392 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			392 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
Bullet Continuous Collision Detection and Physics Library
 | 
						|
Copyright (c) 2003-2009 Erwin Coumans  http://bulletphysics.org
 | 
						|
 | 
						|
This software is provided 'as-is', without any express or implied warranty.
 | 
						|
In no event will the authors be held liable for any damages arising from the use of this software.
 | 
						|
Permission is granted to anyone to use this software for any purpose, 
 | 
						|
including commercial applications, and to alter it and redistribute it freely, 
 | 
						|
subject to the following restrictions:
 | 
						|
 | 
						|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | 
						|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | 
						|
3. This notice may not be removed or altered from any source distribution.
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
#include "btOptimizedBvh.h"
 | 
						|
#include "btStridingMeshInterface.h"
 | 
						|
#include "LinearMath/btAabbUtil2.h"
 | 
						|
#include "LinearMath/btIDebugDraw.h"
 | 
						|
 | 
						|
 | 
						|
btOptimizedBvh::btOptimizedBvh()
 | 
						|
{ 
 | 
						|
}
 | 
						|
 | 
						|
btOptimizedBvh::~btOptimizedBvh()
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void btOptimizedBvh::build(btStridingMeshInterface* triangles, bool useQuantizedAabbCompression, const btVector3& bvhAabbMin, const btVector3& bvhAabbMax)
 | 
						|
{
 | 
						|
	m_useQuantization = useQuantizedAabbCompression;
 | 
						|
 | 
						|
 | 
						|
	// NodeArray	triangleNodes;
 | 
						|
 | 
						|
	struct	NodeTriangleCallback : public btInternalTriangleIndexCallback
 | 
						|
	{
 | 
						|
 | 
						|
		NodeArray&	m_triangleNodes;
 | 
						|
 | 
						|
		NodeTriangleCallback& operator=(NodeTriangleCallback& other)
 | 
						|
		{
 | 
						|
			m_triangleNodes.copyFromArray(other.m_triangleNodes);
 | 
						|
			return *this;
 | 
						|
		}
 | 
						|
		
 | 
						|
		NodeTriangleCallback(NodeArray&	triangleNodes)
 | 
						|
			:m_triangleNodes(triangleNodes)
 | 
						|
		{
 | 
						|
		}
 | 
						|
 | 
						|
		virtual void internalProcessTriangleIndex(btVector3* triangle,int partId,int  triangleIndex)
 | 
						|
		{
 | 
						|
			btOptimizedBvhNode node;
 | 
						|
			btVector3	aabbMin,aabbMax;
 | 
						|
			aabbMin.setValue(btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT));
 | 
						|
			aabbMax.setValue(btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT)); 
 | 
						|
			aabbMin.setMin(triangle[0]);
 | 
						|
			aabbMax.setMax(triangle[0]);
 | 
						|
			aabbMin.setMin(triangle[1]);
 | 
						|
			aabbMax.setMax(triangle[1]);
 | 
						|
			aabbMin.setMin(triangle[2]);
 | 
						|
			aabbMax.setMax(triangle[2]);
 | 
						|
 | 
						|
			//with quantization?
 | 
						|
			node.m_aabbMinOrg = aabbMin;
 | 
						|
			node.m_aabbMaxOrg = aabbMax;
 | 
						|
 | 
						|
			node.m_escapeIndex = -1;
 | 
						|
	
 | 
						|
			//for child nodes
 | 
						|
			node.m_subPart = partId;
 | 
						|
			node.m_triangleIndex = triangleIndex;
 | 
						|
			m_triangleNodes.push_back(node);
 | 
						|
		}
 | 
						|
	};
 | 
						|
	struct	QuantizedNodeTriangleCallback : public btInternalTriangleIndexCallback
 | 
						|
	{
 | 
						|
		QuantizedNodeArray&	m_triangleNodes;
 | 
						|
		const btQuantizedBvh* m_optimizedTree; // for quantization
 | 
						|
 | 
						|
		QuantizedNodeTriangleCallback& operator=(QuantizedNodeTriangleCallback& other)
 | 
						|
		{
 | 
						|
			m_triangleNodes.copyFromArray(other.m_triangleNodes);
 | 
						|
			m_optimizedTree = other.m_optimizedTree;
 | 
						|
			return *this;
 | 
						|
		}
 | 
						|
 | 
						|
		QuantizedNodeTriangleCallback(QuantizedNodeArray&	triangleNodes,const btQuantizedBvh* tree)
 | 
						|
			:m_triangleNodes(triangleNodes),m_optimizedTree(tree)
 | 
						|
		{
 | 
						|
		}
 | 
						|
 | 
						|
		virtual void internalProcessTriangleIndex(btVector3* triangle,int partId,int  triangleIndex)
 | 
						|
		{
 | 
						|
			// The partId and triangle index must fit in the same (positive) integer
 | 
						|
			btAssert(partId < (1<<MAX_NUM_PARTS_IN_BITS));
 | 
						|
			btAssert(triangleIndex < (1<<(31-MAX_NUM_PARTS_IN_BITS)));
 | 
						|
			//negative indices are reserved for escapeIndex
 | 
						|
			btAssert(triangleIndex>=0);
 | 
						|
 | 
						|
			btQuantizedBvhNode node;
 | 
						|
			btVector3	aabbMin,aabbMax;
 | 
						|
			aabbMin.setValue(btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT));
 | 
						|
			aabbMax.setValue(btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT)); 
 | 
						|
			aabbMin.setMin(triangle[0]);
 | 
						|
			aabbMax.setMax(triangle[0]);
 | 
						|
			aabbMin.setMin(triangle[1]);
 | 
						|
			aabbMax.setMax(triangle[1]);
 | 
						|
			aabbMin.setMin(triangle[2]);
 | 
						|
			aabbMax.setMax(triangle[2]);
 | 
						|
 | 
						|
			//PCK: add these checks for zero dimensions of aabb
 | 
						|
			const btScalar MIN_AABB_DIMENSION = btScalar(0.002);
 | 
						|
			const btScalar MIN_AABB_HALF_DIMENSION = btScalar(0.001);
 | 
						|
			if (aabbMax.x() - aabbMin.x() < MIN_AABB_DIMENSION)
 | 
						|
			{
 | 
						|
				aabbMax.setX(aabbMax.x() + MIN_AABB_HALF_DIMENSION);
 | 
						|
				aabbMin.setX(aabbMin.x() - MIN_AABB_HALF_DIMENSION);
 | 
						|
			}
 | 
						|
			if (aabbMax.y() - aabbMin.y() < MIN_AABB_DIMENSION)
 | 
						|
			{
 | 
						|
				aabbMax.setY(aabbMax.y() + MIN_AABB_HALF_DIMENSION);
 | 
						|
				aabbMin.setY(aabbMin.y() - MIN_AABB_HALF_DIMENSION);
 | 
						|
			}
 | 
						|
			if (aabbMax.z() - aabbMin.z() < MIN_AABB_DIMENSION)
 | 
						|
			{
 | 
						|
				aabbMax.setZ(aabbMax.z() + MIN_AABB_HALF_DIMENSION);
 | 
						|
				aabbMin.setZ(aabbMin.z() - MIN_AABB_HALF_DIMENSION);
 | 
						|
			}
 | 
						|
 | 
						|
			m_optimizedTree->quantize(&node.m_quantizedAabbMin[0],aabbMin,0);
 | 
						|
			m_optimizedTree->quantize(&node.m_quantizedAabbMax[0],aabbMax,1);
 | 
						|
 | 
						|
			node.m_escapeIndexOrTriangleIndex = (partId<<(31-MAX_NUM_PARTS_IN_BITS)) | triangleIndex;
 | 
						|
 | 
						|
			m_triangleNodes.push_back(node);
 | 
						|
		}
 | 
						|
	};
 | 
						|
	
 | 
						|
 | 
						|
 | 
						|
	int numLeafNodes = 0;
 | 
						|
 | 
						|
	
 | 
						|
	if (m_useQuantization)
 | 
						|
	{
 | 
						|
 | 
						|
		//initialize quantization values
 | 
						|
		setQuantizationValues(bvhAabbMin,bvhAabbMax);
 | 
						|
 | 
						|
		QuantizedNodeTriangleCallback	callback(m_quantizedLeafNodes,this);
 | 
						|
 | 
						|
	
 | 
						|
		triangles->InternalProcessAllTriangles(&callback,m_bvhAabbMin,m_bvhAabbMax);
 | 
						|
 | 
						|
		//now we have an array of leafnodes in m_leafNodes
 | 
						|
		numLeafNodes = m_quantizedLeafNodes.size();
 | 
						|
 | 
						|
 | 
						|
		m_quantizedContiguousNodes.resize(2*numLeafNodes);
 | 
						|
 | 
						|
 | 
						|
	} else
 | 
						|
	{
 | 
						|
		NodeTriangleCallback	callback(m_leafNodes);
 | 
						|
 | 
						|
		btVector3 aabbMin(btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT));
 | 
						|
		btVector3 aabbMax(btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT));
 | 
						|
 | 
						|
		triangles->InternalProcessAllTriangles(&callback,aabbMin,aabbMax);
 | 
						|
 | 
						|
		//now we have an array of leafnodes in m_leafNodes
 | 
						|
		numLeafNodes = m_leafNodes.size();
 | 
						|
 | 
						|
		m_contiguousNodes.resize(2*numLeafNodes);
 | 
						|
	}
 | 
						|
 | 
						|
	m_curNodeIndex = 0;
 | 
						|
 | 
						|
	buildTree(0,numLeafNodes);
 | 
						|
 | 
						|
	///if the entire tree is small then subtree size, we need to create a header info for the tree
 | 
						|
	if(m_useQuantization && !m_SubtreeHeaders.size())
 | 
						|
	{
 | 
						|
		btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand();
 | 
						|
		subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[0]);
 | 
						|
		subtree.m_rootNodeIndex = 0;
 | 
						|
		subtree.m_subtreeSize = m_quantizedContiguousNodes[0].isLeafNode() ? 1 : m_quantizedContiguousNodes[0].getEscapeIndex();
 | 
						|
	}
 | 
						|
 | 
						|
	//PCK: update the copy of the size
 | 
						|
	m_subtreeHeaderCount = m_SubtreeHeaders.size();
 | 
						|
 | 
						|
	//PCK: clear m_quantizedLeafNodes and m_leafNodes, they are temporary
 | 
						|
	m_quantizedLeafNodes.clear();
 | 
						|
	m_leafNodes.clear();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
void	btOptimizedBvh::refit(btStridingMeshInterface* meshInterface,const btVector3& aabbMin,const btVector3& aabbMax)
 | 
						|
{
 | 
						|
	if (m_useQuantization)
 | 
						|
	{
 | 
						|
 | 
						|
		setQuantizationValues(aabbMin,aabbMax);
 | 
						|
 | 
						|
		updateBvhNodes(meshInterface,0,m_curNodeIndex,0);
 | 
						|
 | 
						|
		///now update all subtree headers
 | 
						|
 | 
						|
		int i;
 | 
						|
		for (i=0;i<m_SubtreeHeaders.size();i++)
 | 
						|
		{
 | 
						|
			btBvhSubtreeInfo& subtree = m_SubtreeHeaders[i];
 | 
						|
			subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[subtree.m_rootNodeIndex]);
 | 
						|
		}
 | 
						|
 | 
						|
	} else
 | 
						|
	{
 | 
						|
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
void	btOptimizedBvh::refitPartial(btStridingMeshInterface* meshInterface,const btVector3& aabbMin,const btVector3& aabbMax)
 | 
						|
{
 | 
						|
	//incrementally initialize quantization values
 | 
						|
	btAssert(m_useQuantization);
 | 
						|
 | 
						|
	btAssert(aabbMin.getX() > m_bvhAabbMin.getX());
 | 
						|
	btAssert(aabbMin.getY() > m_bvhAabbMin.getY());
 | 
						|
	btAssert(aabbMin.getZ() > m_bvhAabbMin.getZ());
 | 
						|
 | 
						|
	btAssert(aabbMax.getX() < m_bvhAabbMax.getX());
 | 
						|
	btAssert(aabbMax.getY() < m_bvhAabbMax.getY());
 | 
						|
	btAssert(aabbMax.getZ() < m_bvhAabbMax.getZ());
 | 
						|
 | 
						|
	///we should update all quantization values, using updateBvhNodes(meshInterface);
 | 
						|
	///but we only update chunks that overlap the given aabb
 | 
						|
	
 | 
						|
	unsigned short	quantizedQueryAabbMin[3];
 | 
						|
	unsigned short	quantizedQueryAabbMax[3];
 | 
						|
 | 
						|
	quantize(&quantizedQueryAabbMin[0],aabbMin,0);
 | 
						|
	quantize(&quantizedQueryAabbMax[0],aabbMax,1);
 | 
						|
 | 
						|
	int i;
 | 
						|
	for (i=0;i<this->m_SubtreeHeaders.size();i++)
 | 
						|
	{
 | 
						|
		btBvhSubtreeInfo& subtree = m_SubtreeHeaders[i];
 | 
						|
 | 
						|
		//PCK: unsigned instead of bool
 | 
						|
		unsigned overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax);
 | 
						|
		if (overlap != 0)
 | 
						|
		{
 | 
						|
			updateBvhNodes(meshInterface,subtree.m_rootNodeIndex,subtree.m_rootNodeIndex+subtree.m_subtreeSize,i);
 | 
						|
 | 
						|
			subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[subtree.m_rootNodeIndex]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	
 | 
						|
}
 | 
						|
 | 
						|
void	btOptimizedBvh::updateBvhNodes(btStridingMeshInterface* meshInterface,int firstNode,int endNode,int index)
 | 
						|
{
 | 
						|
	(void)index;
 | 
						|
 | 
						|
	btAssert(m_useQuantization);
 | 
						|
 | 
						|
	int curNodeSubPart=-1;
 | 
						|
 | 
						|
	//get access info to trianglemesh data
 | 
						|
		const unsigned char *vertexbase = 0;
 | 
						|
		int numverts = 0;
 | 
						|
		PHY_ScalarType type = PHY_INTEGER;
 | 
						|
		int stride = 0;
 | 
						|
		const unsigned char *indexbase = 0;
 | 
						|
		int indexstride = 0;
 | 
						|
		int numfaces = 0;
 | 
						|
		PHY_ScalarType indicestype = PHY_INTEGER;
 | 
						|
 | 
						|
		btVector3	triangleVerts[3];
 | 
						|
		btVector3	aabbMin,aabbMax;
 | 
						|
		const btVector3& meshScaling = meshInterface->getScaling();
 | 
						|
		
 | 
						|
		int i;
 | 
						|
		for (i=endNode-1;i>=firstNode;i--)
 | 
						|
		{
 | 
						|
 | 
						|
 | 
						|
			btQuantizedBvhNode& curNode = m_quantizedContiguousNodes[i];
 | 
						|
			if (curNode.isLeafNode())
 | 
						|
			{
 | 
						|
				//recalc aabb from triangle data
 | 
						|
				int nodeSubPart = curNode.getPartId();
 | 
						|
				int nodeTriangleIndex = curNode.getTriangleIndex();
 | 
						|
				if (nodeSubPart != curNodeSubPart)
 | 
						|
				{
 | 
						|
					if (curNodeSubPart >= 0)
 | 
						|
						meshInterface->unLockReadOnlyVertexBase(curNodeSubPart);
 | 
						|
					meshInterface->getLockedReadOnlyVertexIndexBase(&vertexbase,numverts,	type,stride,&indexbase,indexstride,numfaces,indicestype,nodeSubPart);
 | 
						|
 | 
						|
					curNodeSubPart = nodeSubPart;
 | 
						|
					btAssert(indicestype==PHY_INTEGER||indicestype==PHY_SHORT);
 | 
						|
				}
 | 
						|
				//triangles->getLockedReadOnlyVertexIndexBase(vertexBase,numVerts,
 | 
						|
 | 
						|
				unsigned int* gfxbase = (unsigned int*)(indexbase+nodeTriangleIndex*indexstride);
 | 
						|
				
 | 
						|
				
 | 
						|
				for (int j=2;j>=0;j--)
 | 
						|
				{
 | 
						|
					
 | 
						|
					int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j];
 | 
						|
					if (type == PHY_FLOAT)
 | 
						|
					{
 | 
						|
						float* graphicsbase = (float*)(vertexbase+graphicsindex*stride);
 | 
						|
						triangleVerts[j] = btVector3(
 | 
						|
							graphicsbase[0]*meshScaling.getX(),
 | 
						|
							graphicsbase[1]*meshScaling.getY(),
 | 
						|
							graphicsbase[2]*meshScaling.getZ());
 | 
						|
					}
 | 
						|
					else
 | 
						|
					{
 | 
						|
						double* graphicsbase = (double*)(vertexbase+graphicsindex*stride);
 | 
						|
						triangleVerts[j] = btVector3( btScalar(graphicsbase[0]*meshScaling.getX()), btScalar(graphicsbase[1]*meshScaling.getY()), btScalar(graphicsbase[2]*meshScaling.getZ()));
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
 | 
						|
				
 | 
						|
				aabbMin.setValue(btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT));
 | 
						|
				aabbMax.setValue(btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT)); 
 | 
						|
				aabbMin.setMin(triangleVerts[0]);
 | 
						|
				aabbMax.setMax(triangleVerts[0]);
 | 
						|
				aabbMin.setMin(triangleVerts[1]);
 | 
						|
				aabbMax.setMax(triangleVerts[1]);
 | 
						|
				aabbMin.setMin(triangleVerts[2]);
 | 
						|
				aabbMax.setMax(triangleVerts[2]);
 | 
						|
 | 
						|
				quantize(&curNode.m_quantizedAabbMin[0],aabbMin,0);
 | 
						|
				quantize(&curNode.m_quantizedAabbMax[0],aabbMax,1);
 | 
						|
				
 | 
						|
			} else
 | 
						|
			{
 | 
						|
				//combine aabb from both children
 | 
						|
 | 
						|
				btQuantizedBvhNode* leftChildNode = &m_quantizedContiguousNodes[i+1];
 | 
						|
				
 | 
						|
				btQuantizedBvhNode* rightChildNode = leftChildNode->isLeafNode() ? &m_quantizedContiguousNodes[i+2] :
 | 
						|
					&m_quantizedContiguousNodes[i+1+leftChildNode->getEscapeIndex()];
 | 
						|
				
 | 
						|
 | 
						|
				{
 | 
						|
					for (int i=0;i<3;i++)
 | 
						|
					{
 | 
						|
						curNode.m_quantizedAabbMin[i] = leftChildNode->m_quantizedAabbMin[i];
 | 
						|
						if (curNode.m_quantizedAabbMin[i]>rightChildNode->m_quantizedAabbMin[i])
 | 
						|
							curNode.m_quantizedAabbMin[i]=rightChildNode->m_quantizedAabbMin[i];
 | 
						|
 | 
						|
						curNode.m_quantizedAabbMax[i] = leftChildNode->m_quantizedAabbMax[i];
 | 
						|
						if (curNode.m_quantizedAabbMax[i] < rightChildNode->m_quantizedAabbMax[i])
 | 
						|
							curNode.m_quantizedAabbMax[i] = rightChildNode->m_quantizedAabbMax[i];
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
		if (curNodeSubPart >= 0)
 | 
						|
			meshInterface->unLockReadOnlyVertexBase(curNodeSubPart);
 | 
						|
 | 
						|
		
 | 
						|
}
 | 
						|
 | 
						|
///deSerializeInPlace loads and initializes a BVH from a buffer in memory 'in place'
 | 
						|
btOptimizedBvh* btOptimizedBvh::deSerializeInPlace(void *i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian)
 | 
						|
{
 | 
						|
	btQuantizedBvh* bvh = btQuantizedBvh::deSerializeInPlace(i_alignedDataBuffer,i_dataBufferSize,i_swapEndian);
 | 
						|
	
 | 
						|
	//we don't add additional data so just do a static upcast
 | 
						|
	return static_cast<btOptimizedBvh*>(bvh);
 | 
						|
}
 |