620 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			620 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
Bullet Continuous Collision Detection and Physics Library
 | 
						|
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | 
						|
 | 
						|
This software is provided 'as-is', without any express or implied warranty.
 | 
						|
In no event will the authors be held liable for any damages arising from the use of this software.
 | 
						|
Permission is granted to anyone to use this software for any purpose, 
 | 
						|
including commercial applications, and to alter it and redistribute it freely, 
 | 
						|
subject to the following restrictions:
 | 
						|
 | 
						|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | 
						|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | 
						|
3. This notice may not be removed or altered from any source distribution.
 | 
						|
*/
 | 
						|
 | 
						|
#ifndef BT_RIGIDBODY_H
 | 
						|
#define BT_RIGIDBODY_H
 | 
						|
 | 
						|
#include "LinearMath/btAlignedObjectArray.h"
 | 
						|
#include "LinearMath/btTransform.h"
 | 
						|
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
 | 
						|
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
 | 
						|
 | 
						|
class btCollisionShape;
 | 
						|
class btMotionState;
 | 
						|
class btTypedConstraint;
 | 
						|
 | 
						|
 | 
						|
extern btScalar gDeactivationTime;
 | 
						|
extern bool gDisableDeactivation;
 | 
						|
 | 
						|
#ifdef BT_USE_DOUBLE_PRECISION
 | 
						|
#define btRigidBodyData	btRigidBodyDoubleData
 | 
						|
#define btRigidBodyDataName	"btRigidBodyDoubleData"
 | 
						|
#else
 | 
						|
#define btRigidBodyData	btRigidBodyFloatData
 | 
						|
#define btRigidBodyDataName	"btRigidBodyFloatData"
 | 
						|
#endif //BT_USE_DOUBLE_PRECISION
 | 
						|
 | 
						|
 | 
						|
enum	btRigidBodyFlags
 | 
						|
{
 | 
						|
	BT_DISABLE_WORLD_GRAVITY = 1,
 | 
						|
	///BT_ENABLE_GYROPSCOPIC_FORCE flags is enabled by default in Bullet 2.83 and onwards.
 | 
						|
	///and it BT_ENABLE_GYROPSCOPIC_FORCE becomes equivalent to BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY
 | 
						|
	///See Demos/GyroscopicDemo and computeGyroscopicImpulseImplicit
 | 
						|
	BT_ENABLE_GYROSCOPIC_FORCE_EXPLICIT = 2,
 | 
						|
	BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_WORLD=4,
 | 
						|
	BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY=8,
 | 
						|
	BT_ENABLE_GYROPSCOPIC_FORCE = BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY,
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
///The btRigidBody is the main class for rigid body objects. It is derived from btCollisionObject, so it keeps a pointer to a btCollisionShape.
 | 
						|
///It is recommended for performance and memory use to share btCollisionShape objects whenever possible.
 | 
						|
///There are 3 types of rigid bodies: 
 | 
						|
///- A) Dynamic rigid bodies, with positive mass. Motion is controlled by rigid body dynamics.
 | 
						|
///- B) Fixed objects with zero mass. They are not moving (basically collision objects)
 | 
						|
///- C) Kinematic objects, which are objects without mass, but the user can move them. There is on-way interaction, and Bullet calculates a velocity based on the timestep and previous and current world transform.
 | 
						|
///Bullet automatically deactivates dynamic rigid bodies, when the velocity is below a threshold for a given time.
 | 
						|
///Deactivated (sleeping) rigid bodies don't take any processing time, except a minor broadphase collision detection impact (to allow active objects to activate/wake up sleeping objects)
 | 
						|
class btRigidBody  : public btCollisionObject
 | 
						|
{
 | 
						|
 | 
						|
	btMatrix3x3	m_invInertiaTensorWorld;
 | 
						|
	btVector3		m_linearVelocity;
 | 
						|
	btVector3		m_angularVelocity;
 | 
						|
	btScalar		m_inverseMass;
 | 
						|
	btVector3		m_linearFactor;
 | 
						|
 | 
						|
	btVector3		m_gravity;	
 | 
						|
	btVector3		m_gravity_acceleration;
 | 
						|
	btVector3		m_invInertiaLocal;
 | 
						|
	btVector3		m_totalForce;
 | 
						|
	btVector3		m_totalTorque;
 | 
						|
	
 | 
						|
	btScalar		m_linearDamping;
 | 
						|
	btScalar		m_angularDamping;
 | 
						|
 | 
						|
	bool			m_additionalDamping;
 | 
						|
	btScalar		m_additionalDampingFactor;
 | 
						|
	btScalar		m_additionalLinearDampingThresholdSqr;
 | 
						|
	btScalar		m_additionalAngularDampingThresholdSqr;
 | 
						|
	btScalar		m_additionalAngularDampingFactor;
 | 
						|
 | 
						|
 | 
						|
	btScalar		m_linearSleepingThreshold;
 | 
						|
	btScalar		m_angularSleepingThreshold;
 | 
						|
 | 
						|
	//m_optionalMotionState allows to automatic synchronize the world transform for active objects
 | 
						|
	btMotionState*	m_optionalMotionState;
 | 
						|
 | 
						|
	//keep track of typed constraints referencing this rigid body, to disable collision between linked bodies
 | 
						|
	btAlignedObjectArray<btTypedConstraint*> m_constraintRefs;
 | 
						|
 | 
						|
	int				m_rigidbodyFlags;
 | 
						|
	
 | 
						|
	int				m_debugBodyId;
 | 
						|
	
 | 
						|
 | 
						|
protected:
 | 
						|
 | 
						|
	ATTRIBUTE_ALIGNED16(btVector3		m_deltaLinearVelocity);
 | 
						|
	btVector3		m_deltaAngularVelocity;
 | 
						|
	btVector3		m_angularFactor;
 | 
						|
	btVector3		m_invMass;
 | 
						|
	btVector3		m_pushVelocity;
 | 
						|
	btVector3		m_turnVelocity;
 | 
						|
 | 
						|
 | 
						|
public:
 | 
						|
 | 
						|
 | 
						|
	///The btRigidBodyConstructionInfo structure provides information to create a rigid body. Setting mass to zero creates a fixed (non-dynamic) rigid body.
 | 
						|
	///For dynamic objects, you can use the collision shape to approximate the local inertia tensor, otherwise use the zero vector (default argument)
 | 
						|
	///You can use the motion state to synchronize the world transform between physics and graphics objects. 
 | 
						|
	///And if the motion state is provided, the rigid body will initialize its initial world transform from the motion state,
 | 
						|
	///m_startWorldTransform is only used when you don't provide a motion state.
 | 
						|
	struct	btRigidBodyConstructionInfo
 | 
						|
	{
 | 
						|
		btScalar			m_mass;
 | 
						|
 | 
						|
		///When a motionState is provided, the rigid body will initialize its world transform from the motion state
 | 
						|
		///In this case, m_startWorldTransform is ignored.
 | 
						|
		btMotionState*		m_motionState;
 | 
						|
		btTransform	m_startWorldTransform;
 | 
						|
 | 
						|
		btCollisionShape*	m_collisionShape;
 | 
						|
		btVector3			m_localInertia;
 | 
						|
		btScalar			m_linearDamping;
 | 
						|
		btScalar			m_angularDamping;
 | 
						|
 | 
						|
		///best simulation results when friction is non-zero
 | 
						|
		btScalar			m_friction;
 | 
						|
		///the m_rollingFriction prevents rounded shapes, such as spheres, cylinders and capsules from rolling forever.
 | 
						|
		///See Bullet/Demos/RollingFrictionDemo for usage
 | 
						|
		btScalar			m_rollingFriction;
 | 
						|
        btScalar			m_spinningFriction;//torsional friction around contact normal
 | 
						|
        
 | 
						|
		///best simulation results using zero restitution.
 | 
						|
		btScalar			m_restitution;
 | 
						|
 | 
						|
		btScalar			m_linearSleepingThreshold;
 | 
						|
		btScalar			m_angularSleepingThreshold;
 | 
						|
 | 
						|
		//Additional damping can help avoiding lowpass jitter motion, help stability for ragdolls etc.
 | 
						|
		//Such damping is undesirable, so once the overall simulation quality of the rigid body dynamics system has improved, this should become obsolete
 | 
						|
		bool				m_additionalDamping;
 | 
						|
		btScalar			m_additionalDampingFactor;
 | 
						|
		btScalar			m_additionalLinearDampingThresholdSqr;
 | 
						|
		btScalar			m_additionalAngularDampingThresholdSqr;
 | 
						|
		btScalar			m_additionalAngularDampingFactor;
 | 
						|
 | 
						|
		btRigidBodyConstructionInfo(	btScalar mass, btMotionState* motionState, btCollisionShape* collisionShape, const btVector3& localInertia=btVector3(0,0,0)):
 | 
						|
		m_mass(mass),
 | 
						|
			m_motionState(motionState),
 | 
						|
			m_collisionShape(collisionShape),
 | 
						|
			m_localInertia(localInertia),
 | 
						|
			m_linearDamping(btScalar(0.)),
 | 
						|
			m_angularDamping(btScalar(0.)),
 | 
						|
			m_friction(btScalar(0.5)),
 | 
						|
			m_rollingFriction(btScalar(0)),
 | 
						|
            m_spinningFriction(btScalar(0)),
 | 
						|
			m_restitution(btScalar(0.)),
 | 
						|
			m_linearSleepingThreshold(btScalar(0.8)),
 | 
						|
			m_angularSleepingThreshold(btScalar(1.f)),
 | 
						|
			m_additionalDamping(false),
 | 
						|
			m_additionalDampingFactor(btScalar(0.005)),
 | 
						|
			m_additionalLinearDampingThresholdSqr(btScalar(0.01)),
 | 
						|
			m_additionalAngularDampingThresholdSqr(btScalar(0.01)),
 | 
						|
			m_additionalAngularDampingFactor(btScalar(0.01))
 | 
						|
		{
 | 
						|
			m_startWorldTransform.setIdentity();
 | 
						|
		}
 | 
						|
	};
 | 
						|
 | 
						|
	///btRigidBody constructor using construction info
 | 
						|
	btRigidBody(	const btRigidBodyConstructionInfo& constructionInfo);
 | 
						|
 | 
						|
	///btRigidBody constructor for backwards compatibility. 
 | 
						|
	///To specify friction (etc) during rigid body construction, please use the other constructor (using btRigidBodyConstructionInfo)
 | 
						|
	btRigidBody(	btScalar mass, btMotionState* motionState, btCollisionShape* collisionShape, const btVector3& localInertia=btVector3(0,0,0));
 | 
						|
 | 
						|
 | 
						|
	virtual ~btRigidBody()
 | 
						|
        { 
 | 
						|
                //No constraints should point to this rigidbody
 | 
						|
		//Remove constraints from the dynamics world before you delete the related rigidbodies. 
 | 
						|
                btAssert(m_constraintRefs.size()==0); 
 | 
						|
        }
 | 
						|
 | 
						|
protected:
 | 
						|
 | 
						|
	///setupRigidBody is only used internally by the constructor
 | 
						|
	void	setupRigidBody(const btRigidBodyConstructionInfo& constructionInfo);
 | 
						|
 | 
						|
public:
 | 
						|
 | 
						|
	void			proceedToTransform(const btTransform& newTrans); 
 | 
						|
	
 | 
						|
	///to keep collision detection and dynamics separate we don't store a rigidbody pointer
 | 
						|
	///but a rigidbody is derived from btCollisionObject, so we can safely perform an upcast
 | 
						|
	static const btRigidBody*	upcast(const btCollisionObject* colObj)
 | 
						|
	{
 | 
						|
		if (colObj->getInternalType()&btCollisionObject::CO_RIGID_BODY)
 | 
						|
			return (const btRigidBody*)colObj;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	static btRigidBody*	upcast(btCollisionObject* colObj)
 | 
						|
	{
 | 
						|
		if (colObj->getInternalType()&btCollisionObject::CO_RIGID_BODY)
 | 
						|
			return (btRigidBody*)colObj;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	
 | 
						|
	/// continuous collision detection needs prediction
 | 
						|
	void			predictIntegratedTransform(btScalar step, btTransform& predictedTransform) ;
 | 
						|
	
 | 
						|
	void			saveKinematicState(btScalar step);
 | 
						|
	
 | 
						|
	void			applyGravity();
 | 
						|
	
 | 
						|
	void			setGravity(const btVector3& acceleration);  
 | 
						|
 | 
						|
	const btVector3&	getGravity() const
 | 
						|
	{
 | 
						|
		return m_gravity_acceleration;
 | 
						|
	}
 | 
						|
 | 
						|
	void			setDamping(btScalar lin_damping, btScalar ang_damping);
 | 
						|
 | 
						|
	btScalar getLinearDamping() const
 | 
						|
	{
 | 
						|
		return m_linearDamping;
 | 
						|
	}
 | 
						|
 | 
						|
	btScalar getAngularDamping() const
 | 
						|
	{
 | 
						|
		return m_angularDamping;
 | 
						|
	}
 | 
						|
 | 
						|
	btScalar getLinearSleepingThreshold() const
 | 
						|
	{
 | 
						|
		return m_linearSleepingThreshold;
 | 
						|
	}
 | 
						|
 | 
						|
	btScalar getAngularSleepingThreshold() const
 | 
						|
	{
 | 
						|
		return m_angularSleepingThreshold;
 | 
						|
	}
 | 
						|
 | 
						|
	void			applyDamping(btScalar timeStep);
 | 
						|
 | 
						|
	SIMD_FORCE_INLINE const btCollisionShape*	getCollisionShape() const {
 | 
						|
		return m_collisionShape;
 | 
						|
	}
 | 
						|
 | 
						|
	SIMD_FORCE_INLINE btCollisionShape*	getCollisionShape() {
 | 
						|
			return m_collisionShape;
 | 
						|
	}
 | 
						|
	
 | 
						|
	void			setMassProps(btScalar mass, const btVector3& inertia);
 | 
						|
	
 | 
						|
	const btVector3& getLinearFactor() const
 | 
						|
	{
 | 
						|
		return m_linearFactor;
 | 
						|
	}
 | 
						|
	void setLinearFactor(const btVector3& linearFactor)
 | 
						|
	{
 | 
						|
		m_linearFactor = linearFactor;
 | 
						|
		m_invMass = m_linearFactor*m_inverseMass;
 | 
						|
	}
 | 
						|
	btScalar		getInvMass() const { return m_inverseMass; }
 | 
						|
	const btMatrix3x3& getInvInertiaTensorWorld() const { 
 | 
						|
		return m_invInertiaTensorWorld; 
 | 
						|
	}
 | 
						|
		
 | 
						|
	void			integrateVelocities(btScalar step);
 | 
						|
 | 
						|
	void			setCenterOfMassTransform(const btTransform& xform);
 | 
						|
 | 
						|
	void			applyCentralForce(const btVector3& force)
 | 
						|
	{
 | 
						|
		m_totalForce += force*m_linearFactor;
 | 
						|
	}
 | 
						|
 | 
						|
	const btVector3& getTotalForce() const
 | 
						|
	{
 | 
						|
		return m_totalForce;
 | 
						|
	};
 | 
						|
 | 
						|
	const btVector3& getTotalTorque() const
 | 
						|
	{
 | 
						|
		return m_totalTorque;
 | 
						|
	};
 | 
						|
    
 | 
						|
	const btVector3& getInvInertiaDiagLocal() const
 | 
						|
	{
 | 
						|
		return m_invInertiaLocal;
 | 
						|
	};
 | 
						|
 | 
						|
	void	setInvInertiaDiagLocal(const btVector3& diagInvInertia)
 | 
						|
	{
 | 
						|
		m_invInertiaLocal = diagInvInertia;
 | 
						|
	}
 | 
						|
 | 
						|
	void	setSleepingThresholds(btScalar linear,btScalar angular)
 | 
						|
	{
 | 
						|
		m_linearSleepingThreshold = linear;
 | 
						|
		m_angularSleepingThreshold = angular;
 | 
						|
	}
 | 
						|
 | 
						|
	void	applyTorque(const btVector3& torque)
 | 
						|
	{
 | 
						|
		m_totalTorque += torque*m_angularFactor;
 | 
						|
	}
 | 
						|
	
 | 
						|
	void	applyForce(const btVector3& force, const btVector3& rel_pos) 
 | 
						|
	{
 | 
						|
		applyCentralForce(force);
 | 
						|
		applyTorque(rel_pos.cross(force*m_linearFactor));
 | 
						|
	}
 | 
						|
	
 | 
						|
	void applyCentralImpulse(const btVector3& impulse)
 | 
						|
	{
 | 
						|
		m_linearVelocity += impulse *m_linearFactor * m_inverseMass;
 | 
						|
	}
 | 
						|
	
 | 
						|
  	void applyTorqueImpulse(const btVector3& torque)
 | 
						|
	{
 | 
						|
			m_angularVelocity += m_invInertiaTensorWorld * torque * m_angularFactor;
 | 
						|
	}
 | 
						|
	
 | 
						|
	void applyImpulse(const btVector3& impulse, const btVector3& rel_pos) 
 | 
						|
	{
 | 
						|
		if (m_inverseMass != btScalar(0.))
 | 
						|
		{
 | 
						|
			applyCentralImpulse(impulse);
 | 
						|
			if (m_angularFactor)
 | 
						|
			{
 | 
						|
				applyTorqueImpulse(rel_pos.cross(impulse*m_linearFactor));
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	void clearForces() 
 | 
						|
	{
 | 
						|
		m_totalForce.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
 | 
						|
		m_totalTorque.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
 | 
						|
	}
 | 
						|
	
 | 
						|
	void updateInertiaTensor();    
 | 
						|
	
 | 
						|
	const btVector3&     getCenterOfMassPosition() const { 
 | 
						|
		return m_worldTransform.getOrigin(); 
 | 
						|
	}
 | 
						|
	btQuaternion getOrientation() const;
 | 
						|
	
 | 
						|
	const btTransform&  getCenterOfMassTransform() const { 
 | 
						|
		return m_worldTransform; 
 | 
						|
	}
 | 
						|
	const btVector3&   getLinearVelocity() const { 
 | 
						|
		return m_linearVelocity; 
 | 
						|
	}
 | 
						|
	const btVector3&    getAngularVelocity() const { 
 | 
						|
		return m_angularVelocity; 
 | 
						|
	}
 | 
						|
	
 | 
						|
 | 
						|
	inline void setLinearVelocity(const btVector3& lin_vel)
 | 
						|
	{ 
 | 
						|
		m_updateRevision++;
 | 
						|
		m_linearVelocity = lin_vel; 
 | 
						|
	}
 | 
						|
 | 
						|
	inline void setAngularVelocity(const btVector3& ang_vel) 
 | 
						|
	{ 
 | 
						|
		m_updateRevision++;
 | 
						|
		m_angularVelocity = ang_vel; 
 | 
						|
	}
 | 
						|
 | 
						|
	btVector3 getVelocityInLocalPoint(const btVector3& rel_pos) const
 | 
						|
	{
 | 
						|
		//we also calculate lin/ang velocity for kinematic objects
 | 
						|
		return m_linearVelocity + m_angularVelocity.cross(rel_pos);
 | 
						|
 | 
						|
		//for kinematic objects, we could also use use:
 | 
						|
		//		return 	(m_worldTransform(rel_pos) - m_interpolationWorldTransform(rel_pos)) / m_kinematicTimeStep;
 | 
						|
	}
 | 
						|
 | 
						|
	void translate(const btVector3& v) 
 | 
						|
	{
 | 
						|
		m_worldTransform.getOrigin() += v; 
 | 
						|
	}
 | 
						|
 | 
						|
	
 | 
						|
	void	getAabb(btVector3& aabbMin,btVector3& aabbMax) const;
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
	
 | 
						|
	SIMD_FORCE_INLINE btScalar computeImpulseDenominator(const btVector3& pos, const btVector3& normal) const
 | 
						|
	{
 | 
						|
		btVector3 r0 = pos - getCenterOfMassPosition();
 | 
						|
 | 
						|
		btVector3 c0 = (r0).cross(normal);
 | 
						|
 | 
						|
		btVector3 vec = (c0 * getInvInertiaTensorWorld()).cross(r0);
 | 
						|
 | 
						|
		return m_inverseMass + normal.dot(vec);
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	SIMD_FORCE_INLINE btScalar computeAngularImpulseDenominator(const btVector3& axis) const
 | 
						|
	{
 | 
						|
		btVector3 vec = axis * getInvInertiaTensorWorld();
 | 
						|
		return axis.dot(vec);
 | 
						|
	}
 | 
						|
 | 
						|
	SIMD_FORCE_INLINE void	updateDeactivation(btScalar timeStep)
 | 
						|
	{
 | 
						|
		if ( (getActivationState() == ISLAND_SLEEPING) || (getActivationState() == DISABLE_DEACTIVATION))
 | 
						|
			return;
 | 
						|
 | 
						|
		if ((getLinearVelocity().length2() < m_linearSleepingThreshold*m_linearSleepingThreshold) &&
 | 
						|
			(getAngularVelocity().length2() < m_angularSleepingThreshold*m_angularSleepingThreshold))
 | 
						|
		{
 | 
						|
			m_deactivationTime += timeStep;
 | 
						|
		} else
 | 
						|
		{
 | 
						|
			m_deactivationTime=btScalar(0.);
 | 
						|
			setActivationState(0);
 | 
						|
		}
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	SIMD_FORCE_INLINE bool	wantsSleeping()
 | 
						|
	{
 | 
						|
 | 
						|
		if (getActivationState() == DISABLE_DEACTIVATION)
 | 
						|
			return false;
 | 
						|
 | 
						|
		//disable deactivation
 | 
						|
		if (gDisableDeactivation || (gDeactivationTime == btScalar(0.)))
 | 
						|
			return false;
 | 
						|
 | 
						|
		if ( (getActivationState() == ISLAND_SLEEPING) || (getActivationState() == WANTS_DEACTIVATION))
 | 
						|
			return true;
 | 
						|
 | 
						|
		if (m_deactivationTime> gDeactivationTime)
 | 
						|
		{
 | 
						|
			return true;
 | 
						|
		}
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	
 | 
						|
	const btBroadphaseProxy*	getBroadphaseProxy() const
 | 
						|
	{
 | 
						|
		return m_broadphaseHandle;
 | 
						|
	}
 | 
						|
	btBroadphaseProxy*	getBroadphaseProxy() 
 | 
						|
	{
 | 
						|
		return m_broadphaseHandle;
 | 
						|
	}
 | 
						|
	void	setNewBroadphaseProxy(btBroadphaseProxy* broadphaseProxy)
 | 
						|
	{
 | 
						|
		m_broadphaseHandle = broadphaseProxy;
 | 
						|
	}
 | 
						|
 | 
						|
	//btMotionState allows to automatic synchronize the world transform for active objects
 | 
						|
	btMotionState*	getMotionState()
 | 
						|
	{
 | 
						|
		return m_optionalMotionState;
 | 
						|
	}
 | 
						|
	const btMotionState*	getMotionState() const
 | 
						|
	{
 | 
						|
		return m_optionalMotionState;
 | 
						|
	}
 | 
						|
	void	setMotionState(btMotionState* motionState)
 | 
						|
	{
 | 
						|
		m_optionalMotionState = motionState;
 | 
						|
		if (m_optionalMotionState)
 | 
						|
			motionState->getWorldTransform(m_worldTransform);
 | 
						|
	}
 | 
						|
 | 
						|
	//for experimental overriding of friction/contact solver func
 | 
						|
	int	m_contactSolverType;
 | 
						|
	int	m_frictionSolverType;
 | 
						|
 | 
						|
	void	setAngularFactor(const btVector3& angFac)
 | 
						|
	{
 | 
						|
		m_updateRevision++;
 | 
						|
		m_angularFactor = angFac;
 | 
						|
	}
 | 
						|
 | 
						|
	void	setAngularFactor(btScalar angFac)
 | 
						|
	{
 | 
						|
		m_updateRevision++;
 | 
						|
		m_angularFactor.setValue(angFac,angFac,angFac);
 | 
						|
	}
 | 
						|
	const btVector3&	getAngularFactor() const
 | 
						|
	{
 | 
						|
		return m_angularFactor;
 | 
						|
	}
 | 
						|
 | 
						|
	//is this rigidbody added to a btCollisionWorld/btDynamicsWorld/btBroadphase?
 | 
						|
	bool	isInWorld() const
 | 
						|
	{
 | 
						|
		return (getBroadphaseProxy() != 0);
 | 
						|
	}
 | 
						|
 | 
						|
	void addConstraintRef(btTypedConstraint* c);
 | 
						|
	void removeConstraintRef(btTypedConstraint* c);
 | 
						|
 | 
						|
	btTypedConstraint* getConstraintRef(int index)
 | 
						|
	{
 | 
						|
		return m_constraintRefs[index];
 | 
						|
	}
 | 
						|
 | 
						|
	int getNumConstraintRefs() const
 | 
						|
	{
 | 
						|
		return m_constraintRefs.size();
 | 
						|
	}
 | 
						|
 | 
						|
	void	setFlags(int flags)
 | 
						|
	{
 | 
						|
		m_rigidbodyFlags = flags;
 | 
						|
	}
 | 
						|
 | 
						|
	int getFlags() const
 | 
						|
	{
 | 
						|
		return m_rigidbodyFlags;
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	
 | 
						|
 | 
						|
	///perform implicit force computation in world space
 | 
						|
	btVector3 computeGyroscopicImpulseImplicit_World(btScalar dt) const;
 | 
						|
	
 | 
						|
	///perform implicit force computation in body space (inertial frame)
 | 
						|
	btVector3 computeGyroscopicImpulseImplicit_Body(btScalar step) const;
 | 
						|
 | 
						|
	///explicit version is best avoided, it gains energy
 | 
						|
	btVector3 computeGyroscopicForceExplicit(btScalar maxGyroscopicForce) const;
 | 
						|
	btVector3 getLocalInertia() const;
 | 
						|
 | 
						|
	///////////////////////////////////////////////
 | 
						|
 | 
						|
	virtual	int	calculateSerializeBufferSize()	const;
 | 
						|
 | 
						|
	///fills the dataBuffer and returns the struct name (and 0 on failure)
 | 
						|
	virtual	const char*	serialize(void* dataBuffer,  class btSerializer* serializer) const;
 | 
						|
 | 
						|
	virtual void serializeSingleObject(class btSerializer* serializer) const;
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
//@todo add m_optionalMotionState and m_constraintRefs to btRigidBodyData
 | 
						|
///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
 | 
						|
struct	btRigidBodyFloatData
 | 
						|
{
 | 
						|
	btCollisionObjectFloatData	m_collisionObjectData;
 | 
						|
	btMatrix3x3FloatData		m_invInertiaTensorWorld;
 | 
						|
	btVector3FloatData		m_linearVelocity;
 | 
						|
	btVector3FloatData		m_angularVelocity;
 | 
						|
	btVector3FloatData		m_angularFactor;
 | 
						|
	btVector3FloatData		m_linearFactor;
 | 
						|
	btVector3FloatData		m_gravity;	
 | 
						|
	btVector3FloatData		m_gravity_acceleration;
 | 
						|
	btVector3FloatData		m_invInertiaLocal;
 | 
						|
	btVector3FloatData		m_totalForce;
 | 
						|
	btVector3FloatData		m_totalTorque;
 | 
						|
	float					m_inverseMass;
 | 
						|
	float					m_linearDamping;
 | 
						|
	float					m_angularDamping;
 | 
						|
	float					m_additionalDampingFactor;
 | 
						|
	float					m_additionalLinearDampingThresholdSqr;
 | 
						|
	float					m_additionalAngularDampingThresholdSqr;
 | 
						|
	float					m_additionalAngularDampingFactor;
 | 
						|
	float					m_linearSleepingThreshold;
 | 
						|
	float					m_angularSleepingThreshold;
 | 
						|
	int						m_additionalDamping;
 | 
						|
};
 | 
						|
 | 
						|
///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
 | 
						|
struct	btRigidBodyDoubleData
 | 
						|
{
 | 
						|
	btCollisionObjectDoubleData	m_collisionObjectData;
 | 
						|
	btMatrix3x3DoubleData		m_invInertiaTensorWorld;
 | 
						|
	btVector3DoubleData		m_linearVelocity;
 | 
						|
	btVector3DoubleData		m_angularVelocity;
 | 
						|
	btVector3DoubleData		m_angularFactor;
 | 
						|
	btVector3DoubleData		m_linearFactor;
 | 
						|
	btVector3DoubleData		m_gravity;	
 | 
						|
	btVector3DoubleData		m_gravity_acceleration;
 | 
						|
	btVector3DoubleData		m_invInertiaLocal;
 | 
						|
	btVector3DoubleData		m_totalForce;
 | 
						|
	btVector3DoubleData		m_totalTorque;
 | 
						|
	double					m_inverseMass;
 | 
						|
	double					m_linearDamping;
 | 
						|
	double					m_angularDamping;
 | 
						|
	double					m_additionalDampingFactor;
 | 
						|
	double					m_additionalLinearDampingThresholdSqr;
 | 
						|
	double					m_additionalAngularDampingThresholdSqr;
 | 
						|
	double					m_additionalAngularDampingFactor;
 | 
						|
	double					m_linearSleepingThreshold;
 | 
						|
	double					m_angularSleepingThreshold;
 | 
						|
	int						m_additionalDamping;
 | 
						|
	char	m_padding[4];
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
#endif //BT_RIGIDBODY_H
 | 
						|
 |