase = 
 | |
| 			(m_catchDegeneracies && m_penetrationDepthSolver && m_degenerateSimplex && ((distance+margin) < gGjkEpaPenetrationTolerance));
 | |
| 
 | |
| 		//if (checkPenetration && !isValid)
 | |
| 		if (checkPenetration && (!isValid || catchDegeneratePenetrationCase ))
 | |
| 		{
 | |
| 			//penetration case
 | |
| 
 | |
| 			//if there is no way to handle penetrations, bail out
 | |
| 			if (m_penetrationDepthSolver)
 | |
| 			{
 | |
| 				// Penetration depth case.
 | |
| 				btVector3 tmpPointOnA,tmpPointOnB;
 | |
| 				
 | |
| 				gNumDeepPenetrationChecks++;
 | |
| 				m_cachedSeparatingAxis.setZero();
 | |
| 
 | |
| 				bool isValid2 = m_penetrationDepthSolver->calcPenDepth( 
 | |
| 					*m_simplexSolver, 
 | |
| 					m_minkowskiA,m_minkowskiB,
 | |
| 					localTransA,localTransB,
 | |
| 					m_cachedSeparatingAxis, tmpPointOnA, tmpPointOnB,
 | |
| 					debugDraw
 | |
| 					);
 | |
| 
 | |
| 
 | |
| 				if (isValid2)
 | |
| 				{
 | |
| 					btVector3 tmpNormalInB = tmpPointOnB-tmpPointOnA;
 | |
| 					btScalar lenSqr = tmpNormalInB.length2();
 | |
| 					if (lenSqr <= (SIMD_EPSILON*SIMD_EPSILON))
 | |
| 					{
 | |
| 						tmpNormalInB = m_cachedSeparatingAxis;
 | |
| 						lenSqr = m_cachedSeparatingAxis.length2();
 | |
| 					}
 | |
| 
 | |
| 					if (lenSqr > (SIMD_EPSILON*SIMD_EPSILON))
 | |
| 					{
 | |
| 						tmpNormalInB /= btSqrt(lenSqr);
 | |
| 						btScalar distance2 = -(tmpPointOnA-tmpPointOnB).length();
 | |
| 						m_lastUsedMethod = 3;
 | |
| 						//only replace valid penetrations when the result is deeper (check)
 | |
| 						if (!isValid || (distance2 < distance))
 | |
| 						{
 | |
| 							distance = distance2;
 | |
| 							pointOnA = tmpPointOnA;
 | |
| 							pointOnB = tmpPointOnB;
 | |
| 							normalInB = tmpNormalInB;
 | |
| 							
 | |
| 							isValid = true;
 | |
| 							
 | |
| 						} else
 | |
| 						{
 | |
| 							m_lastUsedMethod = 8;
 | |
| 						}
 | |
| 					} else
 | |
| 					{
 | |
| 						m_lastUsedMethod = 9;
 | |
| 					}
 | |
| 				} else
 | |
| 
 | |
| 				{
 | |
| 					///this is another degenerate case, where the initial GJK calculation reports a degenerate case
 | |
| 					///EPA reports no penetration, and the second GJK (using the supporting vector without margin)
 | |
| 					///reports a valid positive distance. Use the results of the second GJK instead of failing.
 | |
| 					///thanks to Jacob.Langford for the reproduction case
 | |
| 					///http://code.google.com/p/bullet/issues/detail?id=250
 | |
| 
 | |
| 				
 | |
| 					if (m_cachedSeparatingAxis.length2() > btScalar(0.))
 | |
| 					{
 | |
| 						btScalar distance2 = (tmpPointOnA-tmpPointOnB).length()-margin;
 | |
| 						//only replace valid distances when the distance is less
 | |
| 						if (!isValid || (distance2 < distance))
 | |
| 						{
 | |
| 							distance = distance2;
 | |
| 							pointOnA = tmpPointOnA;
 | |
| 							pointOnB = tmpPointOnB;
 | |
| 							pointOnA -= m_cachedSeparatingAxis * marginA ;
 | |
| 							pointOnB += m_cachedSeparatingAxis * marginB ;
 | |
| 							normalInB = m_cachedSeparatingAxis;
 | |
| 							normalInB.normalize();
 | |
| 
 | |
| 							isValid = true;
 | |
| 							m_lastUsedMethod = 6;
 | |
| 						} else
 | |
| 						{
 | |
| 							m_lastUsedMethod = 5;
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				
 | |
| 			}
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	
 | |
| 
 | |
| 	if (isValid && ((distance < 0) || (distance*distance < input.m_maximumDistanceSquared)))
 | |
| 	{
 | |
| 
 | |
| 		m_cachedSeparatingAxis = normalInB;
 | |
| 		m_cachedSeparatingDistance = distance;
 | |
| 
 | |
| 		{
 | |
| 		///todo: need to track down this EPA penetration solver degeneracy
 | |
| 		///the penetration solver reports penetration but the contact normal
 | |
| 		///connecting the contact points is pointing in the opposite direction
 | |
| 		///until then, detect the issue and revert the normal
 | |
| 
 | |
| 			btScalar d1=0;
 | |
| 			{
 | |
| 				btVector3 seperatingAxisInA = (normalInB)* input.m_transformA.getBasis();
 | |
| 				btVector3 seperatingAxisInB = -normalInB* input.m_transformB.getBasis();
 | |
| 			
 | |
| 
 | |
| 				btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInA);
 | |
| 				btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInB);
 | |
| 
 | |
| 				btVector3  pWorld = localTransA(pInA);	
 | |
| 				btVector3  qWorld = localTransB(qInB);
 | |
| 				btVector3 w	= pWorld - qWorld;
 | |
| 				d1 = (-normalInB).dot(w);
 | |
| 			}
 | |
| 			btScalar d0 = 0.f;
 | |
| 			{
 | |
| 				btVector3 seperatingAxisInA = (-normalInB)* input.m_transformA.getBasis();
 | |
| 				btVector3 seperatingAxisInB = normalInB* input.m_transformB.getBasis();
 | |
| 			
 | |
| 
 | |
| 				btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInA);
 | |
| 				btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInB);
 | |
| 
 | |
| 				btVector3  pWorld = localTransA(pInA);	
 | |
| 				btVector3  qWorld = localTransB(qInB);
 | |
| 				btVector3 w	= pWorld - qWorld;
 | |
| 				d0 = normalInB.dot(w);
 | |
| 			}
 | |
| 			if (d1>d0)
 | |
| 			{
 | |
| 				m_lastUsedMethod = 10;
 | |
| 				normalInB*=-1;
 | |
| 			} 
 | |
| 
 | |
| 		}
 | |
| 		output.addContactPoint(
 | |
| 			normalInB,
 | |
| 			pointOnB+positionOffset,
 | |
| 			distance);
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 |