381 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			381 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#ifndef GIM_TRI_COLLISION_H_INCLUDED
 | 
						|
#define GIM_TRI_COLLISION_H_INCLUDED
 | 
						|
 | 
						|
/*! \file gim_tri_collision.h
 | 
						|
\author Francisco Leon Najera
 | 
						|
*/
 | 
						|
/*
 | 
						|
-----------------------------------------------------------------------------
 | 
						|
This source file is part of GIMPACT Library.
 | 
						|
 | 
						|
For the latest info, see http://gimpact.sourceforge.net/
 | 
						|
 | 
						|
Copyright (c) 2006 Francisco Leon Najera. C.C. 80087371.
 | 
						|
email: projectileman@yahoo.com
 | 
						|
 | 
						|
 This library is free software; you can redistribute it and/or
 | 
						|
 modify it under the terms of EITHER:
 | 
						|
   (1) The GNU Lesser General Public License as published by the Free
 | 
						|
       Software Foundation; either version 2.1 of the License, or (at
 | 
						|
       your option) any later version. The text of the GNU Lesser
 | 
						|
       General Public License is included with this library in the
 | 
						|
       file GIMPACT-LICENSE-LGPL.TXT.
 | 
						|
   (2) The BSD-style license that is included with this library in
 | 
						|
       the file GIMPACT-LICENSE-BSD.TXT.
 | 
						|
   (3) The zlib/libpng license that is included with this library in
 | 
						|
       the file GIMPACT-LICENSE-ZLIB.TXT.
 | 
						|
 | 
						|
 This library is distributed in the hope that it will be useful,
 | 
						|
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files
 | 
						|
 GIMPACT-LICENSE-LGPL.TXT, GIMPACT-LICENSE-ZLIB.TXT and GIMPACT-LICENSE-BSD.TXT for more details.
 | 
						|
 | 
						|
-----------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
 | 
						|
#include "gim_box_collision.h"
 | 
						|
#include "gim_clip_polygon.h"
 | 
						|
 | 
						|
 | 
						|
 | 
						|
#ifndef MAX_TRI_CLIPPING
 | 
						|
#define MAX_TRI_CLIPPING 16
 | 
						|
#endif
 | 
						|
 | 
						|
//! Structure for collision
 | 
						|
struct GIM_TRIANGLE_CONTACT_DATA
 | 
						|
{
 | 
						|
    GREAL m_penetration_depth;
 | 
						|
    GUINT m_point_count;
 | 
						|
    btVector4 m_separating_normal;
 | 
						|
    btVector3 m_points[MAX_TRI_CLIPPING];
 | 
						|
 | 
						|
	SIMD_FORCE_INLINE void copy_from(const GIM_TRIANGLE_CONTACT_DATA& other)
 | 
						|
	{
 | 
						|
		m_penetration_depth = other.m_penetration_depth;
 | 
						|
		m_separating_normal = other.m_separating_normal;
 | 
						|
		m_point_count = other.m_point_count;
 | 
						|
		GUINT i = m_point_count;
 | 
						|
		while(i--)
 | 
						|
		{
 | 
						|
			m_points[i] = other.m_points[i];
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	GIM_TRIANGLE_CONTACT_DATA()
 | 
						|
	{
 | 
						|
	}
 | 
						|
 | 
						|
	GIM_TRIANGLE_CONTACT_DATA(const GIM_TRIANGLE_CONTACT_DATA& other)
 | 
						|
	{
 | 
						|
		copy_from(other);
 | 
						|
	}
 | 
						|
 | 
						|
	
 | 
						|
	
 | 
						|
 | 
						|
    //! classify points that are closer
 | 
						|
    template<typename DISTANCE_FUNC,typename CLASS_PLANE>
 | 
						|
    SIMD_FORCE_INLINE void mergepoints_generic(const CLASS_PLANE & plane,
 | 
						|
    				GREAL margin, const btVector3 * points, GUINT point_count, DISTANCE_FUNC distance_func)
 | 
						|
    {	
 | 
						|
    	m_point_count = 0;
 | 
						|
    	m_penetration_depth= -1000.0f;
 | 
						|
 | 
						|
		GUINT point_indices[MAX_TRI_CLIPPING];
 | 
						|
 | 
						|
		GUINT _k;
 | 
						|
 | 
						|
		for(_k=0;_k<point_count;_k++)
 | 
						|
		{
 | 
						|
			GREAL _dist = -distance_func(plane,points[_k]) + margin;
 | 
						|
 | 
						|
			if(_dist>=0.0f)
 | 
						|
			{
 | 
						|
				if(_dist>m_penetration_depth)
 | 
						|
				{
 | 
						|
					m_penetration_depth = _dist;
 | 
						|
					point_indices[0] = _k;
 | 
						|
					m_point_count=1;
 | 
						|
				}
 | 
						|
				else if((_dist+G_EPSILON)>=m_penetration_depth)
 | 
						|
				{
 | 
						|
					point_indices[m_point_count] = _k;
 | 
						|
					m_point_count++;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		for( _k=0;_k<m_point_count;_k++)
 | 
						|
		{
 | 
						|
			m_points[_k] = points[point_indices[_k]];
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	//! classify points that are closer
 | 
						|
	SIMD_FORCE_INLINE void merge_points(const btVector4 & plane, GREAL margin,
 | 
						|
										 const btVector3 * points, GUINT point_count)
 | 
						|
	{
 | 
						|
		m_separating_normal = plane;
 | 
						|
		mergepoints_generic(plane, margin, points, point_count, DISTANCE_PLANE_3D_FUNC());
 | 
						|
	}
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
//! Class for colliding triangles
 | 
						|
class GIM_TRIANGLE
 | 
						|
{
 | 
						|
public:
 | 
						|
	btScalar m_margin;
 | 
						|
    btVector3 m_vertices[3];
 | 
						|
 | 
						|
    GIM_TRIANGLE():m_margin(0.1f)
 | 
						|
    {
 | 
						|
    }
 | 
						|
 | 
						|
    SIMD_FORCE_INLINE GIM_AABB get_box()  const
 | 
						|
    {
 | 
						|
    	return GIM_AABB(m_vertices[0],m_vertices[1],m_vertices[2],m_margin);
 | 
						|
    }
 | 
						|
 | 
						|
    SIMD_FORCE_INLINE void get_normal(btVector3 &normal)  const
 | 
						|
    {
 | 
						|
    	TRIANGLE_NORMAL(m_vertices[0],m_vertices[1],m_vertices[2],normal);
 | 
						|
    }
 | 
						|
 | 
						|
    SIMD_FORCE_INLINE void get_plane(btVector4 &plane)  const
 | 
						|
    {
 | 
						|
    	TRIANGLE_PLANE(m_vertices[0],m_vertices[1],m_vertices[2],plane);;
 | 
						|
    }
 | 
						|
 | 
						|
    SIMD_FORCE_INLINE void apply_transform(const btTransform & trans)
 | 
						|
    {
 | 
						|
    	m_vertices[0] = trans(m_vertices[0]);
 | 
						|
    	m_vertices[1] = trans(m_vertices[1]);
 | 
						|
    	m_vertices[2] = trans(m_vertices[2]);
 | 
						|
    }
 | 
						|
 | 
						|
    SIMD_FORCE_INLINE void get_edge_plane(GUINT edge_index,const btVector3 &triangle_normal,btVector4 &plane)  const
 | 
						|
    {
 | 
						|
		const btVector3 & e0 = m_vertices[edge_index];
 | 
						|
		const btVector3 & e1 = m_vertices[(edge_index+1)%3];
 | 
						|
		EDGE_PLANE(e0,e1,triangle_normal,plane);
 | 
						|
    }
 | 
						|
 | 
						|
    //! Gets the relative transformation of this triangle
 | 
						|
    /*!
 | 
						|
    The transformation is oriented to the triangle normal , and aligned to the 1st edge of this triangle. The position corresponds to vertice 0:
 | 
						|
    - triangle normal corresponds to Z axis.
 | 
						|
    - 1st normalized edge corresponds to X axis,
 | 
						|
 | 
						|
    */
 | 
						|
    SIMD_FORCE_INLINE void get_triangle_transform(btTransform & triangle_transform)  const
 | 
						|
    {
 | 
						|
    	btMatrix3x3 & matrix = triangle_transform.getBasis();
 | 
						|
 | 
						|
    	btVector3 zaxis;
 | 
						|
    	get_normal(zaxis);
 | 
						|
    	MAT_SET_Z(matrix,zaxis);
 | 
						|
 | 
						|
    	btVector3 xaxis = m_vertices[1] - m_vertices[0];
 | 
						|
    	VEC_NORMALIZE(xaxis);
 | 
						|
    	MAT_SET_X(matrix,xaxis);
 | 
						|
 | 
						|
    	//y axis
 | 
						|
    	xaxis = zaxis.cross(xaxis);
 | 
						|
    	MAT_SET_Y(matrix,xaxis);
 | 
						|
 | 
						|
    	triangle_transform.setOrigin(m_vertices[0]);
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
	//! Test triangles by finding separating axis
 | 
						|
	/*!
 | 
						|
	\param other Triangle for collide
 | 
						|
	\param contact_data Structure for holding contact points, normal and penetration depth; The normal is pointing toward this triangle from the other triangle
 | 
						|
	*/
 | 
						|
	bool collide_triangle_hard_test(
 | 
						|
		const GIM_TRIANGLE & other,
 | 
						|
		GIM_TRIANGLE_CONTACT_DATA & contact_data) const;
 | 
						|
 | 
						|
	//! Test boxes before doing hard test
 | 
						|
	/*!
 | 
						|
	\param other Triangle for collide
 | 
						|
	\param contact_data Structure for holding contact points, normal and penetration depth; The normal is pointing toward this triangle from the other triangle
 | 
						|
	\
 | 
						|
	*/
 | 
						|
	SIMD_FORCE_INLINE bool collide_triangle(
 | 
						|
		const GIM_TRIANGLE & other,
 | 
						|
		GIM_TRIANGLE_CONTACT_DATA & contact_data) const
 | 
						|
	{
 | 
						|
		//test box collisioin
 | 
						|
		GIM_AABB boxu(m_vertices[0],m_vertices[1],m_vertices[2],m_margin);
 | 
						|
		GIM_AABB boxv(other.m_vertices[0],other.m_vertices[1],other.m_vertices[2],other.m_margin);
 | 
						|
		if(!boxu.has_collision(boxv)) return false;
 | 
						|
 | 
						|
		//do hard test
 | 
						|
		return collide_triangle_hard_test(other,contact_data);
 | 
						|
	}
 | 
						|
 | 
						|
	/*!
 | 
						|
 | 
						|
	Solve the System for u,v parameters:
 | 
						|
 | 
						|
	u*axe1[i1] + v*axe2[i1] = vecproj[i1]
 | 
						|
	u*axe1[i2] + v*axe2[i2] = vecproj[i2]
 | 
						|
 | 
						|
	sustitute:
 | 
						|
	v = (vecproj[i2] - u*axe1[i2])/axe2[i2]
 | 
						|
 | 
						|
	then the first equation in terms of 'u':
 | 
						|
 | 
						|
	--> u*axe1[i1] + ((vecproj[i2] - u*axe1[i2])/axe2[i2])*axe2[i1] = vecproj[i1]
 | 
						|
 | 
						|
	--> u*axe1[i1] + vecproj[i2]*axe2[i1]/axe2[i2] - u*axe1[i2]*axe2[i1]/axe2[i2] = vecproj[i1]
 | 
						|
 | 
						|
	--> u*(axe1[i1]  - axe1[i2]*axe2[i1]/axe2[i2]) = vecproj[i1] - vecproj[i2]*axe2[i1]/axe2[i2]
 | 
						|
 | 
						|
	--> u*((axe1[i1]*axe2[i2]  - axe1[i2]*axe2[i1])/axe2[i2]) = (vecproj[i1]*axe2[i2] - vecproj[i2]*axe2[i1])/axe2[i2]
 | 
						|
 | 
						|
	--> u*(axe1[i1]*axe2[i2]  - axe1[i2]*axe2[i1]) = vecproj[i1]*axe2[i2] - vecproj[i2]*axe2[i1]
 | 
						|
 | 
						|
	--> u = (vecproj[i1]*axe2[i2] - vecproj[i2]*axe2[i1]) /(axe1[i1]*axe2[i2]  - axe1[i2]*axe2[i1])
 | 
						|
 | 
						|
if 0.0<= u+v <=1.0 then they are inside of triangle
 | 
						|
 | 
						|
	\return false if the point is outside of triangle.This function  doesn't take the margin
 | 
						|
	*/
 | 
						|
	SIMD_FORCE_INLINE bool get_uv_parameters(
 | 
						|
			const btVector3 & point,
 | 
						|
			const btVector3 & tri_plane,
 | 
						|
			GREAL & u, GREAL & v) const
 | 
						|
	{
 | 
						|
		btVector3 _axe1 = m_vertices[1]-m_vertices[0];
 | 
						|
		btVector3 _axe2 = m_vertices[2]-m_vertices[0];
 | 
						|
		btVector3 _vecproj = point - m_vertices[0];
 | 
						|
		GUINT _i1 = (tri_plane.closestAxis()+1)%3;
 | 
						|
		GUINT _i2 = (_i1+1)%3;
 | 
						|
		if(btFabs(_axe2[_i2])<G_EPSILON)
 | 
						|
		{
 | 
						|
			u = (_vecproj[_i2]*_axe2[_i1] - _vecproj[_i1]*_axe2[_i2]) /(_axe1[_i2]*_axe2[_i1]  - _axe1[_i1]*_axe2[_i2]);
 | 
						|
			v = (_vecproj[_i1] - u*_axe1[_i1])/_axe2[_i1];
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			u = (_vecproj[_i1]*_axe2[_i2] - _vecproj[_i2]*_axe2[_i1]) /(_axe1[_i1]*_axe2[_i2]  - _axe1[_i2]*_axe2[_i1]);
 | 
						|
			v = (_vecproj[_i2] - u*_axe1[_i2])/_axe2[_i2];
 | 
						|
		}
 | 
						|
 | 
						|
		if(u<-G_EPSILON)
 | 
						|
		{
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
		else if(v<-G_EPSILON)
 | 
						|
		{
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			btScalar sumuv;
 | 
						|
			sumuv = u+v;
 | 
						|
			if(sumuv<-G_EPSILON)
 | 
						|
			{
 | 
						|
				return false;
 | 
						|
			}
 | 
						|
			else if(sumuv-1.0f>G_EPSILON)
 | 
						|
			{
 | 
						|
				return false;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
	//! is point in triangle beam?
 | 
						|
	/*!
 | 
						|
	Test if point is in triangle, with m_margin tolerance
 | 
						|
	*/
 | 
						|
	SIMD_FORCE_INLINE bool is_point_inside(const btVector3 & point, const btVector3 & tri_normal) const
 | 
						|
	{
 | 
						|
		//Test with edge 0
 | 
						|
		btVector4 edge_plane;
 | 
						|
		this->get_edge_plane(0,tri_normal,edge_plane);
 | 
						|
		GREAL dist = DISTANCE_PLANE_POINT(edge_plane,point);
 | 
						|
		if(dist-m_margin>0.0f) return false; // outside plane
 | 
						|
 | 
						|
		this->get_edge_plane(1,tri_normal,edge_plane);
 | 
						|
		dist = DISTANCE_PLANE_POINT(edge_plane,point);
 | 
						|
		if(dist-m_margin>0.0f) return false; // outside plane
 | 
						|
 | 
						|
		this->get_edge_plane(2,tri_normal,edge_plane);
 | 
						|
		dist = DISTANCE_PLANE_POINT(edge_plane,point);
 | 
						|
		if(dist-m_margin>0.0f) return false; // outside plane
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	//! Bidireccional ray collision
 | 
						|
	SIMD_FORCE_INLINE bool ray_collision(
 | 
						|
		const btVector3 & vPoint,
 | 
						|
		const btVector3 & vDir, btVector3 & pout, btVector3 & triangle_normal,
 | 
						|
		GREAL & tparam, GREAL tmax = G_REAL_INFINITY)
 | 
						|
	{
 | 
						|
		btVector4 faceplane;
 | 
						|
		{
 | 
						|
			btVector3 dif1 = m_vertices[1] - m_vertices[0];
 | 
						|
			btVector3 dif2 = m_vertices[2] - m_vertices[0];
 | 
						|
    		VEC_CROSS(faceplane,dif1,dif2);
 | 
						|
    		faceplane[3] = m_vertices[0].dot(faceplane);
 | 
						|
		}
 | 
						|
 | 
						|
		GUINT res = LINE_PLANE_COLLISION(faceplane,vDir,vPoint,pout,tparam, btScalar(0), tmax);
 | 
						|
		if(res == 0) return false;
 | 
						|
		if(! is_point_inside(pout,faceplane)) return false;
 | 
						|
 | 
						|
		if(res==2) //invert normal
 | 
						|
		{
 | 
						|
			triangle_normal.setValue(-faceplane[0],-faceplane[1],-faceplane[2]);
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			triangle_normal.setValue(faceplane[0],faceplane[1],faceplane[2]);
 | 
						|
		}
 | 
						|
 | 
						|
		VEC_NORMALIZE(triangle_normal);
 | 
						|
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	//! one direccion ray collision
 | 
						|
	SIMD_FORCE_INLINE bool ray_collision_front_side(
 | 
						|
		const btVector3 & vPoint,
 | 
						|
		const btVector3 & vDir, btVector3 & pout, btVector3 & triangle_normal,
 | 
						|
		GREAL & tparam, GREAL tmax = G_REAL_INFINITY)
 | 
						|
	{
 | 
						|
		btVector4 faceplane;
 | 
						|
		{
 | 
						|
			btVector3 dif1 = m_vertices[1] - m_vertices[0];
 | 
						|
			btVector3 dif2 = m_vertices[2] - m_vertices[0];
 | 
						|
    		VEC_CROSS(faceplane,dif1,dif2);
 | 
						|
    		faceplane[3] = m_vertices[0].dot(faceplane);
 | 
						|
		}
 | 
						|
 | 
						|
		GUINT res = LINE_PLANE_COLLISION(faceplane,vDir,vPoint,pout,tparam, btScalar(0), tmax);
 | 
						|
		if(res != 1) return false;
 | 
						|
 | 
						|
		if(!is_point_inside(pout,faceplane)) return false;
 | 
						|
 | 
						|
		triangle_normal.setValue(faceplane[0],faceplane[1],faceplane[2]);
 | 
						|
 | 
						|
		VEC_NORMALIZE(triangle_normal);
 | 
						|
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
#endif // GIM_TRI_COLLISION_H_INCLUDED
 |