719 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			719 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
 * Box-Box collision detection re-distributed under the ZLib license with permission from Russell L. Smith
 | 
						|
 * Original version is from Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith.
 | 
						|
 * All rights reserved.  Email: russ@q12.org   Web: www.q12.org
 | 
						|
 Bullet Continuous Collision Detection and Physics Library
 | 
						|
 Bullet is Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | 
						|
 | 
						|
This software is provided 'as-is', without any express or implied warranty.
 | 
						|
In no event will the authors be held liable for any damages arising from the use of this software.
 | 
						|
Permission is granted to anyone to use this software for any purpose, 
 | 
						|
including commercial applications, and to alter it and redistribute it freely, 
 | 
						|
subject to the following restrictions:
 | 
						|
 | 
						|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | 
						|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | 
						|
3. This notice may not be removed or altered from any source distribution.
 | 
						|
*/
 | 
						|
 | 
						|
///ODE box-box collision detection is adapted to work with Bullet
 | 
						|
 | 
						|
#include "btBoxBoxDetector.h"
 | 
						|
#include "BulletCollision/CollisionShapes/btBoxShape.h"
 | 
						|
 | 
						|
#include <float.h>
 | 
						|
#include <string.h>
 | 
						|
 | 
						|
btBoxBoxDetector::btBoxBoxDetector(const btBoxShape* box1,const btBoxShape* box2)
 | 
						|
: m_box1(box1),
 | 
						|
m_box2(box2)
 | 
						|
{
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// given two boxes (p1,R1,side1) and (p2,R2,side2), collide them together and
 | 
						|
// generate contact points. this returns 0 if there is no contact otherwise
 | 
						|
// it returns the number of contacts generated.
 | 
						|
// `normal' returns the contact normal.
 | 
						|
// `depth' returns the maximum penetration depth along that normal.
 | 
						|
// `return_code' returns a number indicating the type of contact that was
 | 
						|
// detected:
 | 
						|
//        1,2,3 = box 2 intersects with a face of box 1
 | 
						|
//        4,5,6 = box 1 intersects with a face of box 2
 | 
						|
//        7..15 = edge-edge contact
 | 
						|
// `maxc' is the maximum number of contacts allowed to be generated, i.e.
 | 
						|
// the size of the `contact' array.
 | 
						|
// `contact' and `skip' are the contact array information provided to the
 | 
						|
// collision functions. this function only fills in the position and depth
 | 
						|
// fields.
 | 
						|
struct dContactGeom;
 | 
						|
#define dDOTpq(a,b,p,q) ((a)[0]*(b)[0] + (a)[p]*(b)[q] + (a)[2*(p)]*(b)[2*(q)])
 | 
						|
#define dInfinity FLT_MAX
 | 
						|
 | 
						|
 | 
						|
/*PURE_INLINE btScalar dDOT   (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,1); }
 | 
						|
PURE_INLINE btScalar dDOT13 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,3); }
 | 
						|
PURE_INLINE btScalar dDOT31 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,3,1); }
 | 
						|
PURE_INLINE btScalar dDOT33 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,3,3); }
 | 
						|
*/
 | 
						|
static btScalar dDOT   (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,1); }
 | 
						|
static btScalar dDOT44 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,4,4); }
 | 
						|
static btScalar dDOT41 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,4,1); }
 | 
						|
static btScalar dDOT14 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,4); }
 | 
						|
#define dMULTIPLYOP1_331(A,op,B,C) \
 | 
						|
{\
 | 
						|
  (A)[0] op dDOT41((B),(C)); \
 | 
						|
  (A)[1] op dDOT41((B+1),(C)); \
 | 
						|
  (A)[2] op dDOT41((B+2),(C)); \
 | 
						|
}
 | 
						|
 | 
						|
#define dMULTIPLYOP0_331(A,op,B,C) \
 | 
						|
{ \
 | 
						|
  (A)[0] op dDOT((B),(C)); \
 | 
						|
  (A)[1] op dDOT((B+4),(C)); \
 | 
						|
  (A)[2] op dDOT((B+8),(C)); \
 | 
						|
} 
 | 
						|
 | 
						|
#define dMULTIPLY1_331(A,B,C) dMULTIPLYOP1_331(A,=,B,C)
 | 
						|
#define dMULTIPLY0_331(A,B,C) dMULTIPLYOP0_331(A,=,B,C)
 | 
						|
 | 
						|
typedef btScalar dMatrix3[4*3];
 | 
						|
 | 
						|
void dLineClosestApproach (const btVector3& pa, const btVector3& ua,
 | 
						|
			   const btVector3& pb, const btVector3& ub,
 | 
						|
			   btScalar *alpha, btScalar *beta);
 | 
						|
void dLineClosestApproach (const btVector3& pa, const btVector3& ua,
 | 
						|
			   const btVector3& pb, const btVector3& ub,
 | 
						|
			   btScalar *alpha, btScalar *beta)
 | 
						|
{
 | 
						|
  btVector3 p;
 | 
						|
  p[0] = pb[0] - pa[0];
 | 
						|
  p[1] = pb[1] - pa[1];
 | 
						|
  p[2] = pb[2] - pa[2];
 | 
						|
  btScalar uaub = dDOT(ua,ub);
 | 
						|
  btScalar q1 =  dDOT(ua,p);
 | 
						|
  btScalar q2 = -dDOT(ub,p);
 | 
						|
  btScalar d = 1-uaub*uaub;
 | 
						|
  if (d <= btScalar(0.0001f)) {
 | 
						|
    // @@@ this needs to be made more robust
 | 
						|
    *alpha = 0;
 | 
						|
    *beta  = 0;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    d = 1.f/d;
 | 
						|
    *alpha = (q1 + uaub*q2)*d;
 | 
						|
    *beta  = (uaub*q1 + q2)*d;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
// find all the intersection points between the 2D rectangle with vertices
 | 
						|
// at (+/-h[0],+/-h[1]) and the 2D quadrilateral with vertices (p[0],p[1]),
 | 
						|
// (p[2],p[3]),(p[4],p[5]),(p[6],p[7]).
 | 
						|
//
 | 
						|
// the intersection points are returned as x,y pairs in the 'ret' array.
 | 
						|
// the number of intersection points is returned by the function (this will
 | 
						|
// be in the range 0 to 8).
 | 
						|
 | 
						|
static int intersectRectQuad2 (btScalar h[2], btScalar p[8], btScalar ret[16])
 | 
						|
{
 | 
						|
  // q (and r) contain nq (and nr) coordinate points for the current (and
 | 
						|
  // chopped) polygons
 | 
						|
  int nq=4,nr=0;
 | 
						|
  btScalar buffer[16];
 | 
						|
  btScalar *q = p;
 | 
						|
  btScalar *r = ret;
 | 
						|
  for (int dir=0; dir <= 1; dir++) {
 | 
						|
    // direction notation: xy[0] = x axis, xy[1] = y axis
 | 
						|
    for (int sign=-1; sign <= 1; sign += 2) {
 | 
						|
      // chop q along the line xy[dir] = sign*h[dir]
 | 
						|
      btScalar *pq = q;
 | 
						|
      btScalar *pr = r;
 | 
						|
      nr = 0;
 | 
						|
      for (int i=nq; i > 0; i--) {
 | 
						|
	// go through all points in q and all lines between adjacent points
 | 
						|
	if (sign*pq[dir] < h[dir]) {
 | 
						|
	  // this point is inside the chopping line
 | 
						|
	  pr[0] = pq[0];
 | 
						|
	  pr[1] = pq[1];
 | 
						|
	  pr += 2;
 | 
						|
	  nr++;
 | 
						|
	  if (nr & 8) {
 | 
						|
	    q = r;
 | 
						|
	    goto done;
 | 
						|
	  }
 | 
						|
	}
 | 
						|
	btScalar *nextq = (i > 1) ? pq+2 : q;
 | 
						|
	if ((sign*pq[dir] < h[dir]) ^ (sign*nextq[dir] < h[dir])) {
 | 
						|
	  // this line crosses the chopping line
 | 
						|
	  pr[1-dir] = pq[1-dir] + (nextq[1-dir]-pq[1-dir]) /
 | 
						|
	    (nextq[dir]-pq[dir]) * (sign*h[dir]-pq[dir]);
 | 
						|
	  pr[dir] = sign*h[dir];
 | 
						|
	  pr += 2;
 | 
						|
	  nr++;
 | 
						|
	  if (nr & 8) {
 | 
						|
	    q = r;
 | 
						|
	    goto done;
 | 
						|
	  }
 | 
						|
	}
 | 
						|
	pq += 2;
 | 
						|
      }
 | 
						|
      q = r;
 | 
						|
      r = (q==ret) ? buffer : ret;
 | 
						|
      nq = nr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 done:
 | 
						|
  if (q != ret) memcpy (ret,q,nr*2*sizeof(btScalar));
 | 
						|
  return nr;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#define M__PI 3.14159265f
 | 
						|
 | 
						|
// given n points in the plane (array p, of size 2*n), generate m points that
 | 
						|
// best represent the whole set. the definition of 'best' here is not
 | 
						|
// predetermined - the idea is to select points that give good box-box
 | 
						|
// collision detection behavior. the chosen point indexes are returned in the
 | 
						|
// array iret (of size m). 'i0' is always the first entry in the array.
 | 
						|
// n must be in the range [1..8]. m must be in the range [1..n]. i0 must be
 | 
						|
// in the range [0..n-1].
 | 
						|
 | 
						|
void cullPoints2 (int n, btScalar p[], int m, int i0, int iret[]);
 | 
						|
void cullPoints2 (int n, btScalar p[], int m, int i0, int iret[])
 | 
						|
{
 | 
						|
  // compute the centroid of the polygon in cx,cy
 | 
						|
  int i,j;
 | 
						|
  btScalar a,cx,cy,q;
 | 
						|
  if (n==1) {
 | 
						|
    cx = p[0];
 | 
						|
    cy = p[1];
 | 
						|
  }
 | 
						|
  else if (n==2) {
 | 
						|
    cx = btScalar(0.5)*(p[0] + p[2]);
 | 
						|
    cy = btScalar(0.5)*(p[1] + p[3]);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    a = 0;
 | 
						|
    cx = 0;
 | 
						|
    cy = 0;
 | 
						|
    for (i=0; i<(n-1); i++) {
 | 
						|
      q = p[i*2]*p[i*2+3] - p[i*2+2]*p[i*2+1];
 | 
						|
      a += q;
 | 
						|
      cx += q*(p[i*2]+p[i*2+2]);
 | 
						|
      cy += q*(p[i*2+1]+p[i*2+3]);
 | 
						|
    }
 | 
						|
    q = p[n*2-2]*p[1] - p[0]*p[n*2-1];
 | 
						|
	if (btFabs(a+q) > SIMD_EPSILON)
 | 
						|
	{
 | 
						|
		a = 1.f/(btScalar(3.0)*(a+q));
 | 
						|
	} else
 | 
						|
	{
 | 
						|
		a=BT_LARGE_FLOAT;
 | 
						|
	}
 | 
						|
    cx = a*(cx + q*(p[n*2-2]+p[0]));
 | 
						|
    cy = a*(cy + q*(p[n*2-1]+p[1]));
 | 
						|
  }
 | 
						|
 | 
						|
  // compute the angle of each point w.r.t. the centroid
 | 
						|
  btScalar A[8];
 | 
						|
  for (i=0; i<n; i++) A[i] = btAtan2(p[i*2+1]-cy,p[i*2]-cx);
 | 
						|
 | 
						|
  // search for points that have angles closest to A[i0] + i*(2*pi/m).
 | 
						|
  int avail[8];
 | 
						|
  for (i=0; i<n; i++) avail[i] = 1;
 | 
						|
  avail[i0] = 0;
 | 
						|
  iret[0] = i0;
 | 
						|
  iret++;
 | 
						|
  for (j=1; j<m; j++) {
 | 
						|
    a = btScalar(j)*(2*M__PI/m) + A[i0];
 | 
						|
    if (a > M__PI) a -= 2*M__PI;
 | 
						|
    btScalar maxdiff=1e9,diff;
 | 
						|
 | 
						|
    *iret = i0;			// iret is not allowed to keep this value, but it sometimes does, when diff=#QNAN0
 | 
						|
 | 
						|
    for (i=0; i<n; i++) {
 | 
						|
      if (avail[i]) {
 | 
						|
	diff = btFabs (A[i]-a);
 | 
						|
	if (diff > M__PI) diff = 2*M__PI - diff;
 | 
						|
	if (diff < maxdiff) {
 | 
						|
	  maxdiff = diff;
 | 
						|
	  *iret = i;
 | 
						|
	}
 | 
						|
      }
 | 
						|
    }
 | 
						|
#if defined(DEBUG) || defined (_DEBUG)
 | 
						|
    btAssert (*iret != i0);	// ensure iret got set
 | 
						|
#endif
 | 
						|
    avail[*iret] = 0;
 | 
						|
    iret++;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
int dBoxBox2 (const btVector3& p1, const dMatrix3 R1,
 | 
						|
	     const btVector3& side1, const btVector3& p2,
 | 
						|
	     const dMatrix3 R2, const btVector3& side2,
 | 
						|
	     btVector3& normal, btScalar *depth, int *return_code,
 | 
						|
		 int maxc, dContactGeom * /*contact*/, int /*skip*/,btDiscreteCollisionDetectorInterface::Result& output);
 | 
						|
int dBoxBox2 (const btVector3& p1, const dMatrix3 R1,
 | 
						|
	     const btVector3& side1, const btVector3& p2,
 | 
						|
	     const dMatrix3 R2, const btVector3& side2,
 | 
						|
	     btVector3& normal, btScalar *depth, int *return_code,
 | 
						|
		 int maxc, dContactGeom * /*contact*/, int /*skip*/,btDiscreteCollisionDetectorInterface::Result& output)
 | 
						|
{
 | 
						|
  const btScalar fudge_factor = btScalar(1.05);
 | 
						|
  btVector3 p,pp,normalC(0.f,0.f,0.f);
 | 
						|
  const btScalar *normalR = 0;
 | 
						|
  btScalar A[3],B[3],R11,R12,R13,R21,R22,R23,R31,R32,R33,
 | 
						|
    Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33,s,s2,l;
 | 
						|
  int i,j,invert_normal,code;
 | 
						|
 | 
						|
  // get vector from centers of box 1 to box 2, relative to box 1
 | 
						|
  p = p2 - p1;
 | 
						|
  dMULTIPLY1_331 (pp,R1,p);		// get pp = p relative to body 1
 | 
						|
 | 
						|
  // get side lengths / 2
 | 
						|
  A[0] = side1[0]*btScalar(0.5);
 | 
						|
  A[1] = side1[1]*btScalar(0.5);
 | 
						|
  A[2] = side1[2]*btScalar(0.5);
 | 
						|
  B[0] = side2[0]*btScalar(0.5);
 | 
						|
  B[1] = side2[1]*btScalar(0.5);
 | 
						|
  B[2] = side2[2]*btScalar(0.5);
 | 
						|
 | 
						|
  // Rij is R1'*R2, i.e. the relative rotation between R1 and R2
 | 
						|
  R11 = dDOT44(R1+0,R2+0); R12 = dDOT44(R1+0,R2+1); R13 = dDOT44(R1+0,R2+2);
 | 
						|
  R21 = dDOT44(R1+1,R2+0); R22 = dDOT44(R1+1,R2+1); R23 = dDOT44(R1+1,R2+2);
 | 
						|
  R31 = dDOT44(R1+2,R2+0); R32 = dDOT44(R1+2,R2+1); R33 = dDOT44(R1+2,R2+2);
 | 
						|
 | 
						|
  Q11 = btFabs(R11); Q12 = btFabs(R12); Q13 = btFabs(R13);
 | 
						|
  Q21 = btFabs(R21); Q22 = btFabs(R22); Q23 = btFabs(R23);
 | 
						|
  Q31 = btFabs(R31); Q32 = btFabs(R32); Q33 = btFabs(R33);
 | 
						|
 | 
						|
  // for all 15 possible separating axes:
 | 
						|
  //   * see if the axis separates the boxes. if so, return 0.
 | 
						|
  //   * find the depth of the penetration along the separating axis (s2)
 | 
						|
  //   * if this is the largest depth so far, record it.
 | 
						|
  // the normal vector will be set to the separating axis with the smallest
 | 
						|
  // depth. note: normalR is set to point to a column of R1 or R2 if that is
 | 
						|
  // the smallest depth normal so far. otherwise normalR is 0 and normalC is
 | 
						|
  // set to a vector relative to body 1. invert_normal is 1 if the sign of
 | 
						|
  // the normal should be flipped.
 | 
						|
 | 
						|
#define TST(expr1,expr2,norm,cc) \
 | 
						|
  s2 = btFabs(expr1) - (expr2); \
 | 
						|
  if (s2 > 0) return 0; \
 | 
						|
  if (s2 > s) { \
 | 
						|
    s = s2; \
 | 
						|
    normalR = norm; \
 | 
						|
    invert_normal = ((expr1) < 0); \
 | 
						|
    code = (cc); \
 | 
						|
  }
 | 
						|
 | 
						|
  s = -dInfinity;
 | 
						|
  invert_normal = 0;
 | 
						|
  code = 0;
 | 
						|
 | 
						|
  // separating axis = u1,u2,u3
 | 
						|
  TST (pp[0],(A[0] + B[0]*Q11 + B[1]*Q12 + B[2]*Q13),R1+0,1);
 | 
						|
  TST (pp[1],(A[1] + B[0]*Q21 + B[1]*Q22 + B[2]*Q23),R1+1,2);
 | 
						|
  TST (pp[2],(A[2] + B[0]*Q31 + B[1]*Q32 + B[2]*Q33),R1+2,3);
 | 
						|
 | 
						|
  // separating axis = v1,v2,v3
 | 
						|
  TST (dDOT41(R2+0,p),(A[0]*Q11 + A[1]*Q21 + A[2]*Q31 + B[0]),R2+0,4);
 | 
						|
  TST (dDOT41(R2+1,p),(A[0]*Q12 + A[1]*Q22 + A[2]*Q32 + B[1]),R2+1,5);
 | 
						|
  TST (dDOT41(R2+2,p),(A[0]*Q13 + A[1]*Q23 + A[2]*Q33 + B[2]),R2+2,6);
 | 
						|
 | 
						|
  // note: cross product axes need to be scaled when s is computed.
 | 
						|
  // normal (n1,n2,n3) is relative to box 1.
 | 
						|
#undef TST
 | 
						|
#define TST(expr1,expr2,n1,n2,n3,cc) \
 | 
						|
  s2 = btFabs(expr1) - (expr2); \
 | 
						|
  if (s2 > SIMD_EPSILON) return 0; \
 | 
						|
  l = btSqrt((n1)*(n1) + (n2)*(n2) + (n3)*(n3)); \
 | 
						|
  if (l > SIMD_EPSILON) { \
 | 
						|
    s2 /= l; \
 | 
						|
    if (s2*fudge_factor > s) { \
 | 
						|
      s = s2; \
 | 
						|
      normalR = 0; \
 | 
						|
      normalC[0] = (n1)/l; normalC[1] = (n2)/l; normalC[2] = (n3)/l; \
 | 
						|
      invert_normal = ((expr1) < 0); \
 | 
						|
      code = (cc); \
 | 
						|
    } \
 | 
						|
  }
 | 
						|
 | 
						|
  btScalar fudge2 (1.0e-5f);
 | 
						|
 | 
						|
  Q11 += fudge2;
 | 
						|
  Q12 += fudge2;
 | 
						|
  Q13 += fudge2;
 | 
						|
 | 
						|
  Q21 += fudge2;
 | 
						|
  Q22 += fudge2;
 | 
						|
  Q23 += fudge2;
 | 
						|
 | 
						|
  Q31 += fudge2;
 | 
						|
  Q32 += fudge2;
 | 
						|
  Q33 += fudge2;
 | 
						|
 | 
						|
  // separating axis = u1 x (v1,v2,v3)
 | 
						|
  TST(pp[2]*R21-pp[1]*R31,(A[1]*Q31+A[2]*Q21+B[1]*Q13+B[2]*Q12),0,-R31,R21,7);
 | 
						|
  TST(pp[2]*R22-pp[1]*R32,(A[1]*Q32+A[2]*Q22+B[0]*Q13+B[2]*Q11),0,-R32,R22,8);
 | 
						|
  TST(pp[2]*R23-pp[1]*R33,(A[1]*Q33+A[2]*Q23+B[0]*Q12+B[1]*Q11),0,-R33,R23,9);
 | 
						|
 | 
						|
  // separating axis = u2 x (v1,v2,v3)
 | 
						|
  TST(pp[0]*R31-pp[2]*R11,(A[0]*Q31+A[2]*Q11+B[1]*Q23+B[2]*Q22),R31,0,-R11,10);
 | 
						|
  TST(pp[0]*R32-pp[2]*R12,(A[0]*Q32+A[2]*Q12+B[0]*Q23+B[2]*Q21),R32,0,-R12,11);
 | 
						|
  TST(pp[0]*R33-pp[2]*R13,(A[0]*Q33+A[2]*Q13+B[0]*Q22+B[1]*Q21),R33,0,-R13,12);
 | 
						|
 | 
						|
  // separating axis = u3 x (v1,v2,v3)
 | 
						|
  TST(pp[1]*R11-pp[0]*R21,(A[0]*Q21+A[1]*Q11+B[1]*Q33+B[2]*Q32),-R21,R11,0,13);
 | 
						|
  TST(pp[1]*R12-pp[0]*R22,(A[0]*Q22+A[1]*Q12+B[0]*Q33+B[2]*Q31),-R22,R12,0,14);
 | 
						|
  TST(pp[1]*R13-pp[0]*R23,(A[0]*Q23+A[1]*Q13+B[0]*Q32+B[1]*Q31),-R23,R13,0,15);
 | 
						|
 | 
						|
#undef TST
 | 
						|
 | 
						|
  if (!code) return 0;
 | 
						|
 | 
						|
  // if we get to this point, the boxes interpenetrate. compute the normal
 | 
						|
  // in global coordinates.
 | 
						|
  if (normalR) {
 | 
						|
    normal[0] = normalR[0];
 | 
						|
    normal[1] = normalR[4];
 | 
						|
    normal[2] = normalR[8];
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    dMULTIPLY0_331 (normal,R1,normalC);
 | 
						|
  }
 | 
						|
  if (invert_normal) {
 | 
						|
    normal[0] = -normal[0];
 | 
						|
    normal[1] = -normal[1];
 | 
						|
    normal[2] = -normal[2];
 | 
						|
  }
 | 
						|
  *depth = -s;
 | 
						|
 | 
						|
  // compute contact point(s)
 | 
						|
 | 
						|
  if (code > 6) {
 | 
						|
    // an edge from box 1 touches an edge from box 2.
 | 
						|
    // find a point pa on the intersecting edge of box 1
 | 
						|
    btVector3 pa;
 | 
						|
    btScalar sign;
 | 
						|
    for (i=0; i<3; i++) pa[i] = p1[i];
 | 
						|
    for (j=0; j<3; j++) {
 | 
						|
      sign = (dDOT14(normal,R1+j) > 0) ? btScalar(1.0) : btScalar(-1.0);
 | 
						|
      for (i=0; i<3; i++) pa[i] += sign * A[j] * R1[i*4+j];
 | 
						|
    }
 | 
						|
 | 
						|
    // find a point pb on the intersecting edge of box 2
 | 
						|
    btVector3 pb;
 | 
						|
    for (i=0; i<3; i++) pb[i] = p2[i];
 | 
						|
    for (j=0; j<3; j++) {
 | 
						|
      sign = (dDOT14(normal,R2+j) > 0) ? btScalar(-1.0) : btScalar(1.0);
 | 
						|
      for (i=0; i<3; i++) pb[i] += sign * B[j] * R2[i*4+j];
 | 
						|
    }
 | 
						|
 | 
						|
    btScalar alpha,beta;
 | 
						|
    btVector3 ua,ub;
 | 
						|
    for (i=0; i<3; i++) ua[i] = R1[((code)-7)/3 + i*4];
 | 
						|
    for (i=0; i<3; i++) ub[i] = R2[((code)-7)%3 + i*4];
 | 
						|
 | 
						|
    dLineClosestApproach (pa,ua,pb,ub,&alpha,&beta);
 | 
						|
    for (i=0; i<3; i++) pa[i] += ua[i]*alpha;
 | 
						|
    for (i=0; i<3; i++) pb[i] += ub[i]*beta;
 | 
						|
 | 
						|
	{
 | 
						|
		
 | 
						|
		//contact[0].pos[i] = btScalar(0.5)*(pa[i]+pb[i]);
 | 
						|
		//contact[0].depth = *depth;
 | 
						|
		btVector3 pointInWorld;
 | 
						|
 | 
						|
#ifdef USE_CENTER_POINT
 | 
						|
	    for (i=0; i<3; i++) 
 | 
						|
			pointInWorld[i] = (pa[i]+pb[i])*btScalar(0.5);
 | 
						|
		output.addContactPoint(-normal,pointInWorld,-*depth);
 | 
						|
#else
 | 
						|
		output.addContactPoint(-normal,pb,-*depth);
 | 
						|
 | 
						|
#endif //
 | 
						|
		*return_code = code;
 | 
						|
	}
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
 | 
						|
  // okay, we have a face-something intersection (because the separating
 | 
						|
  // axis is perpendicular to a face). define face 'a' to be the reference
 | 
						|
  // face (i.e. the normal vector is perpendicular to this) and face 'b' to be
 | 
						|
  // the incident face (the closest face of the other box).
 | 
						|
 | 
						|
  const btScalar *Ra,*Rb,*pa,*pb,*Sa,*Sb;
 | 
						|
  if (code <= 3) {
 | 
						|
    Ra = R1;
 | 
						|
    Rb = R2;
 | 
						|
    pa = p1;
 | 
						|
    pb = p2;
 | 
						|
    Sa = A;
 | 
						|
    Sb = B;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    Ra = R2;
 | 
						|
    Rb = R1;
 | 
						|
    pa = p2;
 | 
						|
    pb = p1;
 | 
						|
    Sa = B;
 | 
						|
    Sb = A;
 | 
						|
  }
 | 
						|
 | 
						|
  // nr = normal vector of reference face dotted with axes of incident box.
 | 
						|
  // anr = absolute values of nr.
 | 
						|
  btVector3 normal2,nr,anr;
 | 
						|
  if (code <= 3) {
 | 
						|
    normal2[0] = normal[0];
 | 
						|
    normal2[1] = normal[1];
 | 
						|
    normal2[2] = normal[2];
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    normal2[0] = -normal[0];
 | 
						|
    normal2[1] = -normal[1];
 | 
						|
    normal2[2] = -normal[2];
 | 
						|
  }
 | 
						|
  dMULTIPLY1_331 (nr,Rb,normal2);
 | 
						|
  anr[0] = btFabs (nr[0]);
 | 
						|
  anr[1] = btFabs (nr[1]);
 | 
						|
  anr[2] = btFabs (nr[2]);
 | 
						|
 | 
						|
  // find the largest compontent of anr: this corresponds to the normal
 | 
						|
  // for the indident face. the other axis numbers of the indicent face
 | 
						|
  // are stored in a1,a2.
 | 
						|
  int lanr,a1,a2;
 | 
						|
  if (anr[1] > anr[0]) {
 | 
						|
    if (anr[1] > anr[2]) {
 | 
						|
      a1 = 0;
 | 
						|
      lanr = 1;
 | 
						|
      a2 = 2;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      a1 = 0;
 | 
						|
      a2 = 1;
 | 
						|
      lanr = 2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    if (anr[0] > anr[2]) {
 | 
						|
      lanr = 0;
 | 
						|
      a1 = 1;
 | 
						|
      a2 = 2;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      a1 = 0;
 | 
						|
      a2 = 1;
 | 
						|
      lanr = 2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // compute center point of incident face, in reference-face coordinates
 | 
						|
  btVector3 center;
 | 
						|
  if (nr[lanr] < 0) {
 | 
						|
    for (i=0; i<3; i++) center[i] = pb[i] - pa[i] + Sb[lanr] * Rb[i*4+lanr];
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    for (i=0; i<3; i++) center[i] = pb[i] - pa[i] - Sb[lanr] * Rb[i*4+lanr];
 | 
						|
  }
 | 
						|
 | 
						|
  // find the normal and non-normal axis numbers of the reference box
 | 
						|
  int codeN,code1,code2;
 | 
						|
  if (code <= 3) codeN = code-1; else codeN = code-4;
 | 
						|
  if (codeN==0) {
 | 
						|
    code1 = 1;
 | 
						|
    code2 = 2;
 | 
						|
  }
 | 
						|
  else if (codeN==1) {
 | 
						|
    code1 = 0;
 | 
						|
    code2 = 2;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    code1 = 0;
 | 
						|
    code2 = 1;
 | 
						|
  }
 | 
						|
 | 
						|
  // find the four corners of the incident face, in reference-face coordinates
 | 
						|
  btScalar quad[8];	// 2D coordinate of incident face (x,y pairs)
 | 
						|
  btScalar c1,c2,m11,m12,m21,m22;
 | 
						|
  c1 = dDOT14 (center,Ra+code1);
 | 
						|
  c2 = dDOT14 (center,Ra+code2);
 | 
						|
  // optimize this? - we have already computed this data above, but it is not
 | 
						|
  // stored in an easy-to-index format. for now it's quicker just to recompute
 | 
						|
  // the four dot products.
 | 
						|
  m11 = dDOT44 (Ra+code1,Rb+a1);
 | 
						|
  m12 = dDOT44 (Ra+code1,Rb+a2);
 | 
						|
  m21 = dDOT44 (Ra+code2,Rb+a1);
 | 
						|
  m22 = dDOT44 (Ra+code2,Rb+a2);
 | 
						|
  {
 | 
						|
    btScalar k1 = m11*Sb[a1];
 | 
						|
    btScalar k2 = m21*Sb[a1];
 | 
						|
    btScalar k3 = m12*Sb[a2];
 | 
						|
    btScalar k4 = m22*Sb[a2];
 | 
						|
    quad[0] = c1 - k1 - k3;
 | 
						|
    quad[1] = c2 - k2 - k4;
 | 
						|
    quad[2] = c1 - k1 + k3;
 | 
						|
    quad[3] = c2 - k2 + k4;
 | 
						|
    quad[4] = c1 + k1 + k3;
 | 
						|
    quad[5] = c2 + k2 + k4;
 | 
						|
    quad[6] = c1 + k1 - k3;
 | 
						|
    quad[7] = c2 + k2 - k4;
 | 
						|
  }
 | 
						|
 | 
						|
  // find the size of the reference face
 | 
						|
  btScalar rect[2];
 | 
						|
  rect[0] = Sa[code1];
 | 
						|
  rect[1] = Sa[code2];
 | 
						|
 | 
						|
  // intersect the incident and reference faces
 | 
						|
  btScalar ret[16];
 | 
						|
  int n = intersectRectQuad2 (rect,quad,ret);
 | 
						|
  if (n < 1) return 0;		// this should never happen
 | 
						|
 | 
						|
  // convert the intersection points into reference-face coordinates,
 | 
						|
  // and compute the contact position and depth for each point. only keep
 | 
						|
  // those points that have a positive (penetrating) depth. delete points in
 | 
						|
  // the 'ret' array as necessary so that 'point' and 'ret' correspond.
 | 
						|
  btScalar point[3*8];		// penetrating contact points
 | 
						|
  btScalar dep[8];			// depths for those points
 | 
						|
  btScalar det1 = 1.f/(m11*m22 - m12*m21);
 | 
						|
  m11 *= det1;
 | 
						|
  m12 *= det1;
 | 
						|
  m21 *= det1;
 | 
						|
  m22 *= det1;
 | 
						|
  int cnum = 0;			// number of penetrating contact points found
 | 
						|
  for (j=0; j < n; j++) {
 | 
						|
    btScalar k1 =  m22*(ret[j*2]-c1) - m12*(ret[j*2+1]-c2);
 | 
						|
    btScalar k2 = -m21*(ret[j*2]-c1) + m11*(ret[j*2+1]-c2);
 | 
						|
    for (i=0; i<3; i++) point[cnum*3+i] =
 | 
						|
			  center[i] + k1*Rb[i*4+a1] + k2*Rb[i*4+a2];
 | 
						|
    dep[cnum] = Sa[codeN] - dDOT(normal2,point+cnum*3);
 | 
						|
    if (dep[cnum] >= 0) {
 | 
						|
      ret[cnum*2] = ret[j*2];
 | 
						|
      ret[cnum*2+1] = ret[j*2+1];
 | 
						|
      cnum++;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (cnum < 1) return 0;	// this should never happen
 | 
						|
 | 
						|
  // we can't generate more contacts than we actually have
 | 
						|
  if (maxc > cnum) maxc = cnum;
 | 
						|
  if (maxc < 1) maxc = 1;
 | 
						|
 | 
						|
  if (cnum <= maxc) {
 | 
						|
 | 
						|
	  if (code<4) 
 | 
						|
	  {
 | 
						|
    // we have less contacts than we need, so we use them all
 | 
						|
    for (j=0; j < cnum; j++) 
 | 
						|
	{
 | 
						|
		btVector3 pointInWorld;
 | 
						|
		for (i=0; i<3; i++) 
 | 
						|
			pointInWorld[i] = point[j*3+i] + pa[i];
 | 
						|
		output.addContactPoint(-normal,pointInWorld,-dep[j]);
 | 
						|
 | 
						|
    }
 | 
						|
	  } else
 | 
						|
	  {
 | 
						|
		  // we have less contacts than we need, so we use them all
 | 
						|
		for (j=0; j < cnum; j++) 
 | 
						|
		{
 | 
						|
			btVector3 pointInWorld;
 | 
						|
			for (i=0; i<3; i++) 
 | 
						|
				pointInWorld[i] = point[j*3+i] + pa[i]-normal[i]*dep[j];
 | 
						|
				//pointInWorld[i] = point[j*3+i] + pa[i];
 | 
						|
			output.addContactPoint(-normal,pointInWorld,-dep[j]);
 | 
						|
		}
 | 
						|
	  }
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    // we have more contacts than are wanted, some of them must be culled.
 | 
						|
    // find the deepest point, it is always the first contact.
 | 
						|
    int i1 = 0;
 | 
						|
    btScalar maxdepth = dep[0];
 | 
						|
    for (i=1; i<cnum; i++) {
 | 
						|
      if (dep[i] > maxdepth) {
 | 
						|
	maxdepth = dep[i];
 | 
						|
	i1 = i;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    int iret[8];
 | 
						|
    cullPoints2 (cnum,ret,maxc,i1,iret);
 | 
						|
 | 
						|
    for (j=0; j < maxc; j++) {
 | 
						|
//      dContactGeom *con = CONTACT(contact,skip*j);
 | 
						|
  //    for (i=0; i<3; i++) con->pos[i] = point[iret[j]*3+i] + pa[i];
 | 
						|
    //  con->depth = dep[iret[j]];
 | 
						|
 | 
						|
		btVector3 posInWorld;
 | 
						|
		for (i=0; i<3; i++) 
 | 
						|
			posInWorld[i] = point[iret[j]*3+i] + pa[i];
 | 
						|
		if (code<4) 
 | 
						|
	   {
 | 
						|
			output.addContactPoint(-normal,posInWorld,-dep[iret[j]]);
 | 
						|
		} else
 | 
						|
		{
 | 
						|
			output.addContactPoint(-normal,posInWorld-normal*dep[iret[j]],-dep[iret[j]]);
 | 
						|
		}
 | 
						|
    }
 | 
						|
    cnum = maxc;
 | 
						|
  }
 | 
						|
 | 
						|
  *return_code = code;
 | 
						|
  return cnum;
 | 
						|
}
 | 
						|
 | 
						|
void	btBoxBoxDetector::getClosestPoints(const ClosestPointInput& input,Result& output,class btIDebugDraw* /*debugDraw*/,bool /*swapResults*/)
 | 
						|
{
 | 
						|
	
 | 
						|
	const btTransform& transformA = input.m_transformA;
 | 
						|
	const btTransform& transformB = input.m_transformB;
 | 
						|
	
 | 
						|
	int skip = 0;
 | 
						|
	dContactGeom *contact = 0;
 | 
						|
 | 
						|
	dMatrix3 R1;
 | 
						|
	dMatrix3 R2;
 | 
						|
 | 
						|
	for (int j=0;j<3;j++)
 | 
						|
	{
 | 
						|
		R1[0+4*j] = transformA.getBasis()[j].x();
 | 
						|
		R2[0+4*j] = transformB.getBasis()[j].x();
 | 
						|
 | 
						|
		R1[1+4*j] = transformA.getBasis()[j].y();
 | 
						|
		R2[1+4*j] = transformB.getBasis()[j].y();
 | 
						|
 | 
						|
 | 
						|
		R1[2+4*j] = transformA.getBasis()[j].z();
 | 
						|
		R2[2+4*j] = transformB.getBasis()[j].z();
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	
 | 
						|
 | 
						|
	btVector3 normal;
 | 
						|
	btScalar depth;
 | 
						|
	int return_code;
 | 
						|
	int maxc = 4;
 | 
						|
 | 
						|
 | 
						|
	dBoxBox2 (transformA.getOrigin(), 
 | 
						|
	R1,
 | 
						|
	2.f*m_box1->getHalfExtentsWithMargin(),
 | 
						|
	transformB.getOrigin(),
 | 
						|
	R2, 
 | 
						|
	2.f*m_box2->getHalfExtentsWithMargin(),
 | 
						|
	normal, &depth, &return_code,
 | 
						|
	maxc, contact, skip,
 | 
						|
	output
 | 
						|
	);
 | 
						|
 | 
						|
}
 |