1349 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1349 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans  http://continuousphysics.com/Bullet/
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose, 
 | |
| including commercial applications, and to alter it and redistribute it freely, 
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| 
 | |
| #ifndef	BT_MATRIX3x3_H
 | |
| #define BT_MATRIX3x3_H
 | |
| 
 | |
| #include "btVector3.h"
 | |
| #include "btQuaternion.h"
 | |
| #include <stdio.h>
 | |
| 
 | |
| #ifdef BT_USE_SSE
 | |
| //const __m128 ATTRIBUTE_ALIGNED16(v2220) = {2.0f, 2.0f, 2.0f, 0.0f};
 | |
| //const __m128 ATTRIBUTE_ALIGNED16(vMPPP) = {-0.0f, +0.0f, +0.0f, +0.0f};
 | |
| #define vMPPP (_mm_set_ps (+0.0f, +0.0f, +0.0f, -0.0f))
 | |
| #endif
 | |
| 
 | |
| #if defined(BT_USE_SSE)
 | |
| #define v1000 (_mm_set_ps(0.0f,0.0f,0.0f,1.0f))
 | |
| #define v0100 (_mm_set_ps(0.0f,0.0f,1.0f,0.0f))
 | |
| #define v0010 (_mm_set_ps(0.0f,1.0f,0.0f,0.0f))
 | |
| #elif defined(BT_USE_NEON)
 | |
| const btSimdFloat4 ATTRIBUTE_ALIGNED16(v1000) = {1.0f, 0.0f, 0.0f, 0.0f};
 | |
| const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0100) = {0.0f, 1.0f, 0.0f, 0.0f};
 | |
| const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0010) = {0.0f, 0.0f, 1.0f, 0.0f};
 | |
| #endif
 | |
| 
 | |
| #ifdef BT_USE_DOUBLE_PRECISION
 | |
| #define btMatrix3x3Data	btMatrix3x3DoubleData 
 | |
| #else
 | |
| #define btMatrix3x3Data	btMatrix3x3FloatData
 | |
| #endif //BT_USE_DOUBLE_PRECISION
 | |
| 
 | |
| 
 | |
| /**@brief The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with btQuaternion, btTransform and btVector3.
 | |
| * Make sure to only include a pure orthogonal matrix without scaling. */
 | |
| ATTRIBUTE_ALIGNED16(class) btMatrix3x3 {
 | |
| 
 | |
| 	///Data storage for the matrix, each vector is a row of the matrix
 | |
| 	btVector3 m_el[3];
 | |
| 
 | |
| public:
 | |
| 	/** @brief No initializaion constructor */
 | |
| 	btMatrix3x3 () {}
 | |
| 
 | |
| 	//		explicit btMatrix3x3(const btScalar *m) { setFromOpenGLSubMatrix(m); }
 | |
| 
 | |
| 	/**@brief Constructor from Quaternion */
 | |
| 	explicit btMatrix3x3(const btQuaternion& q) { setRotation(q); }
 | |
| 	/*
 | |
| 	template <typename btScalar>
 | |
| 	Matrix3x3(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
 | |
| 	{ 
 | |
| 	setEulerYPR(yaw, pitch, roll);
 | |
| 	}
 | |
| 	*/
 | |
| 	/** @brief Constructor with row major formatting */
 | |
| 	btMatrix3x3(const btScalar& xx, const btScalar& xy, const btScalar& xz,
 | |
| 		const btScalar& yx, const btScalar& yy, const btScalar& yz,
 | |
| 		const btScalar& zx, const btScalar& zy, const btScalar& zz)
 | |
| 	{ 
 | |
| 		setValue(xx, xy, xz, 
 | |
| 			yx, yy, yz, 
 | |
| 			zx, zy, zz);
 | |
| 	}
 | |
| 
 | |
| #if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
 | |
| 	SIMD_FORCE_INLINE btMatrix3x3 (const btSimdFloat4 v0, const btSimdFloat4 v1, const btSimdFloat4 v2 ) 
 | |
| 	{
 | |
|         m_el[0].mVec128 = v0;
 | |
|         m_el[1].mVec128 = v1;
 | |
|         m_el[2].mVec128 = v2;
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE btMatrix3x3 (const btVector3& v0, const btVector3& v1, const btVector3& v2 ) 
 | |
| 	{
 | |
|         m_el[0] = v0;
 | |
|         m_el[1] = v1;
 | |
|         m_el[2] = v2;
 | |
| 	}
 | |
| 
 | |
| 	// Copy constructor
 | |
| 	SIMD_FORCE_INLINE btMatrix3x3(const btMatrix3x3& rhs)
 | |
| 	{
 | |
| 		m_el[0].mVec128 = rhs.m_el[0].mVec128;
 | |
| 		m_el[1].mVec128 = rhs.m_el[1].mVec128;
 | |
| 		m_el[2].mVec128 = rhs.m_el[2].mVec128;
 | |
| 	}
 | |
| 
 | |
| 	// Assignment Operator
 | |
| 	SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& m) 
 | |
| 	{
 | |
| 		m_el[0].mVec128 = m.m_el[0].mVec128;
 | |
| 		m_el[1].mVec128 = m.m_el[1].mVec128;
 | |
| 		m_el[2].mVec128 = m.m_el[2].mVec128;
 | |
| 		
 | |
| 		return *this;
 | |
| 	}
 | |
| 
 | |
| #else
 | |
| 
 | |
| 	/** @brief Copy constructor */
 | |
| 	SIMD_FORCE_INLINE btMatrix3x3 (const btMatrix3x3& other)
 | |
| 	{
 | |
| 		m_el[0] = other.m_el[0];
 | |
| 		m_el[1] = other.m_el[1];
 | |
| 		m_el[2] = other.m_el[2];
 | |
| 	}
 | |
|     
 | |
| 	/** @brief Assignment Operator */
 | |
| 	SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& other)
 | |
| 	{
 | |
| 		m_el[0] = other.m_el[0];
 | |
| 		m_el[1] = other.m_el[1];
 | |
| 		m_el[2] = other.m_el[2];
 | |
| 		return *this;
 | |
| 	}
 | |
| 
 | |
| #endif
 | |
| 
 | |
| 	/** @brief Get a column of the matrix as a vector 
 | |
| 	*  @param i Column number 0 indexed */
 | |
| 	SIMD_FORCE_INLINE btVector3 getColumn(int i) const
 | |
| 	{
 | |
| 		return btVector3(m_el[0][i],m_el[1][i],m_el[2][i]);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/** @brief Get a row of the matrix as a vector 
 | |
| 	*  @param i Row number 0 indexed */
 | |
| 	SIMD_FORCE_INLINE const btVector3& getRow(int i) const
 | |
| 	{
 | |
| 		btFullAssert(0 <= i && i < 3);
 | |
| 		return m_el[i];
 | |
| 	}
 | |
| 
 | |
| 	/** @brief Get a mutable reference to a row of the matrix as a vector 
 | |
| 	*  @param i Row number 0 indexed */
 | |
| 	SIMD_FORCE_INLINE btVector3&  operator[](int i)
 | |
| 	{ 
 | |
| 		btFullAssert(0 <= i && i < 3);
 | |
| 		return m_el[i]; 
 | |
| 	}
 | |
| 
 | |
| 	/** @brief Get a const reference to a row of the matrix as a vector 
 | |
| 	*  @param i Row number 0 indexed */
 | |
| 	SIMD_FORCE_INLINE const btVector3& operator[](int i) const
 | |
| 	{
 | |
| 		btFullAssert(0 <= i && i < 3);
 | |
| 		return m_el[i]; 
 | |
| 	}
 | |
| 
 | |
| 	/** @brief Multiply by the target matrix on the right
 | |
| 	*  @param m Rotation matrix to be applied 
 | |
| 	* Equivilant to this = this * m */
 | |
| 	btMatrix3x3& operator*=(const btMatrix3x3& m); 
 | |
| 
 | |
| 	/** @brief Adds by the target matrix on the right
 | |
| 	*  @param m matrix to be applied 
 | |
| 	* Equivilant to this = this + m */
 | |
| 	btMatrix3x3& operator+=(const btMatrix3x3& m); 
 | |
| 
 | |
| 	/** @brief Substractss by the target matrix on the right
 | |
| 	*  @param m matrix to be applied 
 | |
| 	* Equivilant to this = this - m */
 | |
| 	btMatrix3x3& operator-=(const btMatrix3x3& m); 
 | |
| 
 | |
| 	/** @brief Set from the rotational part of a 4x4 OpenGL matrix
 | |
| 	*  @param m A pointer to the beginning of the array of scalars*/
 | |
| 	void setFromOpenGLSubMatrix(const btScalar *m)
 | |
| 	{
 | |
| 		m_el[0].setValue(m[0],m[4],m[8]);
 | |
| 		m_el[1].setValue(m[1],m[5],m[9]);
 | |
| 		m_el[2].setValue(m[2],m[6],m[10]);
 | |
| 
 | |
| 	}
 | |
| 	/** @brief Set the values of the matrix explicitly (row major)
 | |
| 	*  @param xx Top left
 | |
| 	*  @param xy Top Middle
 | |
| 	*  @param xz Top Right
 | |
| 	*  @param yx Middle Left
 | |
| 	*  @param yy Middle Middle
 | |
| 	*  @param yz Middle Right
 | |
| 	*  @param zx Bottom Left
 | |
| 	*  @param zy Bottom Middle
 | |
| 	*  @param zz Bottom Right*/
 | |
| 	void setValue(const btScalar& xx, const btScalar& xy, const btScalar& xz, 
 | |
| 		const btScalar& yx, const btScalar& yy, const btScalar& yz, 
 | |
| 		const btScalar& zx, const btScalar& zy, const btScalar& zz)
 | |
| 	{
 | |
| 		m_el[0].setValue(xx,xy,xz);
 | |
| 		m_el[1].setValue(yx,yy,yz);
 | |
| 		m_el[2].setValue(zx,zy,zz);
 | |
| 	}
 | |
| 
 | |
| 	/** @brief Set the matrix from a quaternion
 | |
| 	*  @param q The Quaternion to match */  
 | |
| 	void setRotation(const btQuaternion& q) 
 | |
| 	{
 | |
| 		btScalar d = q.length2();
 | |
| 		btFullAssert(d != btScalar(0.0));
 | |
| 		btScalar s = btScalar(2.0) / d;
 | |
|     
 | |
|     #if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
|         __m128	vs, Q = q.get128();
 | |
| 		__m128i Qi = btCastfTo128i(Q);
 | |
|         __m128	Y, Z;
 | |
|         __m128	V1, V2, V3;
 | |
|         __m128	V11, V21, V31;
 | |
|         __m128	NQ = _mm_xor_ps(Q, btvMzeroMask);
 | |
| 		__m128i NQi = btCastfTo128i(NQ);
 | |
|         
 | |
|         V1 = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(1,0,2,3)));	// Y X Z W
 | |
| 		V2 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(0,0,1,3));     // -X -X  Y  W
 | |
|         V3 = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(2,1,0,3)));	// Z Y X W
 | |
|         V1 = _mm_xor_ps(V1, vMPPP);	//	change the sign of the first element
 | |
| 			
 | |
|         V11	= btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(1,1,0,3)));	// Y Y X W
 | |
| 		V21 = _mm_unpackhi_ps(Q, Q);                    //  Z  Z  W  W
 | |
| 		V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(0,2,0,3));	//  X  Z -X -W
 | |
| 
 | |
| 		V2 = V2 * V1;	//
 | |
| 		V1 = V1 * V11;	//
 | |
| 		V3 = V3 * V31;	//
 | |
| 
 | |
|         V11 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(2,3,1,3));	//	-Z -W  Y  W
 | |
| 		V11 = V11 * V21;	//
 | |
|         V21 = _mm_xor_ps(V21, vMPPP);	//	change the sign of the first element
 | |
| 		V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(3,3,1,3));	//	 W  W -Y -W
 | |
|         V31 = _mm_xor_ps(V31, vMPPP);	//	change the sign of the first element
 | |
| 		Y = btCastiTo128f(_mm_shuffle_epi32 (NQi, BT_SHUFFLE(3,2,0,3)));	// -W -Z -X -W
 | |
| 		Z = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(1,0,1,3)));	//  Y  X  Y  W
 | |
| 
 | |
| 		vs = _mm_load_ss(&s);
 | |
| 		V21 = V21 * Y;
 | |
| 		V31 = V31 * Z;
 | |
| 
 | |
| 		V1 = V1 + V11;
 | |
|         V2 = V2 + V21;
 | |
|         V3 = V3 + V31;
 | |
| 
 | |
|         vs = bt_splat3_ps(vs, 0);
 | |
|             //	s ready
 | |
|         V1 = V1 * vs;
 | |
|         V2 = V2 * vs;
 | |
|         V3 = V3 * vs;
 | |
|         
 | |
|         V1 = V1 + v1000;
 | |
|         V2 = V2 + v0100;
 | |
|         V3 = V3 + v0010;
 | |
|         
 | |
|         m_el[0] = V1; 
 | |
|         m_el[1] = V2;
 | |
|         m_el[2] = V3;
 | |
|     #else    
 | |
| 		btScalar xs = q.x() * s,   ys = q.y() * s,   zs = q.z() * s;
 | |
| 		btScalar wx = q.w() * xs,  wy = q.w() * ys,  wz = q.w() * zs;
 | |
| 		btScalar xx = q.x() * xs,  xy = q.x() * ys,  xz = q.x() * zs;
 | |
| 		btScalar yy = q.y() * ys,  yz = q.y() * zs,  zz = q.z() * zs;
 | |
| 		setValue(
 | |
|             btScalar(1.0) - (yy + zz), xy - wz, xz + wy,
 | |
| 			xy + wz, btScalar(1.0) - (xx + zz), yz - wx,
 | |
| 			xz - wy, yz + wx, btScalar(1.0) - (xx + yy));
 | |
| 	#endif
 | |
|     }
 | |
| 
 | |
| 
 | |
| 	/** @brief Set the matrix from euler angles using YPR around YXZ respectively
 | |
| 	*  @param yaw Yaw about Y axis
 | |
| 	*  @param pitch Pitch about X axis
 | |
| 	*  @param roll Roll about Z axis 
 | |
| 	*/
 | |
| 	void setEulerYPR(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) 
 | |
| 	{
 | |
| 		setEulerZYX(roll, pitch, yaw);
 | |
| 	}
 | |
| 
 | |
| 	/** @brief Set the matrix from euler angles YPR around ZYX axes
 | |
| 	* @param eulerX Roll about X axis
 | |
| 	* @param eulerY Pitch around Y axis
 | |
| 	* @param eulerZ Yaw aboud Z axis
 | |
| 	* 
 | |
| 	* These angles are used to produce a rotation matrix. The euler
 | |
| 	* angles are applied in ZYX order. I.e a vector is first rotated 
 | |
| 	* about X then Y and then Z
 | |
| 	**/
 | |
| 	void setEulerZYX(btScalar eulerX,btScalar eulerY,btScalar eulerZ) { 
 | |
| 		///@todo proposed to reverse this since it's labeled zyx but takes arguments xyz and it will match all other parts of the code
 | |
| 		btScalar ci ( btCos(eulerX)); 
 | |
| 		btScalar cj ( btCos(eulerY)); 
 | |
| 		btScalar ch ( btCos(eulerZ)); 
 | |
| 		btScalar si ( btSin(eulerX)); 
 | |
| 		btScalar sj ( btSin(eulerY)); 
 | |
| 		btScalar sh ( btSin(eulerZ)); 
 | |
| 		btScalar cc = ci * ch; 
 | |
| 		btScalar cs = ci * sh; 
 | |
| 		btScalar sc = si * ch; 
 | |
| 		btScalar ss = si * sh;
 | |
| 
 | |
| 		setValue(cj * ch, sj * sc - cs, sj * cc + ss,
 | |
| 			cj * sh, sj * ss + cc, sj * cs - sc, 
 | |
| 			-sj,      cj * si,      cj * ci);
 | |
| 	}
 | |
| 
 | |
| 	/**@brief Set the matrix to the identity */
 | |
| 	void setIdentity()
 | |
| 	{ 
 | |
| #if (defined(BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) || defined(BT_USE_NEON)
 | |
| 			m_el[0] = v1000; 
 | |
| 			m_el[1] = v0100;
 | |
| 			m_el[2] = v0010;
 | |
| #else
 | |
| 		setValue(btScalar(1.0), btScalar(0.0), btScalar(0.0), 
 | |
| 			btScalar(0.0), btScalar(1.0), btScalar(0.0), 
 | |
| 			btScalar(0.0), btScalar(0.0), btScalar(1.0)); 
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	static const btMatrix3x3&	getIdentity()
 | |
| 	{
 | |
| #if (defined(BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) || defined(BT_USE_NEON)
 | |
|         static const btMatrix3x3 
 | |
|         identityMatrix(v1000, v0100, v0010);
 | |
| #else
 | |
| 		static const btMatrix3x3 
 | |
|         identityMatrix(
 | |
|             btScalar(1.0), btScalar(0.0), btScalar(0.0), 
 | |
| 			btScalar(0.0), btScalar(1.0), btScalar(0.0), 
 | |
| 			btScalar(0.0), btScalar(0.0), btScalar(1.0));
 | |
| #endif
 | |
| 		return identityMatrix;
 | |
| 	}
 | |
| 
 | |
| 	/**@brief Fill the rotational part of an OpenGL matrix and clear the shear/perspective
 | |
| 	* @param m The array to be filled */
 | |
| 	void getOpenGLSubMatrix(btScalar *m) const 
 | |
| 	{
 | |
| #if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
|         __m128 v0 = m_el[0].mVec128;
 | |
|         __m128 v1 = m_el[1].mVec128;
 | |
|         __m128 v2 = m_el[2].mVec128;    //  x2 y2 z2 w2
 | |
|         __m128 *vm = (__m128 *)m;
 | |
|         __m128 vT;
 | |
|         
 | |
|         v2 = _mm_and_ps(v2, btvFFF0fMask);  //  x2 y2 z2 0
 | |
|         
 | |
|         vT = _mm_unpackhi_ps(v0, v1);	//	z0 z1 * *
 | |
|         v0 = _mm_unpacklo_ps(v0, v1);	//	x0 x1 y0 y1
 | |
| 
 | |
|         v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3) );	// y0 y1 y2 0
 | |
|         v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3) );	// x0 x1 x2 0
 | |
|         v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT)));	// z0 z1 z2 0
 | |
| 
 | |
|         vm[0] = v0;
 | |
|         vm[1] = v1;
 | |
|         vm[2] = v2;
 | |
| #elif defined(BT_USE_NEON)
 | |
|         // note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions.
 | |
|         static const uint32x2_t zMask = (const uint32x2_t) {static_cast<uint32_t>(-1), 0 };
 | |
|         float32x4_t *vm = (float32x4_t *)m;
 | |
|         float32x4x2_t top = vtrnq_f32( m_el[0].mVec128, m_el[1].mVec128 );  // {x0 x1 z0 z1}, {y0 y1 w0 w1}
 | |
|         float32x2x2_t bl = vtrn_f32( vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f) );       // {x2  0 }, {y2 0}
 | |
|         float32x4_t v0 = vcombine_f32( vget_low_f32(top.val[0]), bl.val[0] );
 | |
|         float32x4_t v1 = vcombine_f32( vget_low_f32(top.val[1]), bl.val[1] );
 | |
|         float32x2_t q = (float32x2_t) vand_u32( (uint32x2_t) vget_high_f32( m_el[2].mVec128), zMask );
 | |
|         float32x4_t v2 = vcombine_f32( vget_high_f32(top.val[0]), q );       // z0 z1 z2  0
 | |
| 
 | |
|         vm[0] = v0;
 | |
|         vm[1] = v1;
 | |
|         vm[2] = v2;
 | |
| #else
 | |
| 		m[0]  = btScalar(m_el[0].x()); 
 | |
| 		m[1]  = btScalar(m_el[1].x());
 | |
| 		m[2]  = btScalar(m_el[2].x());
 | |
| 		m[3]  = btScalar(0.0); 
 | |
| 		m[4]  = btScalar(m_el[0].y());
 | |
| 		m[5]  = btScalar(m_el[1].y());
 | |
| 		m[6]  = btScalar(m_el[2].y());
 | |
| 		m[7]  = btScalar(0.0); 
 | |
| 		m[8]  = btScalar(m_el[0].z()); 
 | |
| 		m[9]  = btScalar(m_el[1].z());
 | |
| 		m[10] = btScalar(m_el[2].z());
 | |
| 		m[11] = btScalar(0.0); 
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/**@brief Get the matrix represented as a quaternion 
 | |
| 	* @param q The quaternion which will be set */
 | |
| 	void getRotation(btQuaternion& q) const
 | |
| 	{
 | |
| #if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
 | |
|         btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();
 | |
|         btScalar s, x;
 | |
|         
 | |
|         union {
 | |
|             btSimdFloat4 vec;
 | |
|             btScalar f[4];
 | |
|         } temp;
 | |
|         
 | |
|         if (trace > btScalar(0.0)) 
 | |
|         {
 | |
|             x = trace + btScalar(1.0);
 | |
| 
 | |
|             temp.f[0]=m_el[2].y() - m_el[1].z();
 | |
|             temp.f[1]=m_el[0].z() - m_el[2].x();
 | |
|             temp.f[2]=m_el[1].x() - m_el[0].y();
 | |
|             temp.f[3]=x;
 | |
|             //temp.f[3]= s * btScalar(0.5);
 | |
|         } 
 | |
|         else 
 | |
|         {
 | |
|             int i, j, k;
 | |
|             if(m_el[0].x() < m_el[1].y()) 
 | |
|             { 
 | |
|                 if( m_el[1].y() < m_el[2].z() )
 | |
|                     { i = 2; j = 0; k = 1; }
 | |
|                 else
 | |
|                     { i = 1; j = 2; k = 0; }
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 if( m_el[0].x() < m_el[2].z())
 | |
|                     { i = 2; j = 0; k = 1; }
 | |
|                 else
 | |
|                     { i = 0; j = 1; k = 2; }
 | |
|             }
 | |
| 
 | |
|             x = m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0);
 | |
| 
 | |
|             temp.f[3] = (m_el[k][j] - m_el[j][k]);
 | |
|             temp.f[j] = (m_el[j][i] + m_el[i][j]);
 | |
|             temp.f[k] = (m_el[k][i] + m_el[i][k]);
 | |
|             temp.f[i] = x;
 | |
|             //temp.f[i] = s * btScalar(0.5);
 | |
|         }
 | |
| 
 | |
|         s = btSqrt(x);
 | |
|         q.set128(temp.vec);
 | |
|         s = btScalar(0.5) / s;
 | |
| 
 | |
|         q *= s;
 | |
| #else    
 | |
| 		btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();
 | |
| 
 | |
| 		btScalar temp[4];
 | |
| 
 | |
| 		if (trace > btScalar(0.0)) 
 | |
| 		{
 | |
| 			btScalar s = btSqrt(trace + btScalar(1.0));
 | |
| 			temp[3]=(s * btScalar(0.5));
 | |
| 			s = btScalar(0.5) / s;
 | |
| 
 | |
| 			temp[0]=((m_el[2].y() - m_el[1].z()) * s);
 | |
| 			temp[1]=((m_el[0].z() - m_el[2].x()) * s);
 | |
| 			temp[2]=((m_el[1].x() - m_el[0].y()) * s);
 | |
| 		} 
 | |
| 		else 
 | |
| 		{
 | |
| 			int i = m_el[0].x() < m_el[1].y() ? 
 | |
| 				(m_el[1].y() < m_el[2].z() ? 2 : 1) :
 | |
| 				(m_el[0].x() < m_el[2].z() ? 2 : 0); 
 | |
| 			int j = (i + 1) % 3;  
 | |
| 			int k = (i + 2) % 3;
 | |
| 
 | |
| 			btScalar s = btSqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0));
 | |
| 			temp[i] = s * btScalar(0.5);
 | |
| 			s = btScalar(0.5) / s;
 | |
| 
 | |
| 			temp[3] = (m_el[k][j] - m_el[j][k]) * s;
 | |
| 			temp[j] = (m_el[j][i] + m_el[i][j]) * s;
 | |
| 			temp[k] = (m_el[k][i] + m_el[i][k]) * s;
 | |
| 		}
 | |
| 		q.setValue(temp[0],temp[1],temp[2],temp[3]);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/**@brief Get the matrix represented as euler angles around YXZ, roundtrip with setEulerYPR
 | |
| 	* @param yaw Yaw around Y axis
 | |
| 	* @param pitch Pitch around X axis
 | |
| 	* @param roll around Z axis */	
 | |
| 	void getEulerYPR(btScalar& yaw, btScalar& pitch, btScalar& roll) const
 | |
| 	{
 | |
| 
 | |
| 		// first use the normal calculus
 | |
| 		yaw = btScalar(btAtan2(m_el[1].x(), m_el[0].x()));
 | |
| 		pitch = btScalar(btAsin(-m_el[2].x()));
 | |
| 		roll = btScalar(btAtan2(m_el[2].y(), m_el[2].z()));
 | |
| 
 | |
| 		// on pitch = +/-HalfPI
 | |
| 		if (btFabs(pitch)==SIMD_HALF_PI)
 | |
| 		{
 | |
| 			if (yaw>0)
 | |
| 				yaw-=SIMD_PI;
 | |
| 			else
 | |
| 				yaw+=SIMD_PI;
 | |
| 
 | |
| 			if (roll>0)
 | |
| 				roll-=SIMD_PI;
 | |
| 			else
 | |
| 				roll+=SIMD_PI;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 
 | |
| 	/**@brief Get the matrix represented as euler angles around ZYX
 | |
| 	* @param yaw Yaw around X axis
 | |
| 	* @param pitch Pitch around Y axis
 | |
| 	* @param roll around X axis 
 | |
| 	* @param solution_number Which solution of two possible solutions ( 1 or 2) are possible values*/	
 | |
| 	void getEulerZYX(btScalar& yaw, btScalar& pitch, btScalar& roll, unsigned int solution_number = 1) const
 | |
| 	{
 | |
| 		struct Euler
 | |
| 		{
 | |
| 			btScalar yaw;
 | |
| 			btScalar pitch;
 | |
| 			btScalar roll;
 | |
| 		};
 | |
| 
 | |
| 		Euler euler_out;
 | |
| 		Euler euler_out2; //second solution
 | |
| 		//get the pointer to the raw data
 | |
| 
 | |
| 		// Check that pitch is not at a singularity
 | |
| 		if (btFabs(m_el[2].x()) >= 1)
 | |
| 		{
 | |
| 			euler_out.yaw = 0;
 | |
| 			euler_out2.yaw = 0;
 | |
| 
 | |
| 			// From difference of angles formula
 | |
| 			btScalar delta = btAtan2(m_el[0].x(),m_el[0].z());
 | |
| 			if (m_el[2].x() > 0)  //gimbal locked up
 | |
| 			{
 | |
| 				euler_out.pitch = SIMD_PI / btScalar(2.0);
 | |
| 				euler_out2.pitch = SIMD_PI / btScalar(2.0);
 | |
| 				euler_out.roll = euler_out.pitch + delta;
 | |
| 				euler_out2.roll = euler_out.pitch + delta;
 | |
| 			}
 | |
| 			else // gimbal locked down
 | |
| 			{
 | |
| 				euler_out.pitch = -SIMD_PI / btScalar(2.0);
 | |
| 				euler_out2.pitch = -SIMD_PI / btScalar(2.0);
 | |
| 				euler_out.roll = -euler_out.pitch + delta;
 | |
| 				euler_out2.roll = -euler_out.pitch + delta;
 | |
| 			}
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			euler_out.pitch = - btAsin(m_el[2].x());
 | |
| 			euler_out2.pitch = SIMD_PI - euler_out.pitch;
 | |
| 
 | |
| 			euler_out.roll = btAtan2(m_el[2].y()/btCos(euler_out.pitch), 
 | |
| 				m_el[2].z()/btCos(euler_out.pitch));
 | |
| 			euler_out2.roll = btAtan2(m_el[2].y()/btCos(euler_out2.pitch), 
 | |
| 				m_el[2].z()/btCos(euler_out2.pitch));
 | |
| 
 | |
| 			euler_out.yaw = btAtan2(m_el[1].x()/btCos(euler_out.pitch), 
 | |
| 				m_el[0].x()/btCos(euler_out.pitch));
 | |
| 			euler_out2.yaw = btAtan2(m_el[1].x()/btCos(euler_out2.pitch), 
 | |
| 				m_el[0].x()/btCos(euler_out2.pitch));
 | |
| 		}
 | |
| 
 | |
| 		if (solution_number == 1)
 | |
| 		{ 
 | |
| 			yaw = euler_out.yaw; 
 | |
| 			pitch = euler_out.pitch;
 | |
| 			roll = euler_out.roll;
 | |
| 		}
 | |
| 		else
 | |
| 		{ 
 | |
| 			yaw = euler_out2.yaw; 
 | |
| 			pitch = euler_out2.pitch;
 | |
| 			roll = euler_out2.roll;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/**@brief Create a scaled copy of the matrix 
 | |
| 	* @param s Scaling vector The elements of the vector will scale each column */
 | |
| 
 | |
| 	btMatrix3x3 scaled(const btVector3& s) const
 | |
| 	{
 | |
| #if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
 | |
| 		return btMatrix3x3(m_el[0] * s, m_el[1] * s, m_el[2] * s);
 | |
| #else		
 | |
| 		return btMatrix3x3(
 | |
|             m_el[0].x() * s.x(), m_el[0].y() * s.y(), m_el[0].z() * s.z(),
 | |
| 			m_el[1].x() * s.x(), m_el[1].y() * s.y(), m_el[1].z() * s.z(),
 | |
| 			m_el[2].x() * s.x(), m_el[2].y() * s.y(), m_el[2].z() * s.z());
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/**@brief Return the determinant of the matrix */
 | |
| 	btScalar            determinant() const;
 | |
| 	/**@brief Return the adjoint of the matrix */
 | |
| 	btMatrix3x3 adjoint() const;
 | |
| 	/**@brief Return the matrix with all values non negative */
 | |
| 	btMatrix3x3 absolute() const;
 | |
| 	/**@brief Return the transpose of the matrix */
 | |
| 	btMatrix3x3 transpose() const;
 | |
| 	/**@brief Return the inverse of the matrix */
 | |
| 	btMatrix3x3 inverse() const; 
 | |
| 
 | |
| 	/// Solve A * x = b, where b is a column vector. This is more efficient
 | |
| 	/// than computing the inverse in one-shot cases.
 | |
| 	///Solve33 is from Box2d, thanks to Erin Catto,
 | |
| 	btVector3 solve33(const btVector3& b) const
 | |
| 	{
 | |
| 		btVector3 col1 = getColumn(0);
 | |
| 		btVector3 col2 = getColumn(1);
 | |
| 		btVector3 col3 = getColumn(2);
 | |
| 		
 | |
| 		btScalar det = btDot(col1, btCross(col2, col3));
 | |
| 		if (btFabs(det)>SIMD_EPSILON)
 | |
| 		{
 | |
| 			det = 1.0f / det;
 | |
| 		}
 | |
| 		btVector3 x;
 | |
| 		x[0] = det * btDot(b, btCross(col2, col3));
 | |
| 		x[1] = det * btDot(col1, btCross(b, col3));
 | |
| 		x[2] = det * btDot(col1, btCross(col2, b));
 | |
| 		return x;
 | |
| 	}
 | |
| 
 | |
| 	btMatrix3x3 transposeTimes(const btMatrix3x3& m) const;
 | |
| 	btMatrix3x3 timesTranspose(const btMatrix3x3& m) const;
 | |
| 
 | |
| 	SIMD_FORCE_INLINE btScalar tdotx(const btVector3& v) const 
 | |
| 	{
 | |
| 		return m_el[0].x() * v.x() + m_el[1].x() * v.y() + m_el[2].x() * v.z();
 | |
| 	}
 | |
| 	SIMD_FORCE_INLINE btScalar tdoty(const btVector3& v) const 
 | |
| 	{
 | |
| 		return m_el[0].y() * v.x() + m_el[1].y() * v.y() + m_el[2].y() * v.z();
 | |
| 	}
 | |
| 	SIMD_FORCE_INLINE btScalar tdotz(const btVector3& v) const 
 | |
| 	{
 | |
| 		return m_el[0].z() * v.x() + m_el[1].z() * v.y() + m_el[2].z() * v.z();
 | |
| 	}
 | |
| 
 | |
| 	///extractRotation is from "A robust method to extract the rotational part of deformations"
 | |
| 	///See http://dl.acm.org/citation.cfm?doid=2994258.2994269
 | |
| 	SIMD_FORCE_INLINE void extractRotation(btQuaternion &q,btScalar tolerance = 1.0e-9, int maxIter=100)
 | |
| 	{
 | |
| 		int iter =0;
 | |
| 		btScalar w;
 | |
| 		const btMatrix3x3& A=*this;
 | |
| 		for(iter = 0; iter < maxIter; iter++)
 | |
| 		{
 | |
| 			btMatrix3x3 R(q);
 | |
| 			btVector3 omega = (R.getColumn(0).cross(A.getColumn(0)) + R.getColumn(1).cross(A.getColumn(1)) 
 | |
| 				+ R.getColumn(2).cross(A.getColumn(2))
 | |
| 				) * (btScalar(1.0) / btFabs(R.getColumn(0).dot(A.getColumn(0)) + R.getColumn
 | |
| 				(1).dot(A.getColumn(1)) + R.getColumn(2).dot(A.getColumn(2))) +
 | |
| 					tolerance);
 | |
| 			w = omega.norm();
 | |
| 			if(w < tolerance)
 | |
| 				break;
 | |
| 			q = btQuaternion(btVector3((btScalar(1.0) / w) * omega),w) *
 | |
| 				q;
 | |
| 			q.normalize();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 
 | |
| 	/**@brief diagonalizes this matrix
 | |
| 	* @param rot stores the rotation from the coordinate system in which the matrix is diagonal to the original
 | |
| 	* coordinate system, i.e., old_this = rot * new_this * rot^T. 
 | |
| 	* @param threshold See iteration
 | |
| 	* @param maxIter The iteration stops when we hit the given tolerance or when maxIter have been executed. 
 | |
| 	*/
 | |
| 	void diagonalize(btMatrix3x3& rot, btScalar tolerance = 1.0e-9, int maxIter=100)
 | |
| 	{
 | |
| 		btQuaternion r;
 | |
| 		r = btQuaternion::getIdentity();
 | |
| 		extractRotation(r,tolerance,maxIter);
 | |
| 		rot.setRotation(r);
 | |
| 		btMatrix3x3 rotInv = btMatrix3x3(r.inverse());
 | |
| 		btMatrix3x3 old = *this;
 | |
| 		setValue(old.tdotx( rotInv[0]), old.tdoty( rotInv[0]), old.tdotz( rotInv[0]),
 | |
| 		old.tdotx( rotInv[1]), old.tdoty( rotInv[1]), old.tdotz( rotInv[1]),
 | |
| 		old.tdotx( rotInv[2]), old.tdoty( rotInv[2]), old.tdotz( rotInv[2]));
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 	/**@brief Calculate the matrix cofactor 
 | |
| 	* @param r1 The first row to use for calculating the cofactor
 | |
| 	* @param c1 The first column to use for calculating the cofactor
 | |
| 	* @param r1 The second row to use for calculating the cofactor
 | |
| 	* @param c1 The second column to use for calculating the cofactor
 | |
| 	* See http://en.wikipedia.org/wiki/Cofactor_(linear_algebra) for more details
 | |
| 	*/
 | |
| 	btScalar cofac(int r1, int c1, int r2, int c2) const 
 | |
| 	{
 | |
| 		return m_el[r1][c1] * m_el[r2][c2] - m_el[r1][c2] * m_el[r2][c1];
 | |
| 	}
 | |
| 
 | |
| 	void	serialize(struct	btMatrix3x3Data& dataOut) const;
 | |
| 
 | |
| 	void	serializeFloat(struct	btMatrix3x3FloatData& dataOut) const;
 | |
| 
 | |
| 	void	deSerialize(const struct	btMatrix3x3Data& dataIn);
 | |
| 
 | |
| 	void	deSerializeFloat(const struct	btMatrix3x3FloatData& dataIn);
 | |
| 
 | |
| 	void	deSerializeDouble(const struct	btMatrix3x3DoubleData& dataIn);
 | |
| 
 | |
| };
 | |
| 
 | |
| 
 | |
| SIMD_FORCE_INLINE btMatrix3x3& 
 | |
| btMatrix3x3::operator*=(const btMatrix3x3& m)
 | |
| {
 | |
| #if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 | |
|     __m128 rv00, rv01, rv02;
 | |
|     __m128 rv10, rv11, rv12;
 | |
|     __m128 rv20, rv21, rv22;
 | |
|     __m128 mv0, mv1, mv2;
 | |
| 
 | |
|     rv02 = m_el[0].mVec128;
 | |
|     rv12 = m_el[1].mVec128;
 | |
|     rv22 = m_el[2].mVec128;
 | |
| 
 | |
|     mv0 = _mm_and_ps(m[0].mVec128, btvFFF0fMask); 
 | |
|     mv1 = _mm_and_ps(m[1].mVec128, btvFFF0fMask); 
 | |
|     mv2 = _mm_and_ps(m[2].mVec128, btvFFF0fMask); 
 | |
|     
 | |
|     // rv0
 | |
|     rv00 = bt_splat_ps(rv02, 0);
 | |
|     rv01 = bt_splat_ps(rv02, 1);
 | |
|     rv02 = bt_splat_ps(rv02, 2);
 | |
|     
 | |
|     rv00 = _mm_mul_ps(rv00, mv0);
 | |
|     rv01 = _mm_mul_ps(rv01, mv1);
 | |
|     rv02 = _mm_mul_ps(rv02, mv2);
 | |
|     
 | |
|     // rv1
 | |
|     rv10 = bt_splat_ps(rv12, 0);
 | |
|     rv11 = bt_splat_ps(rv12, 1);
 | |
|     rv12 = bt_splat_ps(rv12, 2);
 | |
|     
 | |
|     rv10 = _mm_mul_ps(rv10, mv0);
 | |
|     rv11 = _mm_mul_ps(rv11, mv1);
 | |
|     rv12 = _mm_mul_ps(rv12, mv2);
 | |
|     
 | |
|     // rv2
 | |
|     rv20 = bt_splat_ps(rv22, 0);
 | |
|     rv21 = bt_splat_ps(rv22, 1);
 | |
|     rv22 = bt_splat_ps(rv22, 2);
 | |
|     
 | |
|     rv20 = _mm_mul_ps(rv20, mv0);
 | |
|     rv21 = _mm_mul_ps(rv21, mv1);
 | |
|     rv22 = _mm_mul_ps(rv22, mv2);
 | |
| 
 | |
|     rv00 = _mm_add_ps(rv00, rv01);
 | |
|     rv10 = _mm_add_ps(rv10, rv11);
 | |
|     rv20 = _mm_add_ps(rv20, rv21);
 | |
| 
 | |
|     m_el[0].mVec128 = _mm_add_ps(rv00, rv02);
 | |
|     m_el[1].mVec128 = _mm_add_ps(rv10, rv12);
 | |
|     m_el[2].mVec128 = _mm_add_ps(rv20, rv22);
 | |
| 
 | |
| #elif defined(BT_USE_NEON)
 | |
| 
 | |
|     float32x4_t rv0, rv1, rv2;
 | |
|     float32x4_t v0, v1, v2;
 | |
|     float32x4_t mv0, mv1, mv2;
 | |
| 
 | |
|     v0 = m_el[0].mVec128;
 | |
|     v1 = m_el[1].mVec128;
 | |
|     v2 = m_el[2].mVec128;
 | |
| 
 | |
|     mv0 = (float32x4_t) vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask); 
 | |
|     mv1 = (float32x4_t) vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask); 
 | |
|     mv2 = (float32x4_t) vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask); 
 | |
|     
 | |
|     rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0);
 | |
|     rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0);
 | |
|     rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0);
 | |
|     
 | |
|     rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1);
 | |
|     rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1);
 | |
|     rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1);
 | |
|     
 | |
|     rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0);
 | |
|     rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0);
 | |
|     rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0);
 | |
| 
 | |
|     m_el[0].mVec128 = rv0;
 | |
|     m_el[1].mVec128 = rv1;
 | |
|     m_el[2].mVec128 = rv2;
 | |
| #else    
 | |
| 	setValue(
 | |
|         m.tdotx(m_el[0]), m.tdoty(m_el[0]), m.tdotz(m_el[0]),
 | |
| 		m.tdotx(m_el[1]), m.tdoty(m_el[1]), m.tdotz(m_el[1]),
 | |
| 		m.tdotx(m_el[2]), m.tdoty(m_el[2]), m.tdotz(m_el[2]));
 | |
| #endif
 | |
| 	return *this;
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE btMatrix3x3& 
 | |
| btMatrix3x3::operator+=(const btMatrix3x3& m)
 | |
| {
 | |
| #if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
 | |
|     m_el[0].mVec128 = m_el[0].mVec128 + m.m_el[0].mVec128;
 | |
|     m_el[1].mVec128 = m_el[1].mVec128 + m.m_el[1].mVec128;
 | |
|     m_el[2].mVec128 = m_el[2].mVec128 + m.m_el[2].mVec128;
 | |
| #else
 | |
| 	setValue(
 | |
| 		m_el[0][0]+m.m_el[0][0], 
 | |
| 		m_el[0][1]+m.m_el[0][1],
 | |
| 		m_el[0][2]+m.m_el[0][2],
 | |
| 		m_el[1][0]+m.m_el[1][0], 
 | |
| 		m_el[1][1]+m.m_el[1][1],
 | |
| 		m_el[1][2]+m.m_el[1][2],
 | |
| 		m_el[2][0]+m.m_el[2][0], 
 | |
| 		m_el[2][1]+m.m_el[2][1],
 | |
| 		m_el[2][2]+m.m_el[2][2]);
 | |
| #endif
 | |
| 	return *this;
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE btMatrix3x3
 | |
| operator*(const btMatrix3x3& m, const btScalar & k)
 | |
| {
 | |
| #if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
 | |
|     __m128 vk = bt_splat_ps(_mm_load_ss((float *)&k), 0x80);
 | |
|     return btMatrix3x3(
 | |
|                 _mm_mul_ps(m[0].mVec128, vk), 
 | |
|                 _mm_mul_ps(m[1].mVec128, vk), 
 | |
|                 _mm_mul_ps(m[2].mVec128, vk)); 
 | |
| #elif defined(BT_USE_NEON)
 | |
|     return btMatrix3x3(
 | |
|                 vmulq_n_f32(m[0].mVec128, k),
 | |
|                 vmulq_n_f32(m[1].mVec128, k),
 | |
|                 vmulq_n_f32(m[2].mVec128, k)); 
 | |
| #else
 | |
| 	return btMatrix3x3(
 | |
| 		m[0].x()*k,m[0].y()*k,m[0].z()*k,
 | |
| 		m[1].x()*k,m[1].y()*k,m[1].z()*k,
 | |
| 		m[2].x()*k,m[2].y()*k,m[2].z()*k);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE btMatrix3x3 
 | |
| operator+(const btMatrix3x3& m1, const btMatrix3x3& m2)
 | |
| {
 | |
| #if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
 | |
| 	return btMatrix3x3(
 | |
|         m1[0].mVec128 + m2[0].mVec128,
 | |
|         m1[1].mVec128 + m2[1].mVec128,
 | |
|         m1[2].mVec128 + m2[2].mVec128);
 | |
| #else
 | |
| 	return btMatrix3x3(
 | |
|         m1[0][0]+m2[0][0], 
 | |
|         m1[0][1]+m2[0][1],
 | |
|         m1[0][2]+m2[0][2],
 | |
|         
 | |
|         m1[1][0]+m2[1][0], 
 | |
|         m1[1][1]+m2[1][1],
 | |
|         m1[1][2]+m2[1][2],
 | |
|         
 | |
|         m1[2][0]+m2[2][0], 
 | |
|         m1[2][1]+m2[2][1],
 | |
|         m1[2][2]+m2[2][2]);
 | |
| #endif    
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE btMatrix3x3 
 | |
| operator-(const btMatrix3x3& m1, const btMatrix3x3& m2)
 | |
| {
 | |
| #if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
 | |
| 	return btMatrix3x3(
 | |
|         m1[0].mVec128 - m2[0].mVec128,
 | |
|         m1[1].mVec128 - m2[1].mVec128,
 | |
|         m1[2].mVec128 - m2[2].mVec128);
 | |
| #else
 | |
| 	return btMatrix3x3(
 | |
|         m1[0][0]-m2[0][0], 
 | |
|         m1[0][1]-m2[0][1],
 | |
|         m1[0][2]-m2[0][2],
 | |
|         
 | |
|         m1[1][0]-m2[1][0], 
 | |
|         m1[1][1]-m2[1][1],
 | |
|         m1[1][2]-m2[1][2],
 | |
|         
 | |
|         m1[2][0]-m2[2][0], 
 | |
|         m1[2][1]-m2[2][1],
 | |
|         m1[2][2]-m2[2][2]);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| SIMD_FORCE_INLINE btMatrix3x3& 
 | |
| btMatrix3x3::operator-=(const btMatrix3x3& m)
 | |
| {
 | |
| #if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
 | |
|     m_el[0].mVec128 = m_el[0].mVec128 - m.m_el[0].mVec128;
 | |
|     m_el[1].mVec128 = m_el[1].mVec128 - m.m_el[1].mVec128;
 | |
|     m_el[2].mVec128 = m_el[2].mVec128 - m.m_el[2].mVec128;
 | |
| #else
 | |
| 	setValue(
 | |
| 	m_el[0][0]-m.m_el[0][0], 
 | |
| 	m_el[0][1]-m.m_el[0][1],
 | |
| 	m_el[0][2]-m.m_el[0][2],
 | |
| 	m_el[1][0]-m.m_el[1][0], 
 | |
| 	m_el[1][1]-m.m_el[1][1],
 | |
| 	m_el[1][2]-m.m_el[1][2],
 | |
| 	m_el[2][0]-m.m_el[2][0], 
 | |
| 	m_el[2][1]-m.m_el[2][1],
 | |
| 	m_el[2][2]-m.m_el[2][2]);
 | |
| #endif
 | |
| 	return *this;
 | |
| }
 | |
| 
 | |
| 
 | |
| SIMD_FORCE_INLINE btScalar 
 | |
| btMatrix3x3::determinant() const
 | |
| { 
 | |
| 	return btTriple((*this)[0], (*this)[1], (*this)[2]);
 | |
| }
 | |
| 
 | |
| 
 | |
| SIMD_FORCE_INLINE btMatrix3x3 
 | |
| btMatrix3x3::absolute() const
 | |
| {
 | |
| #if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
 | |
|     return btMatrix3x3(
 | |
|             _mm_and_ps(m_el[0].mVec128, btvAbsfMask),
 | |
|             _mm_and_ps(m_el[1].mVec128, btvAbsfMask),
 | |
|             _mm_and_ps(m_el[2].mVec128, btvAbsfMask));
 | |
| #elif defined(BT_USE_NEON)
 | |
|     return btMatrix3x3(
 | |
|             (float32x4_t)vandq_s32((int32x4_t)m_el[0].mVec128, btv3AbsMask),
 | |
|             (float32x4_t)vandq_s32((int32x4_t)m_el[1].mVec128, btv3AbsMask),
 | |
|             (float32x4_t)vandq_s32((int32x4_t)m_el[2].mVec128, btv3AbsMask));
 | |
| #else	
 | |
| 	return btMatrix3x3(
 | |
|             btFabs(m_el[0].x()), btFabs(m_el[0].y()), btFabs(m_el[0].z()),
 | |
|             btFabs(m_el[1].x()), btFabs(m_el[1].y()), btFabs(m_el[1].z()),
 | |
|             btFabs(m_el[2].x()), btFabs(m_el[2].y()), btFabs(m_el[2].z()));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE btMatrix3x3 
 | |
| btMatrix3x3::transpose() const 
 | |
| {
 | |
| #if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
 | |
|     __m128 v0 = m_el[0].mVec128;
 | |
|     __m128 v1 = m_el[1].mVec128;
 | |
|     __m128 v2 = m_el[2].mVec128;    //  x2 y2 z2 w2
 | |
|     __m128 vT;
 | |
|     
 | |
|     v2 = _mm_and_ps(v2, btvFFF0fMask);  //  x2 y2 z2 0
 | |
|     
 | |
|     vT = _mm_unpackhi_ps(v0, v1);	//	z0 z1 * *
 | |
|     v0 = _mm_unpacklo_ps(v0, v1);	//	x0 x1 y0 y1
 | |
| 
 | |
|     v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3) );	// y0 y1 y2 0
 | |
|     v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3) );	// x0 x1 x2 0
 | |
|     v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT)));	// z0 z1 z2 0
 | |
| 
 | |
| 
 | |
|     return btMatrix3x3( v0, v1, v2 );
 | |
| #elif defined(BT_USE_NEON)
 | |
|     // note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions.
 | |
|     static const uint32x2_t zMask = (const uint32x2_t) {static_cast<uint32_t>(-1), 0 };
 | |
|     float32x4x2_t top = vtrnq_f32( m_el[0].mVec128, m_el[1].mVec128 );  // {x0 x1 z0 z1}, {y0 y1 w0 w1}
 | |
|     float32x2x2_t bl = vtrn_f32( vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f) );       // {x2  0 }, {y2 0}
 | |
|     float32x4_t v0 = vcombine_f32( vget_low_f32(top.val[0]), bl.val[0] );
 | |
|     float32x4_t v1 = vcombine_f32( vget_low_f32(top.val[1]), bl.val[1] );
 | |
|     float32x2_t q = (float32x2_t) vand_u32( (uint32x2_t) vget_high_f32( m_el[2].mVec128), zMask );
 | |
|     float32x4_t v2 = vcombine_f32( vget_high_f32(top.val[0]), q );       // z0 z1 z2  0
 | |
|     return btMatrix3x3( v0, v1, v2 ); 
 | |
| #else
 | |
| 	return btMatrix3x3( m_el[0].x(), m_el[1].x(), m_el[2].x(),
 | |
|                         m_el[0].y(), m_el[1].y(), m_el[2].y(),
 | |
|                         m_el[0].z(), m_el[1].z(), m_el[2].z());
 | |
| #endif
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE btMatrix3x3 
 | |
| btMatrix3x3::adjoint() const 
 | |
| {
 | |
| 	return btMatrix3x3(cofac(1, 1, 2, 2), cofac(0, 2, 2, 1), cofac(0, 1, 1, 2),
 | |
| 		cofac(1, 2, 2, 0), cofac(0, 0, 2, 2), cofac(0, 2, 1, 0),
 | |
| 		cofac(1, 0, 2, 1), cofac(0, 1, 2, 0), cofac(0, 0, 1, 1));
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE btMatrix3x3 
 | |
| btMatrix3x3::inverse() const
 | |
| {
 | |
| 	btVector3 co(cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1));
 | |
| 	btScalar det = (*this)[0].dot(co);
 | |
| 	//btFullAssert(det != btScalar(0.0));
 | |
| 	btAssert(det != btScalar(0.0));
 | |
| 	btScalar s = btScalar(1.0) / det;
 | |
| 	return btMatrix3x3(co.x() * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
 | |
| 		co.y() * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
 | |
| 		co.z() * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE btMatrix3x3 
 | |
| btMatrix3x3::transposeTimes(const btMatrix3x3& m) const
 | |
| {
 | |
| #if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
 | |
|     // zeros w
 | |
| //    static const __m128i xyzMask = (const __m128i){ -1ULL, 0xffffffffULL };
 | |
|     __m128 row = m_el[0].mVec128;
 | |
|     __m128 m0 = _mm_and_ps( m.getRow(0).mVec128, btvFFF0fMask );
 | |
|     __m128 m1 = _mm_and_ps( m.getRow(1).mVec128, btvFFF0fMask);
 | |
|     __m128 m2 = _mm_and_ps( m.getRow(2).mVec128, btvFFF0fMask );
 | |
|     __m128 r0 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0));
 | |
|     __m128 r1 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0x55));
 | |
|     __m128 r2 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0xaa));
 | |
|     row = m_el[1].mVec128;
 | |
|     r0 = _mm_add_ps( r0, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0)));
 | |
|     r1 = _mm_add_ps( r1, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0x55)));
 | |
|     r2 = _mm_add_ps( r2, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0xaa)));
 | |
|     row = m_el[2].mVec128;
 | |
|     r0 = _mm_add_ps( r0, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0)));
 | |
|     r1 = _mm_add_ps( r1, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0x55)));
 | |
|     r2 = _mm_add_ps( r2, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0xaa)));
 | |
|     return btMatrix3x3( r0, r1, r2 );
 | |
| 
 | |
| #elif defined BT_USE_NEON
 | |
|     // zeros w
 | |
|     static const uint32x4_t xyzMask = (const uint32x4_t){ static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), 0 };
 | |
|     float32x4_t m0 = (float32x4_t) vandq_u32( (uint32x4_t) m.getRow(0).mVec128, xyzMask );
 | |
|     float32x4_t m1 = (float32x4_t) vandq_u32( (uint32x4_t) m.getRow(1).mVec128, xyzMask );
 | |
|     float32x4_t m2 = (float32x4_t) vandq_u32( (uint32x4_t) m.getRow(2).mVec128, xyzMask );
 | |
|     float32x4_t row = m_el[0].mVec128;
 | |
|     float32x4_t r0 = vmulq_lane_f32( m0, vget_low_f32(row), 0);
 | |
|     float32x4_t r1 = vmulq_lane_f32( m0, vget_low_f32(row), 1);
 | |
|     float32x4_t r2 = vmulq_lane_f32( m0, vget_high_f32(row), 0);
 | |
|     row = m_el[1].mVec128;
 | |
|     r0 = vmlaq_lane_f32( r0, m1, vget_low_f32(row), 0);
 | |
|     r1 = vmlaq_lane_f32( r1, m1, vget_low_f32(row), 1);
 | |
|     r2 = vmlaq_lane_f32( r2, m1, vget_high_f32(row), 0);
 | |
|     row = m_el[2].mVec128;
 | |
|     r0 = vmlaq_lane_f32( r0, m2, vget_low_f32(row), 0);
 | |
|     r1 = vmlaq_lane_f32( r1, m2, vget_low_f32(row), 1);
 | |
|     r2 = vmlaq_lane_f32( r2, m2, vget_high_f32(row), 0);
 | |
|     return btMatrix3x3( r0, r1, r2 );
 | |
| #else
 | |
|     return btMatrix3x3(
 | |
| 		m_el[0].x() * m[0].x() + m_el[1].x() * m[1].x() + m_el[2].x() * m[2].x(),
 | |
| 		m_el[0].x() * m[0].y() + m_el[1].x() * m[1].y() + m_el[2].x() * m[2].y(),
 | |
| 		m_el[0].x() * m[0].z() + m_el[1].x() * m[1].z() + m_el[2].x() * m[2].z(),
 | |
| 		m_el[0].y() * m[0].x() + m_el[1].y() * m[1].x() + m_el[2].y() * m[2].x(),
 | |
| 		m_el[0].y() * m[0].y() + m_el[1].y() * m[1].y() + m_el[2].y() * m[2].y(),
 | |
| 		m_el[0].y() * m[0].z() + m_el[1].y() * m[1].z() + m_el[2].y() * m[2].z(),
 | |
| 		m_el[0].z() * m[0].x() + m_el[1].z() * m[1].x() + m_el[2].z() * m[2].x(),
 | |
| 		m_el[0].z() * m[0].y() + m_el[1].z() * m[1].y() + m_el[2].z() * m[2].y(),
 | |
| 		m_el[0].z() * m[0].z() + m_el[1].z() * m[1].z() + m_el[2].z() * m[2].z());
 | |
| #endif
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE btMatrix3x3 
 | |
| btMatrix3x3::timesTranspose(const btMatrix3x3& m) const
 | |
| {
 | |
| #if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
 | |
|     __m128 a0 = m_el[0].mVec128;
 | |
|     __m128 a1 = m_el[1].mVec128;
 | |
|     __m128 a2 = m_el[2].mVec128;
 | |
|     
 | |
|     btMatrix3x3 mT = m.transpose(); // we rely on transpose() zeroing w channel so that we don't have to do it here
 | |
|     __m128 mx = mT[0].mVec128;
 | |
|     __m128 my = mT[1].mVec128;
 | |
|     __m128 mz = mT[2].mVec128;
 | |
|     
 | |
|     __m128 r0 = _mm_mul_ps(mx, _mm_shuffle_ps(a0, a0, 0x00));
 | |
|     __m128 r1 = _mm_mul_ps(mx, _mm_shuffle_ps(a1, a1, 0x00));
 | |
|     __m128 r2 = _mm_mul_ps(mx, _mm_shuffle_ps(a2, a2, 0x00));
 | |
|     r0 = _mm_add_ps(r0, _mm_mul_ps(my, _mm_shuffle_ps(a0, a0, 0x55)));
 | |
|     r1 = _mm_add_ps(r1, _mm_mul_ps(my, _mm_shuffle_ps(a1, a1, 0x55)));
 | |
|     r2 = _mm_add_ps(r2, _mm_mul_ps(my, _mm_shuffle_ps(a2, a2, 0x55)));
 | |
|     r0 = _mm_add_ps(r0, _mm_mul_ps(mz, _mm_shuffle_ps(a0, a0, 0xaa)));
 | |
|     r1 = _mm_add_ps(r1, _mm_mul_ps(mz, _mm_shuffle_ps(a1, a1, 0xaa)));
 | |
|     r2 = _mm_add_ps(r2, _mm_mul_ps(mz, _mm_shuffle_ps(a2, a2, 0xaa)));
 | |
|     return btMatrix3x3( r0, r1, r2);
 | |
|             
 | |
| #elif defined BT_USE_NEON
 | |
|     float32x4_t a0 = m_el[0].mVec128;
 | |
|     float32x4_t a1 = m_el[1].mVec128;
 | |
|     float32x4_t a2 = m_el[2].mVec128;
 | |
|     
 | |
|     btMatrix3x3 mT = m.transpose(); // we rely on transpose() zeroing w channel so that we don't have to do it here
 | |
|     float32x4_t mx = mT[0].mVec128;
 | |
|     float32x4_t my = mT[1].mVec128;
 | |
|     float32x4_t mz = mT[2].mVec128;
 | |
|     
 | |
|     float32x4_t r0 = vmulq_lane_f32( mx, vget_low_f32(a0), 0);
 | |
|     float32x4_t r1 = vmulq_lane_f32( mx, vget_low_f32(a1), 0);
 | |
|     float32x4_t r2 = vmulq_lane_f32( mx, vget_low_f32(a2), 0);
 | |
|     r0 = vmlaq_lane_f32( r0, my, vget_low_f32(a0), 1);
 | |
|     r1 = vmlaq_lane_f32( r1, my, vget_low_f32(a1), 1);
 | |
|     r2 = vmlaq_lane_f32( r2, my, vget_low_f32(a2), 1);
 | |
|     r0 = vmlaq_lane_f32( r0, mz, vget_high_f32(a0), 0);
 | |
|     r1 = vmlaq_lane_f32( r1, mz, vget_high_f32(a1), 0);
 | |
|     r2 = vmlaq_lane_f32( r2, mz, vget_high_f32(a2), 0);
 | |
|     return btMatrix3x3( r0, r1, r2 );
 | |
|     
 | |
| #else
 | |
| 	return btMatrix3x3(
 | |
| 		m_el[0].dot(m[0]), m_el[0].dot(m[1]), m_el[0].dot(m[2]),
 | |
| 		m_el[1].dot(m[0]), m_el[1].dot(m[1]), m_el[1].dot(m[2]),
 | |
| 		m_el[2].dot(m[0]), m_el[2].dot(m[1]), m_el[2].dot(m[2]));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE btVector3 
 | |
| operator*(const btMatrix3x3& m, const btVector3& v) 
 | |
| {
 | |
| #if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
 | |
|     return v.dot3(m[0], m[1], m[2]);
 | |
| #else
 | |
| 	return btVector3(m[0].dot(v), m[1].dot(v), m[2].dot(v));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| SIMD_FORCE_INLINE btVector3
 | |
| operator*(const btVector3& v, const btMatrix3x3& m)
 | |
| {
 | |
| #if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
 | |
| 
 | |
|     const __m128 vv = v.mVec128;
 | |
| 
 | |
|     __m128 c0 = bt_splat_ps( vv, 0);
 | |
|     __m128 c1 = bt_splat_ps( vv, 1);
 | |
|     __m128 c2 = bt_splat_ps( vv, 2);
 | |
| 
 | |
|     c0 = _mm_mul_ps(c0, _mm_and_ps(m[0].mVec128, btvFFF0fMask) );
 | |
|     c1 = _mm_mul_ps(c1, _mm_and_ps(m[1].mVec128, btvFFF0fMask) );
 | |
|     c0 = _mm_add_ps(c0, c1);
 | |
|     c2 = _mm_mul_ps(c2, _mm_and_ps(m[2].mVec128, btvFFF0fMask) );
 | |
|     
 | |
|     return btVector3(_mm_add_ps(c0, c2));
 | |
| #elif defined(BT_USE_NEON)
 | |
|     const float32x4_t vv = v.mVec128;
 | |
|     const float32x2_t vlo = vget_low_f32(vv);
 | |
|     const float32x2_t vhi = vget_high_f32(vv);
 | |
| 
 | |
|     float32x4_t c0, c1, c2;
 | |
| 
 | |
|     c0 = (float32x4_t) vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask);
 | |
|     c1 = (float32x4_t) vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask);
 | |
|     c2 = (float32x4_t) vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask);
 | |
| 
 | |
|     c0 = vmulq_lane_f32(c0, vlo, 0);
 | |
|     c1 = vmulq_lane_f32(c1, vlo, 1);
 | |
|     c2 = vmulq_lane_f32(c2, vhi, 0);
 | |
|     c0 = vaddq_f32(c0, c1);
 | |
|     c0 = vaddq_f32(c0, c2);
 | |
|     
 | |
|     return btVector3(c0);
 | |
| #else
 | |
| 	return btVector3(m.tdotx(v), m.tdoty(v), m.tdotz(v));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE btMatrix3x3 
 | |
| operator*(const btMatrix3x3& m1, const btMatrix3x3& m2)
 | |
| {
 | |
| #if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
 | |
| 
 | |
|     __m128 m10 = m1[0].mVec128;  
 | |
|     __m128 m11 = m1[1].mVec128;
 | |
|     __m128 m12 = m1[2].mVec128;
 | |
|     
 | |
|     __m128 m2v = _mm_and_ps(m2[0].mVec128, btvFFF0fMask);
 | |
|     
 | |
|     __m128 c0 = bt_splat_ps( m10, 0);
 | |
|     __m128 c1 = bt_splat_ps( m11, 0);
 | |
|     __m128 c2 = bt_splat_ps( m12, 0);
 | |
|     
 | |
|     c0 = _mm_mul_ps(c0, m2v);
 | |
|     c1 = _mm_mul_ps(c1, m2v);
 | |
|     c2 = _mm_mul_ps(c2, m2v);
 | |
|     
 | |
|     m2v = _mm_and_ps(m2[1].mVec128, btvFFF0fMask);
 | |
|     
 | |
|     __m128 c0_1 = bt_splat_ps( m10, 1);
 | |
|     __m128 c1_1 = bt_splat_ps( m11, 1);
 | |
|     __m128 c2_1 = bt_splat_ps( m12, 1);
 | |
|     
 | |
|     c0_1 = _mm_mul_ps(c0_1, m2v);
 | |
|     c1_1 = _mm_mul_ps(c1_1, m2v);
 | |
|     c2_1 = _mm_mul_ps(c2_1, m2v);
 | |
|     
 | |
|     m2v = _mm_and_ps(m2[2].mVec128, btvFFF0fMask);
 | |
|     
 | |
|     c0 = _mm_add_ps(c0, c0_1);
 | |
|     c1 = _mm_add_ps(c1, c1_1);
 | |
|     c2 = _mm_add_ps(c2, c2_1);
 | |
|     
 | |
|     m10 = bt_splat_ps( m10, 2);
 | |
|     m11 = bt_splat_ps( m11, 2);
 | |
|     m12 = bt_splat_ps( m12, 2);
 | |
|     
 | |
|     m10 = _mm_mul_ps(m10, m2v);
 | |
|     m11 = _mm_mul_ps(m11, m2v);
 | |
|     m12 = _mm_mul_ps(m12, m2v);
 | |
|     
 | |
|     c0 = _mm_add_ps(c0, m10);
 | |
|     c1 = _mm_add_ps(c1, m11);
 | |
|     c2 = _mm_add_ps(c2, m12);
 | |
|     
 | |
|     return btMatrix3x3(c0, c1, c2);
 | |
| 
 | |
| #elif defined(BT_USE_NEON)
 | |
| 
 | |
|     float32x4_t rv0, rv1, rv2;
 | |
|     float32x4_t v0, v1, v2;
 | |
|     float32x4_t mv0, mv1, mv2;
 | |
| 
 | |
|     v0 = m1[0].mVec128;
 | |
|     v1 = m1[1].mVec128;
 | |
|     v2 = m1[2].mVec128;
 | |
| 
 | |
|     mv0 = (float32x4_t) vandq_s32((int32x4_t)m2[0].mVec128, btvFFF0Mask); 
 | |
|     mv1 = (float32x4_t) vandq_s32((int32x4_t)m2[1].mVec128, btvFFF0Mask); 
 | |
|     mv2 = (float32x4_t) vandq_s32((int32x4_t)m2[2].mVec128, btvFFF0Mask); 
 | |
|     
 | |
|     rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0);
 | |
|     rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0);
 | |
|     rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0);
 | |
|     
 | |
|     rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1);
 | |
|     rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1);
 | |
|     rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1);
 | |
|     
 | |
|     rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0);
 | |
|     rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0);
 | |
|     rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0);
 | |
| 
 | |
| 	return btMatrix3x3(rv0, rv1, rv2);
 | |
|         
 | |
| #else	
 | |
| 	return btMatrix3x3(
 | |
| 		m2.tdotx( m1[0]), m2.tdoty( m1[0]), m2.tdotz( m1[0]),
 | |
| 		m2.tdotx( m1[1]), m2.tdoty( m1[1]), m2.tdotz( m1[1]),
 | |
| 		m2.tdotx( m1[2]), m2.tdoty( m1[2]), m2.tdotz( m1[2]));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| SIMD_FORCE_INLINE btMatrix3x3 btMultTransposeLeft(const btMatrix3x3& m1, const btMatrix3x3& m2) {
 | |
| return btMatrix3x3(
 | |
| m1[0][0] * m2[0][0] + m1[1][0] * m2[1][0] + m1[2][0] * m2[2][0],
 | |
| m1[0][0] * m2[0][1] + m1[1][0] * m2[1][1] + m1[2][0] * m2[2][1],
 | |
| m1[0][0] * m2[0][2] + m1[1][0] * m2[1][2] + m1[2][0] * m2[2][2],
 | |
| m1[0][1] * m2[0][0] + m1[1][1] * m2[1][0] + m1[2][1] * m2[2][0],
 | |
| m1[0][1] * m2[0][1] + m1[1][1] * m2[1][1] + m1[2][1] * m2[2][1],
 | |
| m1[0][1] * m2[0][2] + m1[1][1] * m2[1][2] + m1[2][1] * m2[2][2],
 | |
| m1[0][2] * m2[0][0] + m1[1][2] * m2[1][0] + m1[2][2] * m2[2][0],
 | |
| m1[0][2] * m2[0][1] + m1[1][2] * m2[1][1] + m1[2][2] * m2[2][1],
 | |
| m1[0][2] * m2[0][2] + m1[1][2] * m2[1][2] + m1[2][2] * m2[2][2]);
 | |
| }
 | |
| */
 | |
| 
 | |
| /**@brief Equality operator between two matrices
 | |
| * It will test all elements are equal.  */
 | |
| SIMD_FORCE_INLINE bool operator==(const btMatrix3x3& m1, const btMatrix3x3& m2)
 | |
| {
 | |
| #if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
 | |
| 
 | |
|     __m128 c0, c1, c2;
 | |
| 
 | |
|     c0 = _mm_cmpeq_ps(m1[0].mVec128, m2[0].mVec128);
 | |
|     c1 = _mm_cmpeq_ps(m1[1].mVec128, m2[1].mVec128);
 | |
|     c2 = _mm_cmpeq_ps(m1[2].mVec128, m2[2].mVec128);
 | |
|     
 | |
|     c0 = _mm_and_ps(c0, c1);
 | |
|     c0 = _mm_and_ps(c0, c2);
 | |
| 
 | |
| 	int m = _mm_movemask_ps((__m128)c0);
 | |
| 	return (0x7 == (m & 0x7));
 | |
| 	
 | |
| #else 
 | |
| 	return 
 | |
|     (   m1[0][0] == m2[0][0] && m1[1][0] == m2[1][0] && m1[2][0] == m2[2][0] &&
 | |
| 		m1[0][1] == m2[0][1] && m1[1][1] == m2[1][1] && m1[2][1] == m2[2][1] &&
 | |
| 		m1[0][2] == m2[0][2] && m1[1][2] == m2[1][2] && m1[2][2] == m2[2][2] );
 | |
| #endif
 | |
| }
 | |
| 
 | |
| ///for serialization
 | |
| struct	btMatrix3x3FloatData
 | |
| {
 | |
| 	btVector3FloatData m_el[3];
 | |
| };
 | |
| 
 | |
| ///for serialization
 | |
| struct	btMatrix3x3DoubleData
 | |
| {
 | |
| 	btVector3DoubleData m_el[3];
 | |
| };
 | |
| 
 | |
| 
 | |
| 	
 | |
| 
 | |
| SIMD_FORCE_INLINE	void	btMatrix3x3::serialize(struct	btMatrix3x3Data& dataOut) const
 | |
| {
 | |
| 	for (int i=0;i<3;i++)
 | |
| 		m_el[i].serialize(dataOut.m_el[i]);
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE	void	btMatrix3x3::serializeFloat(struct	btMatrix3x3FloatData& dataOut) const
 | |
| {
 | |
| 	for (int i=0;i<3;i++)
 | |
| 		m_el[i].serializeFloat(dataOut.m_el[i]);
 | |
| }
 | |
| 
 | |
| 
 | |
| SIMD_FORCE_INLINE	void	btMatrix3x3::deSerialize(const struct	btMatrix3x3Data& dataIn)
 | |
| {
 | |
| 	for (int i=0;i<3;i++)
 | |
| 		m_el[i].deSerialize(dataIn.m_el[i]);
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE	void	btMatrix3x3::deSerializeFloat(const struct	btMatrix3x3FloatData& dataIn)
 | |
| {
 | |
| 	for (int i=0;i<3;i++)
 | |
| 		m_el[i].deSerializeFloat(dataIn.m_el[i]);
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE	void	btMatrix3x3::deSerializeDouble(const struct	btMatrix3x3DoubleData& dataIn)
 | |
| {
 | |
| 	for (int i=0;i<3;i++)
 | |
| 		m_el[i].deSerializeDouble(dataIn.m_el[i]);
 | |
| }
 | |
| 
 | |
| #endif //BT_MATRIX3x3_H
 | |
| 
 |