1168 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1168 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Stan Melax Convex Hull Computation
 | |
| Copyright (c) 2003-2006 Stan Melax http://www.melax.com/
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose, 
 | |
| including commercial applications, and to alter it and redistribute it freely, 
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| #include <string.h>
 | |
| 
 | |
| #include "btConvexHull.h"
 | |
| #include "btAlignedObjectArray.h"
 | |
| #include "btMinMax.h"
 | |
| #include "btVector3.h"
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| //----------------------------------
 | |
| 
 | |
| class int3  
 | |
| {
 | |
| public:
 | |
| 	int x,y,z;
 | |
| 	int3(){};
 | |
| 	int3(int _x,int _y, int _z){x=_x;y=_y;z=_z;}
 | |
| 	const int& operator[](int i) const {return (&x)[i];}
 | |
| 	int& operator[](int i) {return (&x)[i];}
 | |
| };
 | |
| 
 | |
| 
 | |
| //------- btPlane ----------
 | |
| 
 | |
| 
 | |
| inline btPlane PlaneFlip(const btPlane &plane){return btPlane(-plane.normal,-plane.dist);}
 | |
| inline int operator==( const btPlane &a, const btPlane &b ) { return (a.normal==b.normal && a.dist==b.dist); }
 | |
| inline int coplanar( const btPlane &a, const btPlane &b ) { return (a==b || a==PlaneFlip(b)); }
 | |
| 
 | |
| 
 | |
| //--------- Utility Functions ------
 | |
| 
 | |
| btVector3  PlaneLineIntersection(const btPlane &plane, const btVector3 &p0, const btVector3 &p1);
 | |
| btVector3  PlaneProject(const btPlane &plane, const btVector3 &point);
 | |
| 
 | |
| btVector3  ThreePlaneIntersection(const btPlane &p0,const btPlane &p1, const btPlane &p2);
 | |
| btVector3  ThreePlaneIntersection(const btPlane &p0,const btPlane &p1, const btPlane &p2)
 | |
| {
 | |
| 	btVector3 N1 = p0.normal;
 | |
| 	btVector3 N2 = p1.normal;
 | |
| 	btVector3 N3 = p2.normal;
 | |
| 
 | |
| 	btVector3 n2n3; n2n3 = N2.cross(N3);
 | |
| 	btVector3 n3n1; n3n1 = N3.cross(N1);
 | |
| 	btVector3 n1n2; n1n2 = N1.cross(N2);
 | |
| 
 | |
| 	btScalar quotient = (N1.dot(n2n3));
 | |
| 
 | |
| 	btAssert(btFabs(quotient) > btScalar(0.000001));
 | |
| 	
 | |
| 	quotient = btScalar(-1.) / quotient;
 | |
| 	n2n3 *= p0.dist;
 | |
| 	n3n1 *= p1.dist;
 | |
| 	n1n2 *= p2.dist;
 | |
| 	btVector3 potentialVertex = n2n3;
 | |
| 	potentialVertex += n3n1;
 | |
| 	potentialVertex += n1n2;
 | |
| 	potentialVertex *= quotient;
 | |
| 
 | |
| 	btVector3 result(potentialVertex.getX(),potentialVertex.getY(),potentialVertex.getZ());
 | |
| 	return result;
 | |
| 
 | |
| }
 | |
| 
 | |
| btScalar   DistanceBetweenLines(const btVector3 &ustart, const btVector3 &udir, const btVector3 &vstart, const btVector3 &vdir, btVector3 *upoint=NULL, btVector3 *vpoint=NULL);
 | |
| btVector3  TriNormal(const btVector3 &v0, const btVector3 &v1, const btVector3 &v2);
 | |
| btVector3  NormalOf(const btVector3 *vert, const int n);
 | |
| 
 | |
| 
 | |
| btVector3 PlaneLineIntersection(const btPlane &plane, const btVector3 &p0, const btVector3 &p1)
 | |
| {
 | |
| 	// returns the point where the line p0-p1 intersects the plane n&d
 | |
|     btVector3 dif;
 | |
| 		dif = p1-p0;
 | |
| 				btScalar dn= btDot(plane.normal,dif);
 | |
| 				btScalar t = -(plane.dist+btDot(plane.normal,p0) )/dn;
 | |
| 				return p0 + (dif*t);
 | |
| }
 | |
| 
 | |
| btVector3 PlaneProject(const btPlane &plane, const btVector3 &point)
 | |
| {
 | |
| 	return point - plane.normal * (btDot(point,plane.normal)+plane.dist);
 | |
| }
 | |
| 
 | |
| btVector3 TriNormal(const btVector3 &v0, const btVector3 &v1, const btVector3 &v2)
 | |
| {
 | |
| 	// return the normal of the triangle
 | |
| 	// inscribed by v0, v1, and v2
 | |
| 	btVector3 cp=btCross(v1-v0,v2-v1);
 | |
| 	btScalar m=cp.length();
 | |
| 	if(m==0) return btVector3(1,0,0);
 | |
| 	return cp*(btScalar(1.0)/m);
 | |
| }
 | |
| 
 | |
| 
 | |
| btScalar DistanceBetweenLines(const btVector3 &ustart, const btVector3 &udir, const btVector3 &vstart, const btVector3 &vdir, btVector3 *upoint, btVector3 *vpoint)
 | |
| {
 | |
| 	btVector3 cp;
 | |
| 	cp = btCross(udir,vdir).normalized();
 | |
| 
 | |
| 	btScalar distu = -btDot(cp,ustart);
 | |
| 	btScalar distv = -btDot(cp,vstart);
 | |
| 	btScalar dist = (btScalar)fabs(distu-distv);
 | |
| 	if(upoint) 
 | |
| 		{
 | |
| 		btPlane plane;
 | |
| 		plane.normal = btCross(vdir,cp).normalized();
 | |
| 		plane.dist = -btDot(plane.normal,vstart);
 | |
| 		*upoint = PlaneLineIntersection(plane,ustart,ustart+udir);
 | |
| 	}
 | |
| 	if(vpoint) 
 | |
| 		{
 | |
| 		btPlane plane;
 | |
| 		plane.normal = btCross(udir,cp).normalized();
 | |
| 		plane.dist = -btDot(plane.normal,ustart);
 | |
| 		*vpoint = PlaneLineIntersection(plane,vstart,vstart+vdir);
 | |
| 	}
 | |
| 	return dist;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| #define COPLANAR   (0)
 | |
| #define UNDER      (1)
 | |
| #define OVER       (2)
 | |
| #define SPLIT      (OVER|UNDER)
 | |
| #define PAPERWIDTH (btScalar(0.001))
 | |
| 
 | |
| btScalar planetestepsilon = PAPERWIDTH;
 | |
| 
 | |
| 
 | |
| 
 | |
| typedef ConvexH::HalfEdge HalfEdge;
 | |
| 
 | |
| ConvexH::ConvexH(int vertices_size,int edges_size,int facets_size)
 | |
| {
 | |
| 	vertices.resize(vertices_size);
 | |
| 	edges.resize(edges_size);
 | |
| 	facets.resize(facets_size);
 | |
| }
 | |
| 
 | |
| 
 | |
| int PlaneTest(const btPlane &p, const btVector3 &v);
 | |
| int PlaneTest(const btPlane &p, const btVector3 &v) {
 | |
| 	btScalar a  = btDot(v,p.normal)+p.dist;
 | |
| 	int   flag = (a>planetestepsilon)?OVER:((a<-planetestepsilon)?UNDER:COPLANAR);
 | |
| 	return flag;
 | |
| }
 | |
| 
 | |
| int SplitTest(ConvexH &convex,const btPlane &plane);
 | |
| int SplitTest(ConvexH &convex,const btPlane &plane) {
 | |
| 	int flag=0;
 | |
| 	for(int i=0;i<convex.vertices.size();i++) {
 | |
| 		flag |= PlaneTest(plane,convex.vertices[i]);
 | |
| 	}
 | |
| 	return flag;
 | |
| }
 | |
| 
 | |
| class VertFlag
 | |
| {
 | |
| public:
 | |
| 	unsigned char planetest;
 | |
| 	unsigned char junk;
 | |
| 	unsigned char undermap;
 | |
| 	unsigned char overmap;
 | |
| };
 | |
| class EdgeFlag 
 | |
| {
 | |
| public:
 | |
| 	unsigned char planetest;
 | |
| 	unsigned char fixes;
 | |
| 	short undermap;
 | |
| 	short overmap;
 | |
| };
 | |
| class PlaneFlag
 | |
| {
 | |
| public:
 | |
| 	unsigned char undermap;
 | |
| 	unsigned char overmap;
 | |
| };
 | |
| class Coplanar{
 | |
| public:
 | |
| 	unsigned short ea;
 | |
| 	unsigned char v0;
 | |
| 	unsigned char v1;
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| template<class T>
 | |
| int maxdirfiltered(const T *p,int count,const T &dir,btAlignedObjectArray<int> &allow)
 | |
| {
 | |
| 	btAssert(count);
 | |
| 	int m=-1;
 | |
| 	for(int i=0;i<count;i++) 
 | |
| 		if(allow[i])
 | |
| 		{
 | |
| 			if(m==-1 || btDot(p[i],dir)>btDot(p[m],dir))
 | |
| 				m=i;
 | |
| 		}
 | |
| 	btAssert(m!=-1);
 | |
| 	return m;
 | |
| } 
 | |
| 
 | |
| btVector3 orth(const btVector3 &v);
 | |
| btVector3 orth(const btVector3 &v)
 | |
| {
 | |
| 	btVector3 a=btCross(v,btVector3(0,0,1));
 | |
| 	btVector3 b=btCross(v,btVector3(0,1,0));
 | |
| 	if (a.length() > b.length())
 | |
| 	{
 | |
| 		return a.normalized();
 | |
| 	} else {
 | |
| 		return b.normalized();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| template<class T>
 | |
| int maxdirsterid(const T *p,int count,const T &dir,btAlignedObjectArray<int> &allow)
 | |
| {
 | |
| 	int m=-1;
 | |
| 	while(m==-1)
 | |
| 	{
 | |
| 		m = maxdirfiltered(p,count,dir,allow);
 | |
| 		if(allow[m]==3) return m;
 | |
| 		T u = orth(dir);
 | |
| 		T v = btCross(u,dir);
 | |
| 		int ma=-1;
 | |
| 		for(btScalar x = btScalar(0.0) ; x<= btScalar(360.0) ; x+= btScalar(45.0))
 | |
| 		{
 | |
| 			btScalar s = btSin(SIMD_RADS_PER_DEG*(x));
 | |
| 			btScalar c = btCos(SIMD_RADS_PER_DEG*(x));
 | |
| 			int mb = maxdirfiltered(p,count,dir+(u*s+v*c)*btScalar(0.025),allow);
 | |
| 			if(ma==m && mb==m)
 | |
| 			{
 | |
| 				allow[m]=3;
 | |
| 				return m;
 | |
| 			}
 | |
| 			if(ma!=-1 && ma!=mb)  // Yuck - this is really ugly
 | |
| 			{
 | |
| 				int mc = ma;
 | |
| 				for(btScalar xx = x-btScalar(40.0) ; xx <= x ; xx+= btScalar(5.0))
 | |
| 				{
 | |
| 					btScalar s = btSin(SIMD_RADS_PER_DEG*(xx));
 | |
| 					btScalar c = btCos(SIMD_RADS_PER_DEG*(xx));
 | |
| 					int md = maxdirfiltered(p,count,dir+(u*s+v*c)*btScalar(0.025),allow);
 | |
| 					if(mc==m && md==m)
 | |
| 					{
 | |
| 						allow[m]=3;
 | |
| 						return m;
 | |
| 					}
 | |
| 					mc=md;
 | |
| 				}
 | |
| 			}
 | |
| 			ma=mb;
 | |
| 		}
 | |
| 		allow[m]=0;
 | |
| 		m=-1;
 | |
| 	}
 | |
| 	btAssert(0);
 | |
| 	return m;
 | |
| } 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| int operator ==(const int3 &a,const int3 &b);
 | |
| int operator ==(const int3 &a,const int3 &b) 
 | |
| {
 | |
| 	for(int i=0;i<3;i++) 
 | |
| 	{
 | |
| 		if(a[i]!=b[i]) return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| int above(btVector3* vertices,const int3& t, const btVector3 &p, btScalar epsilon);
 | |
| int above(btVector3* vertices,const int3& t, const btVector3 &p, btScalar epsilon) 
 | |
| {
 | |
| 	btVector3 n=TriNormal(vertices[t[0]],vertices[t[1]],vertices[t[2]]);
 | |
| 	return (btDot(n,p-vertices[t[0]]) > epsilon); // EPSILON???
 | |
| }
 | |
| int hasedge(const int3 &t, int a,int b);
 | |
| int hasedge(const int3 &t, int a,int b)
 | |
| {
 | |
| 	for(int i=0;i<3;i++)
 | |
| 	{
 | |
| 		int i1= (i+1)%3;
 | |
| 		if(t[i]==a && t[i1]==b) return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| int hasvert(const int3 &t, int v);
 | |
| int hasvert(const int3 &t, int v)
 | |
| {
 | |
| 	return (t[0]==v || t[1]==v || t[2]==v) ;
 | |
| }
 | |
| int shareedge(const int3 &a,const int3 &b);
 | |
| int shareedge(const int3 &a,const int3 &b)
 | |
| {
 | |
| 	int i;
 | |
| 	for(i=0;i<3;i++)
 | |
| 	{
 | |
| 		int i1= (i+1)%3;
 | |
| 		if(hasedge(a,b[i1],b[i])) return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| class btHullTriangle;
 | |
| 
 | |
| 
 | |
| 
 | |
| class btHullTriangle : public int3
 | |
| {
 | |
| public:
 | |
| 	int3 n;
 | |
| 	int id;
 | |
| 	int vmax;
 | |
| 	btScalar rise;
 | |
| 	btHullTriangle(int a,int b,int c):int3(a,b,c),n(-1,-1,-1)
 | |
| 	{
 | |
| 		vmax=-1;
 | |
| 		rise = btScalar(0.0);
 | |
| 	}
 | |
| 	~btHullTriangle()
 | |
| 	{
 | |
| 	}
 | |
| 	int &neib(int a,int b);
 | |
| };
 | |
| 
 | |
| 
 | |
| int &btHullTriangle::neib(int a,int b)
 | |
| {
 | |
| 	static int er=-1;
 | |
| 	int i;
 | |
| 	for(i=0;i<3;i++) 
 | |
| 	{
 | |
| 		int i1=(i+1)%3;
 | |
| 		int i2=(i+2)%3;
 | |
| 		if((*this)[i]==a && (*this)[i1]==b) return n[i2];
 | |
| 		if((*this)[i]==b && (*this)[i1]==a) return n[i2];
 | |
| 	}
 | |
| 	btAssert(0);
 | |
| 	return er;
 | |
| }
 | |
| void HullLibrary::b2bfix(btHullTriangle* s,btHullTriangle*t)
 | |
| {
 | |
| 	int i;
 | |
| 	for(i=0;i<3;i++) 
 | |
| 	{
 | |
| 		int i1=(i+1)%3;
 | |
| 		int i2=(i+2)%3;
 | |
| 		int a = (*s)[i1];
 | |
| 		int b = (*s)[i2];
 | |
| 		btAssert(m_tris[s->neib(a,b)]->neib(b,a) == s->id);
 | |
| 		btAssert(m_tris[t->neib(a,b)]->neib(b,a) == t->id);
 | |
| 		m_tris[s->neib(a,b)]->neib(b,a) = t->neib(b,a);
 | |
| 		m_tris[t->neib(b,a)]->neib(a,b) = s->neib(a,b);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void HullLibrary::removeb2b(btHullTriangle* s,btHullTriangle*t)
 | |
| {
 | |
| 	b2bfix(s,t);
 | |
| 	deAllocateTriangle(s);
 | |
| 
 | |
| 	deAllocateTriangle(t);
 | |
| }
 | |
| 
 | |
| void HullLibrary::checkit(btHullTriangle *t)
 | |
| {
 | |
| 	(void)t;
 | |
| 
 | |
| 	int i;
 | |
| 	btAssert(m_tris[t->id]==t);
 | |
| 	for(i=0;i<3;i++)
 | |
| 	{
 | |
| 		int i1=(i+1)%3;
 | |
| 		int i2=(i+2)%3;
 | |
| 		int a = (*t)[i1];
 | |
| 		int b = (*t)[i2];
 | |
| 
 | |
| 		// release compile fix
 | |
| 		(void)i1;
 | |
| 		(void)i2;
 | |
| 		(void)a;
 | |
| 		(void)b;
 | |
| 
 | |
| 		btAssert(a!=b);
 | |
| 		btAssert( m_tris[t->n[i]]->neib(b,a) == t->id);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| btHullTriangle*	HullLibrary::allocateTriangle(int a,int b,int c)
 | |
| {
 | |
| 	void* mem = btAlignedAlloc(sizeof(btHullTriangle),16);
 | |
| 	btHullTriangle* tr = new (mem)btHullTriangle(a,b,c);
 | |
| 	tr->id = m_tris.size();
 | |
| 	m_tris.push_back(tr);
 | |
| 
 | |
| 	return tr;
 | |
| }
 | |
| 
 | |
| void	HullLibrary::deAllocateTriangle(btHullTriangle* tri)
 | |
| {
 | |
| 	btAssert(m_tris[tri->id]==tri);
 | |
| 	m_tris[tri->id]=NULL;
 | |
| 	tri->~btHullTriangle();
 | |
| 	btAlignedFree(tri);
 | |
| }
 | |
| 
 | |
| 
 | |
| void HullLibrary::extrude(btHullTriangle *t0,int v)
 | |
| {
 | |
| 	int3 t= *t0;
 | |
| 	int n = m_tris.size();
 | |
| 	btHullTriangle* ta = allocateTriangle(v,t[1],t[2]);
 | |
| 	ta->n = int3(t0->n[0],n+1,n+2);
 | |
| 	m_tris[t0->n[0]]->neib(t[1],t[2]) = n+0;
 | |
| 	btHullTriangle* tb = allocateTriangle(v,t[2],t[0]);
 | |
| 	tb->n = int3(t0->n[1],n+2,n+0);
 | |
| 	m_tris[t0->n[1]]->neib(t[2],t[0]) = n+1;
 | |
| 	btHullTriangle* tc = allocateTriangle(v,t[0],t[1]);
 | |
| 	tc->n = int3(t0->n[2],n+0,n+1);
 | |
| 	m_tris[t0->n[2]]->neib(t[0],t[1]) = n+2;
 | |
| 	checkit(ta);
 | |
| 	checkit(tb);
 | |
| 	checkit(tc);
 | |
| 	if(hasvert(*m_tris[ta->n[0]],v)) removeb2b(ta,m_tris[ta->n[0]]);
 | |
| 	if(hasvert(*m_tris[tb->n[0]],v)) removeb2b(tb,m_tris[tb->n[0]]);
 | |
| 	if(hasvert(*m_tris[tc->n[0]],v)) removeb2b(tc,m_tris[tc->n[0]]);
 | |
| 	deAllocateTriangle(t0);
 | |
| 
 | |
| }
 | |
| 
 | |
| btHullTriangle* HullLibrary::extrudable(btScalar epsilon)
 | |
| {
 | |
| 	int i;
 | |
| 	btHullTriangle *t=NULL;
 | |
| 	for(i=0;i<m_tris.size();i++)
 | |
| 	{
 | |
| 		if(!t || (m_tris[i] && t->rise<m_tris[i]->rise))
 | |
| 		{
 | |
| 			t = m_tris[i];
 | |
| 		}
 | |
| 	}
 | |
| 	return (t->rise >epsilon)?t:NULL ;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| int4 HullLibrary::FindSimplex(btVector3 *verts,int verts_count,btAlignedObjectArray<int> &allow)
 | |
| {
 | |
| 	btVector3 basis[3];
 | |
| 	basis[0] = btVector3( btScalar(0.01), btScalar(0.02), btScalar(1.0) );      
 | |
| 	int p0 = maxdirsterid(verts,verts_count, basis[0],allow);   
 | |
| 	int	p1 = maxdirsterid(verts,verts_count,-basis[0],allow);
 | |
| 	basis[0] = verts[p0]-verts[p1];
 | |
| 	if(p0==p1 || basis[0]==btVector3(0,0,0)) 
 | |
| 		return int4(-1,-1,-1,-1);
 | |
| 	basis[1] = btCross(btVector3(     btScalar(1),btScalar(0.02), btScalar(0)),basis[0]);
 | |
| 	basis[2] = btCross(btVector3(btScalar(-0.02),     btScalar(1), btScalar(0)),basis[0]);
 | |
| 	if (basis[1].length() > basis[2].length())
 | |
| 	{
 | |
| 		basis[1].normalize();
 | |
| 	} else {
 | |
| 		basis[1] = basis[2];
 | |
| 		basis[1].normalize ();
 | |
| 	}
 | |
| 	int p2 = maxdirsterid(verts,verts_count,basis[1],allow);
 | |
| 	if(p2 == p0 || p2 == p1)
 | |
| 	{
 | |
| 		p2 = maxdirsterid(verts,verts_count,-basis[1],allow);
 | |
| 	}
 | |
| 	if(p2 == p0 || p2 == p1) 
 | |
| 		return int4(-1,-1,-1,-1);
 | |
| 	basis[1] = verts[p2] - verts[p0];
 | |
| 	basis[2] = btCross(basis[1],basis[0]).normalized();
 | |
| 	int p3 = maxdirsterid(verts,verts_count,basis[2],allow);
 | |
| 	if(p3==p0||p3==p1||p3==p2) p3 = maxdirsterid(verts,verts_count,-basis[2],allow);
 | |
| 	if(p3==p0||p3==p1||p3==p2) 
 | |
| 		return int4(-1,-1,-1,-1);
 | |
| 	btAssert(!(p0==p1||p0==p2||p0==p3||p1==p2||p1==p3||p2==p3));
 | |
| 	if(btDot(verts[p3]-verts[p0],btCross(verts[p1]-verts[p0],verts[p2]-verts[p0])) <0) {btSwap(p2,p3);}
 | |
| 	return int4(p0,p1,p2,p3);
 | |
| }
 | |
| 
 | |
| int HullLibrary::calchullgen(btVector3 *verts,int verts_count, int vlimit)
 | |
| {
 | |
| 	if(verts_count <4) return 0;
 | |
| 	if(vlimit==0) vlimit=1000000000;
 | |
| 	int j;
 | |
| 	btVector3 bmin(*verts),bmax(*verts);
 | |
| 	btAlignedObjectArray<int> isextreme;
 | |
| 	isextreme.reserve(verts_count);
 | |
| 	btAlignedObjectArray<int> allow;
 | |
| 	allow.reserve(verts_count);
 | |
| 
 | |
| 	for(j=0;j<verts_count;j++) 
 | |
| 	{
 | |
| 		allow.push_back(1);
 | |
| 		isextreme.push_back(0);
 | |
| 		bmin.setMin (verts[j]);
 | |
| 		bmax.setMax (verts[j]);
 | |
| 	}
 | |
| 	btScalar epsilon = (bmax-bmin).length() * btScalar(0.001);
 | |
| 	btAssert (epsilon != 0.0);
 | |
| 
 | |
| 
 | |
| 	int4 p = FindSimplex(verts,verts_count,allow);
 | |
| 	if(p.x==-1) return 0; // simplex failed
 | |
| 
 | |
| 
 | |
| 
 | |
| 	btVector3 center = (verts[p[0]]+verts[p[1]]+verts[p[2]]+verts[p[3]]) / btScalar(4.0);  // a valid interior point
 | |
| 	btHullTriangle *t0 = allocateTriangle(p[2],p[3],p[1]); t0->n=int3(2,3,1);
 | |
| 	btHullTriangle *t1 = allocateTriangle(p[3],p[2],p[0]); t1->n=int3(3,2,0);
 | |
| 	btHullTriangle *t2 = allocateTriangle(p[0],p[1],p[3]); t2->n=int3(0,1,3);
 | |
| 	btHullTriangle *t3 = allocateTriangle(p[1],p[0],p[2]); t3->n=int3(1,0,2);
 | |
| 	isextreme[p[0]]=isextreme[p[1]]=isextreme[p[2]]=isextreme[p[3]]=1;
 | |
| 	checkit(t0);checkit(t1);checkit(t2);checkit(t3);
 | |
| 
 | |
| 	for(j=0;j<m_tris.size();j++)
 | |
| 	{
 | |
| 		btHullTriangle *t=m_tris[j];
 | |
| 		btAssert(t);
 | |
| 		btAssert(t->vmax<0);
 | |
| 		btVector3 n=TriNormal(verts[(*t)[0]],verts[(*t)[1]],verts[(*t)[2]]);
 | |
| 		t->vmax = maxdirsterid(verts,verts_count,n,allow);
 | |
| 		t->rise = btDot(n,verts[t->vmax]-verts[(*t)[0]]);
 | |
| 	}
 | |
| 	btHullTriangle *te;
 | |
| 	vlimit-=4;
 | |
| 	while(vlimit >0 && ((te=extrudable(epsilon)) != 0))
 | |
| 	{
 | |
| 		//int3 ti=*te;
 | |
| 		int v=te->vmax;
 | |
| 		btAssert(v != -1);
 | |
| 		btAssert(!isextreme[v]);  // wtf we've already done this vertex
 | |
| 		isextreme[v]=1;
 | |
| 		//if(v==p0 || v==p1 || v==p2 || v==p3) continue; // done these already
 | |
| 		j=m_tris.size();
 | |
| 		while(j--) {
 | |
| 			if(!m_tris[j]) continue;
 | |
| 			int3 t=*m_tris[j];
 | |
| 			if(above(verts,t,verts[v],btScalar(0.01)*epsilon)) 
 | |
| 			{
 | |
| 				extrude(m_tris[j],v);
 | |
| 			}
 | |
| 		}
 | |
| 		// now check for those degenerate cases where we have a flipped triangle or a really skinny triangle
 | |
| 		j=m_tris.size();
 | |
| 		while(j--)
 | |
| 		{
 | |
| 			if(!m_tris[j]) continue;
 | |
| 			if(!hasvert(*m_tris[j],v)) break;
 | |
| 			int3 nt=*m_tris[j];
 | |
| 			if(above(verts,nt,center,btScalar(0.01)*epsilon)  || btCross(verts[nt[1]]-verts[nt[0]],verts[nt[2]]-verts[nt[1]]).length()< epsilon*epsilon*btScalar(0.1) )
 | |
| 			{
 | |
| 				btHullTriangle *nb = m_tris[m_tris[j]->n[0]];
 | |
| 				btAssert(nb);btAssert(!hasvert(*nb,v));btAssert(nb->id<j);
 | |
| 				extrude(nb,v);
 | |
| 				j=m_tris.size(); 
 | |
| 			}
 | |
| 		} 
 | |
| 		j=m_tris.size();
 | |
| 		while(j--)
 | |
| 		{
 | |
| 			btHullTriangle *t=m_tris[j];
 | |
| 			if(!t) continue;
 | |
| 			if(t->vmax>=0) break;
 | |
| 			btVector3 n=TriNormal(verts[(*t)[0]],verts[(*t)[1]],verts[(*t)[2]]);
 | |
| 			t->vmax = maxdirsterid(verts,verts_count,n,allow);
 | |
| 			if(isextreme[t->vmax]) 
 | |
| 			{
 | |
| 				t->vmax=-1; // already done that vertex - algorithm needs to be able to terminate.
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				t->rise = btDot(n,verts[t->vmax]-verts[(*t)[0]]);
 | |
| 			}
 | |
| 		}
 | |
| 		vlimit --;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int HullLibrary::calchull(btVector3 *verts,int verts_count, TUIntArray& tris_out, int &tris_count,int vlimit) 
 | |
| {
 | |
| 	int rc=calchullgen(verts,verts_count,  vlimit) ;
 | |
| 	if(!rc) return 0;
 | |
| 	btAlignedObjectArray<int> ts;
 | |
| 	int i;
 | |
| 
 | |
| 	for(i=0;i<m_tris.size();i++)
 | |
| 	{
 | |
| 		if(m_tris[i])
 | |
| 		{
 | |
| 			for(int j=0;j<3;j++)
 | |
| 				ts.push_back((*m_tris[i])[j]);
 | |
| 			deAllocateTriangle(m_tris[i]);
 | |
| 		}
 | |
| 	}
 | |
| 	tris_count = ts.size()/3;
 | |
| 	tris_out.resize(ts.size());
 | |
| 	
 | |
| 	for (i=0;i<ts.size();i++)
 | |
| 	{
 | |
| 		tris_out[i] = static_cast<unsigned int>(ts[i]);
 | |
| 	}
 | |
| 	m_tris.resize(0);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| bool HullLibrary::ComputeHull(unsigned int vcount,const btVector3 *vertices,PHullResult &result,unsigned int vlimit)
 | |
| {
 | |
| 	
 | |
| 	int    tris_count;
 | |
| 	int ret = calchull( (btVector3 *) vertices, (int) vcount, result.m_Indices, tris_count, static_cast<int>(vlimit) );
 | |
| 	if(!ret) return false;
 | |
| 	result.mIndexCount = (unsigned int) (tris_count*3);
 | |
| 	result.mFaceCount  = (unsigned int) tris_count;
 | |
| 	result.mVertices   = (btVector3*) vertices;
 | |
| 	result.mVcount     = (unsigned int) vcount;
 | |
| 	return true;
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| void ReleaseHull(PHullResult &result);
 | |
| void ReleaseHull(PHullResult &result)
 | |
| {
 | |
| 	if ( result.m_Indices.size() )
 | |
| 	{
 | |
| 		result.m_Indices.clear();
 | |
| 	}
 | |
| 
 | |
| 	result.mVcount = 0;
 | |
| 	result.mIndexCount = 0;
 | |
| 	result.mVertices = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| //*********************************************************************
 | |
| //*********************************************************************
 | |
| //********  HullLib header
 | |
| //*********************************************************************
 | |
| //*********************************************************************
 | |
| 
 | |
| //*********************************************************************
 | |
| //*********************************************************************
 | |
| //********  HullLib implementation
 | |
| //*********************************************************************
 | |
| //*********************************************************************
 | |
| 
 | |
| HullError HullLibrary::CreateConvexHull(const HullDesc       &desc,           // describes the input request
 | |
| 																					HullResult           &result)         // contains the resulst
 | |
| {
 | |
| 	HullError ret = QE_FAIL;
 | |
| 
 | |
| 
 | |
| 	PHullResult hr;
 | |
| 
 | |
| 	unsigned int vcount = desc.mVcount;
 | |
| 	if ( vcount < 8 ) vcount = 8;
 | |
| 
 | |
| 	btAlignedObjectArray<btVector3> vertexSource;
 | |
| 	vertexSource.resize(static_cast<int>(vcount));
 | |
| 
 | |
| 	btVector3 scale;
 | |
| 
 | |
| 	unsigned int ovcount;
 | |
| 
 | |
| 	bool ok = CleanupVertices(desc.mVcount,desc.mVertices, desc.mVertexStride, ovcount, &vertexSource[0], desc.mNormalEpsilon, scale ); // normalize point cloud, remove duplicates!
 | |
| 
 | |
| 	if ( ok )
 | |
| 	{
 | |
| 
 | |
| 
 | |
| //		if ( 1 ) // scale vertices back to their original size.
 | |
| 		{
 | |
| 			for (unsigned int i=0; i<ovcount; i++)
 | |
| 			{
 | |
| 				btVector3& v = vertexSource[static_cast<int>(i)];
 | |
| 				v[0]*=scale[0];
 | |
| 				v[1]*=scale[1];
 | |
| 				v[2]*=scale[2];
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		ok = ComputeHull(ovcount,&vertexSource[0],hr,desc.mMaxVertices);
 | |
| 
 | |
| 		if ( ok )
 | |
| 		{
 | |
| 
 | |
| 			// re-index triangle mesh so it refers to only used vertices, rebuild a new vertex table.
 | |
| 			btAlignedObjectArray<btVector3>	vertexScratch;
 | |
| 			vertexScratch.resize(static_cast<int>(hr.mVcount));
 | |
| 
 | |
| 			BringOutYourDead(hr.mVertices,hr.mVcount, &vertexScratch[0], ovcount, &hr.m_Indices[0], hr.mIndexCount );
 | |
| 
 | |
| 			ret = QE_OK;
 | |
| 
 | |
| 			if ( desc.HasHullFlag(QF_TRIANGLES) ) // if he wants the results as triangle!
 | |
| 			{
 | |
| 				result.mPolygons          = false;
 | |
| 				result.mNumOutputVertices = ovcount;
 | |
| 				result.m_OutputVertices.resize(static_cast<int>(ovcount));
 | |
| 				result.mNumFaces          = hr.mFaceCount;
 | |
| 				result.mNumIndices        = hr.mIndexCount;
 | |
| 
 | |
| 				result.m_Indices.resize(static_cast<int>(hr.mIndexCount));
 | |
| 
 | |
| 				memcpy(&result.m_OutputVertices[0], &vertexScratch[0], sizeof(btVector3)*ovcount );
 | |
| 
 | |
|   			if ( desc.HasHullFlag(QF_REVERSE_ORDER) )
 | |
| 				{
 | |
| 
 | |
| 					const unsigned int *source = &hr.m_Indices[0];
 | |
| 					unsigned int *dest   = &result.m_Indices[0];
 | |
| 
 | |
| 					for (unsigned int i=0; i<hr.mFaceCount; i++)
 | |
| 					{
 | |
| 						dest[0] = source[2];
 | |
| 						dest[1] = source[1];
 | |
| 						dest[2] = source[0];
 | |
| 						dest+=3;
 | |
| 						source+=3;
 | |
| 					}
 | |
| 
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					memcpy(&result.m_Indices[0], &hr.m_Indices[0], sizeof(unsigned int)*hr.mIndexCount);
 | |
| 				}
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				result.mPolygons          = true;
 | |
| 				result.mNumOutputVertices = ovcount;
 | |
| 				result.m_OutputVertices.resize(static_cast<int>(ovcount));
 | |
| 				result.mNumFaces          = hr.mFaceCount;
 | |
| 				result.mNumIndices        = hr.mIndexCount+hr.mFaceCount;
 | |
| 				result.m_Indices.resize(static_cast<int>(result.mNumIndices));
 | |
| 				memcpy(&result.m_OutputVertices[0], &vertexScratch[0], sizeof(btVector3)*ovcount );
 | |
| 
 | |
| //				if ( 1 )
 | |
| 				{
 | |
| 					const unsigned int *source = &hr.m_Indices[0];
 | |
| 					unsigned int *dest   = &result.m_Indices[0];
 | |
| 					for (unsigned int i=0; i<hr.mFaceCount; i++)
 | |
| 					{
 | |
| 						dest[0] = 3;
 | |
| 						if ( desc.HasHullFlag(QF_REVERSE_ORDER) )
 | |
| 						{
 | |
| 							dest[1] = source[2];
 | |
| 							dest[2] = source[1];
 | |
| 							dest[3] = source[0];
 | |
| 						}
 | |
| 						else
 | |
| 						{
 | |
| 							dest[1] = source[0];
 | |
| 							dest[2] = source[1];
 | |
| 							dest[3] = source[2];
 | |
| 						}
 | |
| 
 | |
| 						dest+=4;
 | |
| 						source+=3;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			ReleaseHull(hr);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| HullError HullLibrary::ReleaseResult(HullResult &result) // release memory allocated for this result, we are done with it.
 | |
| {
 | |
| 	if ( result.m_OutputVertices.size())
 | |
| 	{
 | |
| 		result.mNumOutputVertices=0;
 | |
| 		result.m_OutputVertices.clear();
 | |
| 	}
 | |
| 	if ( result.m_Indices.size() )
 | |
| 	{
 | |
| 		result.mNumIndices=0;
 | |
| 		result.m_Indices.clear();
 | |
| 	}
 | |
| 	return QE_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void addPoint(unsigned int &vcount,btVector3 *p,btScalar x,btScalar y,btScalar z)
 | |
| {
 | |
| 	// XXX, might be broken
 | |
| 	btVector3& dest = p[vcount];
 | |
| 	dest[0] = x;
 | |
| 	dest[1] = y;
 | |
| 	dest[2] = z;
 | |
| 	vcount++;
 | |
| }
 | |
| 
 | |
| btScalar GetDist(btScalar px,btScalar py,btScalar pz,const btScalar *p2);
 | |
| btScalar GetDist(btScalar px,btScalar py,btScalar pz,const btScalar *p2)
 | |
| {
 | |
| 
 | |
| 	btScalar dx = px - p2[0];
 | |
| 	btScalar dy = py - p2[1];
 | |
| 	btScalar dz = pz - p2[2];
 | |
| 
 | |
| 	return dx*dx+dy*dy+dz*dz;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| bool  HullLibrary::CleanupVertices(unsigned int svcount,
 | |
| 				   const btVector3 *svertices,
 | |
| 				   unsigned int stride,
 | |
| 				   unsigned int &vcount,       // output number of vertices
 | |
| 				   btVector3 *vertices,                 // location to store the results.
 | |
| 				   btScalar  normalepsilon,
 | |
| 				   btVector3& scale)
 | |
| {
 | |
| 	if ( svcount == 0 ) return false;
 | |
| 
 | |
| 	m_vertexIndexMapping.resize(0);
 | |
| 
 | |
| 
 | |
| #define EPSILON btScalar(0.000001) /* close enough to consider two btScalaring point numbers to be 'the same'. */
 | |
| 
 | |
| 	vcount = 0;
 | |
| 
 | |
| 	btScalar recip[3]={0.f,0.f,0.f};
 | |
| 
 | |
| 	if ( scale )
 | |
| 	{
 | |
| 		scale[0] = 1;
 | |
| 		scale[1] = 1;
 | |
| 		scale[2] = 1;
 | |
| 	}
 | |
| 
 | |
| 	btScalar bmin[3] = {  FLT_MAX,  FLT_MAX,  FLT_MAX };
 | |
| 	btScalar bmax[3] = { -FLT_MAX, -FLT_MAX, -FLT_MAX };
 | |
| 
 | |
| 	const char *vtx = (const char *) svertices;
 | |
| 
 | |
| //	if ( 1 )
 | |
| 	{
 | |
| 		for (unsigned int i=0; i<svcount; i++)
 | |
| 		{
 | |
| 			const btScalar *p = (const btScalar *) vtx;
 | |
| 
 | |
| 			vtx+=stride;
 | |
| 
 | |
| 			for (int j=0; j<3; j++)
 | |
| 			{
 | |
| 				if ( p[j] < bmin[j] ) bmin[j] = p[j];
 | |
| 				if ( p[j] > bmax[j] ) bmax[j] = p[j];
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	btScalar dx = bmax[0] - bmin[0];
 | |
| 	btScalar dy = bmax[1] - bmin[1];
 | |
| 	btScalar dz = bmax[2] - bmin[2];
 | |
| 
 | |
| 	btVector3 center;
 | |
| 
 | |
| 	center[0] = dx*btScalar(0.5) + bmin[0];
 | |
| 	center[1] = dy*btScalar(0.5) + bmin[1];
 | |
| 	center[2] = dz*btScalar(0.5) + bmin[2];
 | |
| 
 | |
| 	if ( dx < EPSILON || dy < EPSILON || dz < EPSILON || svcount < 3 )
 | |
| 	{
 | |
| 
 | |
| 		btScalar len = FLT_MAX;
 | |
| 
 | |
| 		if ( dx > EPSILON && dx < len ) len = dx;
 | |
| 		if ( dy > EPSILON && dy < len ) len = dy;
 | |
| 		if ( dz > EPSILON && dz < len ) len = dz;
 | |
| 
 | |
| 		if ( len == FLT_MAX )
 | |
| 		{
 | |
| 			dx = dy = dz = btScalar(0.01); // one centimeter
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			if ( dx < EPSILON ) dx = len * btScalar(0.05); // 1/5th the shortest non-zero edge.
 | |
| 			if ( dy < EPSILON ) dy = len * btScalar(0.05);
 | |
| 			if ( dz < EPSILON ) dz = len * btScalar(0.05);
 | |
| 		}
 | |
| 
 | |
| 		btScalar x1 = center[0] - dx;
 | |
| 		btScalar x2 = center[0] + dx;
 | |
| 
 | |
| 		btScalar y1 = center[1] - dy;
 | |
| 		btScalar y2 = center[1] + dy;
 | |
| 
 | |
| 		btScalar z1 = center[2] - dz;
 | |
| 		btScalar z2 = center[2] + dz;
 | |
| 
 | |
| 		addPoint(vcount,vertices,x1,y1,z1);
 | |
| 		addPoint(vcount,vertices,x2,y1,z1);
 | |
| 		addPoint(vcount,vertices,x2,y2,z1);
 | |
| 		addPoint(vcount,vertices,x1,y2,z1);
 | |
| 		addPoint(vcount,vertices,x1,y1,z2);
 | |
| 		addPoint(vcount,vertices,x2,y1,z2);
 | |
| 		addPoint(vcount,vertices,x2,y2,z2);
 | |
| 		addPoint(vcount,vertices,x1,y2,z2);
 | |
| 
 | |
| 		return true; // return cube
 | |
| 
 | |
| 
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		if ( scale )
 | |
| 		{
 | |
| 			scale[0] = dx;
 | |
| 			scale[1] = dy;
 | |
| 			scale[2] = dz;
 | |
| 
 | |
| 			recip[0] = 1 / dx;
 | |
| 			recip[1] = 1 / dy;
 | |
| 			recip[2] = 1 / dz;
 | |
| 
 | |
| 			center[0]*=recip[0];
 | |
| 			center[1]*=recip[1];
 | |
| 			center[2]*=recip[2];
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 
 | |
| 	vtx = (const char *) svertices;
 | |
| 
 | |
| 	for (unsigned int i=0; i<svcount; i++)
 | |
| 	{
 | |
| 		const btVector3 *p = (const btVector3 *)vtx;
 | |
| 		vtx+=stride;
 | |
| 
 | |
| 		btScalar px = p->getX();
 | |
| 		btScalar py = p->getY();
 | |
| 		btScalar pz = p->getZ();
 | |
| 
 | |
| 		if ( scale )
 | |
| 		{
 | |
| 			px = px*recip[0]; // normalize
 | |
| 			py = py*recip[1]; // normalize
 | |
| 			pz = pz*recip[2]; // normalize
 | |
| 		}
 | |
| 
 | |
| //		if ( 1 )
 | |
| 		{
 | |
| 			unsigned int j;
 | |
| 
 | |
| 			for (j=0; j<vcount; j++)
 | |
| 			{
 | |
| 				/// XXX might be broken
 | |
| 				btVector3& v = vertices[j];
 | |
| 
 | |
| 				btScalar x = v[0];
 | |
| 				btScalar y = v[1];
 | |
| 				btScalar z = v[2];
 | |
| 
 | |
| 				btScalar dx = btFabs(x - px );
 | |
| 				btScalar dy = btFabs(y - py );
 | |
| 				btScalar dz = btFabs(z - pz );
 | |
| 
 | |
| 				if ( dx < normalepsilon && dy < normalepsilon && dz < normalepsilon )
 | |
| 				{
 | |
| 					// ok, it is close enough to the old one
 | |
| 					// now let us see if it is further from the center of the point cloud than the one we already recorded.
 | |
| 					// in which case we keep this one instead.
 | |
| 
 | |
| 					btScalar dist1 = GetDist(px,py,pz,center);
 | |
| 					btScalar dist2 = GetDist(v[0],v[1],v[2],center);
 | |
| 
 | |
| 					if ( dist1 > dist2 )
 | |
| 					{
 | |
| 						v[0] = px;
 | |
| 						v[1] = py;
 | |
| 						v[2] = pz;
 | |
| 						
 | |
| 					}
 | |
| 
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if ( j == vcount )
 | |
| 			{
 | |
| 				btVector3& dest = vertices[vcount];
 | |
| 				dest[0] = px;
 | |
| 				dest[1] = py;
 | |
| 				dest[2] = pz;
 | |
| 				vcount++;
 | |
| 			}
 | |
| 			m_vertexIndexMapping.push_back(j);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// ok..now make sure we didn't prune so many vertices it is now invalid.
 | |
| //	if ( 1 )
 | |
| 	{
 | |
| 		btScalar bmin[3] = {  FLT_MAX,  FLT_MAX,  FLT_MAX };
 | |
| 		btScalar bmax[3] = { -FLT_MAX, -FLT_MAX, -FLT_MAX };
 | |
| 
 | |
| 		for (unsigned int i=0; i<vcount; i++)
 | |
| 		{
 | |
| 			const btVector3& p = vertices[i];
 | |
| 			for (int j=0; j<3; j++)
 | |
| 			{
 | |
| 				if ( p[j] < bmin[j] ) bmin[j] = p[j];
 | |
| 				if ( p[j] > bmax[j] ) bmax[j] = p[j];
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		btScalar dx = bmax[0] - bmin[0];
 | |
| 		btScalar dy = bmax[1] - bmin[1];
 | |
| 		btScalar dz = bmax[2] - bmin[2];
 | |
| 
 | |
| 		if ( dx < EPSILON || dy < EPSILON || dz < EPSILON || vcount < 3)
 | |
| 		{
 | |
| 			btScalar cx = dx*btScalar(0.5) + bmin[0];
 | |
| 			btScalar cy = dy*btScalar(0.5) + bmin[1];
 | |
| 			btScalar cz = dz*btScalar(0.5) + bmin[2];
 | |
| 
 | |
| 			btScalar len = FLT_MAX;
 | |
| 
 | |
| 			if ( dx >= EPSILON && dx < len ) len = dx;
 | |
| 			if ( dy >= EPSILON && dy < len ) len = dy;
 | |
| 			if ( dz >= EPSILON && dz < len ) len = dz;
 | |
| 
 | |
| 			if ( len == FLT_MAX )
 | |
| 			{
 | |
| 				dx = dy = dz = btScalar(0.01); // one centimeter
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				if ( dx < EPSILON ) dx = len * btScalar(0.05); // 1/5th the shortest non-zero edge.
 | |
| 				if ( dy < EPSILON ) dy = len * btScalar(0.05);
 | |
| 				if ( dz < EPSILON ) dz = len * btScalar(0.05);
 | |
| 			}
 | |
| 
 | |
| 			btScalar x1 = cx - dx;
 | |
| 			btScalar x2 = cx + dx;
 | |
| 
 | |
| 			btScalar y1 = cy - dy;
 | |
| 			btScalar y2 = cy + dy;
 | |
| 
 | |
| 			btScalar z1 = cz - dz;
 | |
| 			btScalar z2 = cz + dz;
 | |
| 
 | |
| 			vcount = 0; // add box
 | |
| 
 | |
| 			addPoint(vcount,vertices,x1,y1,z1);
 | |
| 			addPoint(vcount,vertices,x2,y1,z1);
 | |
| 			addPoint(vcount,vertices,x2,y2,z1);
 | |
| 			addPoint(vcount,vertices,x1,y2,z1);
 | |
| 			addPoint(vcount,vertices,x1,y1,z2);
 | |
| 			addPoint(vcount,vertices,x2,y1,z2);
 | |
| 			addPoint(vcount,vertices,x2,y2,z2);
 | |
| 			addPoint(vcount,vertices,x1,y2,z2);
 | |
| 
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void HullLibrary::BringOutYourDead(const btVector3* verts,unsigned int vcount, btVector3* overts,unsigned int &ocount,unsigned int *indices,unsigned indexcount)
 | |
| {
 | |
| 	btAlignedObjectArray<int>tmpIndices;
 | |
| 	tmpIndices.resize(m_vertexIndexMapping.size());
 | |
| 	int i;
 | |
| 
 | |
| 	for (i=0;i<m_vertexIndexMapping.size();i++)
 | |
| 	{
 | |
| 		tmpIndices[i] = m_vertexIndexMapping[i];
 | |
| 	}
 | |
| 
 | |
| 	TUIntArray usedIndices;
 | |
| 	usedIndices.resize(static_cast<int>(vcount));
 | |
| 	memset(&usedIndices[0],0,sizeof(unsigned int)*vcount);
 | |
| 
 | |
| 	ocount = 0;
 | |
| 
 | |
| 	for (i=0; i<int (indexcount); i++)
 | |
| 	{
 | |
| 		unsigned int v = indices[i]; // original array index
 | |
| 
 | |
| 		btAssert( v >= 0 && v < vcount );
 | |
| 
 | |
| 		if ( usedIndices[static_cast<int>(v)] ) // if already remapped
 | |
| 		{
 | |
| 			indices[i] = usedIndices[static_cast<int>(v)]-1; // index to new array
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 
 | |
| 			indices[i] = ocount;      // new index mapping
 | |
| 
 | |
| 			overts[ocount][0] = verts[v][0]; // copy old vert to new vert array
 | |
| 			overts[ocount][1] = verts[v][1];
 | |
| 			overts[ocount][2] = verts[v][2];
 | |
| 
 | |
| 			for (int k=0;k<m_vertexIndexMapping.size();k++)
 | |
| 			{
 | |
| 				if (tmpIndices[k]==int(v))
 | |
| 					m_vertexIndexMapping[k]=ocount;
 | |
| 			}
 | |
| 
 | |
| 			ocount++; // increment output vert count
 | |
| 
 | |
| 			btAssert( ocount >=0 && ocount <= vcount );
 | |
| 
 | |
| 			usedIndices[static_cast<int>(v)] = ocount; // assign new index remapping
 | |
| 
 | |
| 		
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	
 | |
| }
 |