316 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			316 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //
 | |
| // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
 | |
| //
 | |
| // This software is provided 'as-is', without any express or implied
 | |
| // warranty.  In no event will the authors be held liable for any damages
 | |
| // arising from the use of this software.
 | |
| // Permission is granted to anyone to use this software for any purpose,
 | |
| // including commercial applications, and to alter it and redistribute it
 | |
| // freely, subject to the following restrictions:
 | |
| // 1. The origin of this software must not be misrepresented; you must not
 | |
| //    claim that you wrote the original software. If you use this software
 | |
| //    in a product, an acknowledgment in the product documentation would be
 | |
| //    appreciated but is not required.
 | |
| // 2. Altered source versions must be plainly marked as such, and must not be
 | |
| //    misrepresented as being the original software.
 | |
| // 3. This notice may not be removed or altered from any source distribution.
 | |
| //
 | |
| 
 | |
| #include "ChunkyTriMesh.h"
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <math.h>
 | |
| 
 | |
| struct BoundsItem
 | |
| {
 | |
| 	float bmin[2];
 | |
| 	float bmax[2];
 | |
| 	int i;
 | |
| };
 | |
| 
 | |
| static int compareItemX(const void* va, const void* vb)
 | |
| {
 | |
| 	const BoundsItem* a = (const BoundsItem*)va;
 | |
| 	const BoundsItem* b = (const BoundsItem*)vb;
 | |
| 	if (a->bmin[0] < b->bmin[0])
 | |
| 		return -1;
 | |
| 	if (a->bmin[0] > b->bmin[0])
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int compareItemY(const void* va, const void* vb)
 | |
| {
 | |
| 	const BoundsItem* a = (const BoundsItem*)va;
 | |
| 	const BoundsItem* b = (const BoundsItem*)vb;
 | |
| 	if (a->bmin[1] < b->bmin[1])
 | |
| 		return -1;
 | |
| 	if (a->bmin[1] > b->bmin[1])
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void calcExtends(const BoundsItem* items, const int /*nitems*/,
 | |
| 						const int imin, const int imax,
 | |
| 						float* bmin, float* bmax)
 | |
| {
 | |
| 	bmin[0] = items[imin].bmin[0];
 | |
| 	bmin[1] = items[imin].bmin[1];
 | |
| 	
 | |
| 	bmax[0] = items[imin].bmax[0];
 | |
| 	bmax[1] = items[imin].bmax[1];
 | |
| 	
 | |
| 	for (int i = imin+1; i < imax; ++i)
 | |
| 	{
 | |
| 		const BoundsItem& it = items[i];
 | |
| 		if (it.bmin[0] < bmin[0]) bmin[0] = it.bmin[0];
 | |
| 		if (it.bmin[1] < bmin[1]) bmin[1] = it.bmin[1];
 | |
| 		
 | |
| 		if (it.bmax[0] > bmax[0]) bmax[0] = it.bmax[0];
 | |
| 		if (it.bmax[1] > bmax[1]) bmax[1] = it.bmax[1];
 | |
| 	}
 | |
| }
 | |
| 
 | |
| inline int longestAxis(float x, float y)
 | |
| {
 | |
| 	return y > x ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static void subdivide(BoundsItem* items, int nitems, int imin, int imax, int trisPerChunk,
 | |
| 					  int& curNode, rcChunkyTriMeshNode* nodes, const int maxNodes,
 | |
| 					  int& curTri, int* outTris, const int* inTris)
 | |
| {
 | |
| 	int inum = imax - imin;
 | |
| 	int icur = curNode;
 | |
| 	
 | |
| 	if (curNode >= maxNodes)
 | |
| 		return;
 | |
| 
 | |
| 	rcChunkyTriMeshNode& node = nodes[curNode++];
 | |
| 	
 | |
| 	if (inum <= trisPerChunk)
 | |
| 	{
 | |
| 		// Leaf
 | |
| 		calcExtends(items, nitems, imin, imax, node.bmin, node.bmax);
 | |
| 		
 | |
| 		// Copy triangles.
 | |
| 		node.i = curTri;
 | |
| 		node.n = inum;
 | |
| 		
 | |
| 		for (int i = imin; i < imax; ++i)
 | |
| 		{
 | |
| 			const int* src = &inTris[items[i].i*3];
 | |
| 			int* dst = &outTris[curTri*3];
 | |
| 			curTri++;
 | |
| 			dst[0] = src[0];
 | |
| 			dst[1] = src[1];
 | |
| 			dst[2] = src[2];
 | |
| 		}
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		// Split
 | |
| 		calcExtends(items, nitems, imin, imax, node.bmin, node.bmax);
 | |
| 		
 | |
| 		int	axis = longestAxis(node.bmax[0] - node.bmin[0],
 | |
| 							   node.bmax[1] - node.bmin[1]);
 | |
| 		
 | |
| 		if (axis == 0)
 | |
| 		{
 | |
| 			// Sort along x-axis
 | |
| 			qsort(items+imin, static_cast<size_t>(inum), sizeof(BoundsItem), compareItemX);
 | |
| 		}
 | |
| 		else if (axis == 1)
 | |
| 		{
 | |
| 			// Sort along y-axis
 | |
| 			qsort(items+imin, static_cast<size_t>(inum), sizeof(BoundsItem), compareItemY);
 | |
| 		}
 | |
| 		
 | |
| 		int isplit = imin+inum/2;
 | |
| 		
 | |
| 		// Left
 | |
| 		subdivide(items, nitems, imin, isplit, trisPerChunk, curNode, nodes, maxNodes, curTri, outTris, inTris);
 | |
| 		// Right
 | |
| 		subdivide(items, nitems, isplit, imax, trisPerChunk, curNode, nodes, maxNodes, curTri, outTris, inTris);
 | |
| 		
 | |
| 		int iescape = curNode - icur;
 | |
| 		// Negative index means escape.
 | |
| 		node.i = -iescape;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool rcCreateChunkyTriMesh(const float* verts, const int* tris, int ntris,
 | |
| 						   int trisPerChunk, rcChunkyTriMesh* cm)
 | |
| {
 | |
| 	int nchunks = (ntris + trisPerChunk-1) / trisPerChunk;
 | |
| 
 | |
| 	cm->nodes = new rcChunkyTriMeshNode[nchunks*4];
 | |
| 	if (!cm->nodes)
 | |
| 		return false;
 | |
| 		
 | |
| 	cm->tris = new int[ntris*3];
 | |
| 	if (!cm->tris)
 | |
| 		return false;
 | |
| 		
 | |
| 	cm->ntris = ntris;
 | |
| 
 | |
| 	// Build tree
 | |
| 	BoundsItem* items = new BoundsItem[ntris];
 | |
| 	if (!items)
 | |
| 		return false;
 | |
| 
 | |
| 	for (int i = 0; i < ntris; i++)
 | |
| 	{
 | |
| 		const int* t = &tris[i*3];
 | |
| 		BoundsItem& it = items[i];
 | |
| 		it.i = i;
 | |
| 		// Calc triangle XZ bounds.
 | |
| 		it.bmin[0] = it.bmax[0] = verts[t[0]*3+0];
 | |
| 		it.bmin[1] = it.bmax[1] = verts[t[0]*3+2];
 | |
| 		for (int j = 1; j < 3; ++j)
 | |
| 		{
 | |
| 			const float* v = &verts[t[j]*3];
 | |
| 			if (v[0] < it.bmin[0]) it.bmin[0] = v[0]; 
 | |
| 			if (v[2] < it.bmin[1]) it.bmin[1] = v[2]; 
 | |
| 
 | |
| 			if (v[0] > it.bmax[0]) it.bmax[0] = v[0]; 
 | |
| 			if (v[2] > it.bmax[1]) it.bmax[1] = v[2]; 
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	int curTri = 0;
 | |
| 	int curNode = 0;
 | |
| 	subdivide(items, ntris, 0, ntris, trisPerChunk, curNode, cm->nodes, nchunks*4, curTri, cm->tris, tris);
 | |
| 	
 | |
| 	delete [] items;
 | |
| 	
 | |
| 	cm->nnodes = curNode;
 | |
| 	
 | |
| 	// Calc max tris per node.
 | |
| 	cm->maxTrisPerChunk = 0;
 | |
| 	for (int i = 0; i < cm->nnodes; ++i)
 | |
| 	{
 | |
| 		rcChunkyTriMeshNode& node = cm->nodes[i];
 | |
| 		const bool isLeaf = node.i >= 0;
 | |
| 		if (!isLeaf) continue;
 | |
| 		if (node.n > cm->maxTrisPerChunk)
 | |
| 			cm->maxTrisPerChunk = node.n;
 | |
| 	}
 | |
| 	 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline bool checkOverlapRect(const float amin[2], const float amax[2],
 | |
| 							 const float bmin[2], const float bmax[2])
 | |
| {
 | |
| 	bool overlap = true;
 | |
| 	overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
 | |
| 	overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
 | |
| 	return overlap;
 | |
| }
 | |
| 
 | |
| int rcGetChunksOverlappingRect(const rcChunkyTriMesh* cm,
 | |
| 							   float bmin[2], float bmax[2],
 | |
| 							   int* ids, const int maxIds)
 | |
| {
 | |
| 	// Traverse tree
 | |
| 	int i = 0;
 | |
| 	int n = 0;
 | |
| 	while (i < cm->nnodes)
 | |
| 	{
 | |
| 		const rcChunkyTriMeshNode* node = &cm->nodes[i];
 | |
| 		const bool overlap = checkOverlapRect(bmin, bmax, node->bmin, node->bmax);
 | |
| 		const bool isLeafNode = node->i >= 0;
 | |
| 		
 | |
| 		if (isLeafNode && overlap)
 | |
| 		{
 | |
| 			if (n < maxIds)
 | |
| 			{
 | |
| 				ids[n] = i;
 | |
| 				n++;
 | |
| 			}
 | |
| 		}
 | |
| 		
 | |
| 		if (overlap || isLeafNode)
 | |
| 			i++;
 | |
| 		else
 | |
| 		{
 | |
| 			const int escapeIndex = -node->i;
 | |
| 			i += escapeIndex;
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| static bool checkOverlapSegment(const float p[2], const float q[2],
 | |
| 								const float bmin[2], const float bmax[2])
 | |
| {
 | |
| 	static const float EPSILON = 1e-6f;
 | |
| 
 | |
| 	float tmin = 0;
 | |
| 	float tmax = 1;
 | |
| 	float d[2];
 | |
| 	d[0] = q[0] - p[0];
 | |
| 	d[1] = q[1] - p[1];
 | |
| 	
 | |
| 	for (int i = 0; i < 2; i++)
 | |
| 	{
 | |
| 		if (fabsf(d[i]) < EPSILON)
 | |
| 		{
 | |
| 			// Ray is parallel to slab. No hit if origin not within slab
 | |
| 			if (p[i] < bmin[i] || p[i] > bmax[i])
 | |
| 				return false;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			// Compute intersection t value of ray with near and far plane of slab
 | |
| 			float ood = 1.0f / d[i];
 | |
| 			float t1 = (bmin[i] - p[i]) * ood;
 | |
| 			float t2 = (bmax[i] - p[i]) * ood;
 | |
| 			if (t1 > t2) { float tmp = t1; t1 = t2; t2 = tmp; }
 | |
| 			if (t1 > tmin) tmin = t1;
 | |
| 			if (t2 < tmax) tmax = t2;
 | |
| 			if (tmin > tmax) return false;
 | |
| 		}
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| int rcGetChunksOverlappingSegment(const rcChunkyTriMesh* cm,
 | |
| 								  float p[2], float q[2],
 | |
| 								  int* ids, const int maxIds)
 | |
| {
 | |
| 	// Traverse tree
 | |
| 	int i = 0;
 | |
| 	int n = 0;
 | |
| 	while (i < cm->nnodes)
 | |
| 	{
 | |
| 		const rcChunkyTriMeshNode* node = &cm->nodes[i];
 | |
| 		const bool overlap = checkOverlapSegment(p, q, node->bmin, node->bmax);
 | |
| 		const bool isLeafNode = node->i >= 0;
 | |
| 		
 | |
| 		if (isLeafNode && overlap)
 | |
| 		{
 | |
| 			if (n < maxIds)
 | |
| 			{
 | |
| 				ids[n] = i;
 | |
| 				n++;
 | |
| 			}
 | |
| 		}
 | |
| 		
 | |
| 		if (overlap || isLeafNode)
 | |
| 			i++;
 | |
| 		else
 | |
| 		{
 | |
| 			const int escapeIndex = -node->i;
 | |
| 			i += escapeIndex;
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	return n;
 | |
| }
 |