141 lines
5.2 KiB
GLSL
141 lines
5.2 KiB
GLSL
#ifndef _BRDF_GLSL_
|
|
#define _BRDF_GLSL_
|
|
|
|
// http://xlgames-inc.github.io/posts/improvedibl/
|
|
// http://blog.selfshadow.com/publications/s2013-shading-course/
|
|
vec3 f_schlick(const vec3 f0, const float vh) {
|
|
return f0 + (1.0 - f0) * exp2((-5.55473 * vh - 6.98316) * vh);
|
|
}
|
|
|
|
float v_smithschlick(const float nl, const float nv, const float a) {
|
|
return 1.0 / ((nl * (1.0 - a) + a) * (nv * (1.0 - a) + a));
|
|
}
|
|
|
|
//Uncorrelated masking/shadowing (info below) function
|
|
//Because it is uncorrelated, G1(NdotL, a) gives us shadowing, and G1(NdotV, a) gives us masking function.
|
|
//Approximation from: https://ubm-twvideo01.s3.amazonaws.com/o1/vault/gdc2017/Presentations/Hammon_Earl_PBR_Diffuse_Lighting.pdf
|
|
float g1_approx(const float NdotX, const float alpha)
|
|
{
|
|
return (2.0 * NdotX) * (1.0 / (NdotX * (2.0 - alpha) + alpha));
|
|
}
|
|
|
|
//Uncorrelated masking-shadowing function
|
|
//Approximation from: https://ubm-twvideo01.s3.amazonaws.com/o1/vault/gdc2017/Presentations/Hammon_Earl_PBR_Diffuse_Lighting.pdf
|
|
float g2_approx(const float NdotL, const float NdotV, const float alpha)
|
|
{
|
|
vec2 helper = (2.0 * vec2(NdotL, NdotV)) * (1.0 / (vec2(NdotL, NdotV) * (2.0 - alpha) + alpha));
|
|
return max(helper.x * helper.y, 0.0); //This can go negative, let's fix that
|
|
}
|
|
|
|
float d_ggx(const float nh, const float a) {
|
|
float a2 = a * a;
|
|
float denom = nh * nh * (a2 - 1.0) + 1.0;
|
|
denom = max(denom * denom, 0.00006103515625 /* 2^-14 = smallest possible half float value, prevent div by zero */);
|
|
return a2 * (1.0 / 3.1415926535) / denom;
|
|
}
|
|
|
|
vec3 specularBRDF(const vec3 f0, const float roughness, const float nl, const float nh, const float nv, const float vh) {
|
|
float a = roughness * roughness;
|
|
return d_ggx(nh, a) * g2_approx(nl, nv, a) * f_schlick(f0, vh) / max(4.0 * nv, 1e-5); //NdotL cancels out later
|
|
}
|
|
|
|
// John Hable - Optimizing GGX Shaders
|
|
// http://filmicworlds.com/blog/optimizing-ggx-shaders-with-dotlh/
|
|
vec3 specularBRDFb(const vec3 f0, const float roughness, const float dotNL, const float dotNH, const float dotLH) {
|
|
// D
|
|
const float pi = 3.1415926535;
|
|
float alpha = roughness * roughness;
|
|
float alphaSqr = alpha * alpha;
|
|
float denom = dotNH * dotNH * (alphaSqr - 1.0) + 1.0;
|
|
float D = alphaSqr / (pi * denom * denom);
|
|
// F
|
|
const float F_a = 1.0;
|
|
float F_b = pow(1.0 - dotLH, 5.0);
|
|
// V
|
|
float vis;
|
|
float k = alpha / 2.0;
|
|
float k2 = k * k;
|
|
float invK2 = 1.0 - k2;
|
|
vis = 1.0 / (dotLH * dotLH * invK2 + k2);
|
|
vec2 FV_helper = vec2((F_a - F_b) * vis, F_b * vis);
|
|
|
|
vec3 FV = f0 * FV_helper.x + FV_helper.y;
|
|
vec3 specular = clamp(dotNL, 0.0, 1.0) * D * FV;
|
|
return specular / 4.0; // TODO: get rid of / 4.0
|
|
}
|
|
|
|
vec3 orenNayarDiffuseBRDF(const vec3 albedo, const float roughness, const float nv, const float nl, const float vh) {
|
|
float a = roughness * roughness;
|
|
float s = a;
|
|
float s2 = s * s;
|
|
float vl = 2.0 * vh * vh - 1.0; // Double angle identity
|
|
float Cosri = vl - nv * nl;
|
|
float C1 = 1.0 - 0.5 * s2 / (s2 + 0.33);
|
|
float test = 1.0;
|
|
if (Cosri >= 0.0) test = (1.0 / (max(nl, nv)));
|
|
float C2 = 0.45 * s2 / (s2 + 0.09) * Cosri * test;
|
|
return albedo * max(0.0, nl) * (C1 + C2) * (1.0 + roughness * 0.5);
|
|
}
|
|
|
|
vec3 lambertDiffuseBRDF(const vec3 albedo, const float nl) {
|
|
return albedo * nl;
|
|
}
|
|
|
|
vec3 surfaceAlbedo(const vec3 baseColor, const float metalness) {
|
|
return mix(baseColor, vec3(0.0), metalness);
|
|
}
|
|
|
|
vec3 surfaceF0(const vec3 baseColor, const float metalness) {
|
|
return mix(vec3(0.04), baseColor, metalness);
|
|
}
|
|
|
|
float getMipFromRoughness(const float roughness, const float numMipmaps) {
|
|
// First mipmap level = roughness 0, last = roughness = 1
|
|
return roughness * numMipmaps;
|
|
}
|
|
|
|
float wardSpecular(vec3 N, vec3 H, float dotNL, float dotNV, float dotNH, vec3 fiberDirection, float shinyParallel, float shinyPerpendicular) {
|
|
if(dotNL < 0.0 || dotNV < 0.0) {
|
|
return 0.0;
|
|
}
|
|
// fiberDirection - parse from rotation
|
|
// shinyParallel - roughness
|
|
// shinyPerpendicular - anisotropy
|
|
|
|
vec3 fiberParallel = normalize(fiberDirection);
|
|
vec3 fiberPerpendicular = normalize(cross(N, fiberDirection));
|
|
float dotXH = dot(fiberParallel, H);
|
|
float dotYH = dot(fiberPerpendicular, H);
|
|
const float PI = 3.1415926535;
|
|
float coeff = sqrt(dotNL/dotNV) / (4.0 * PI * shinyParallel * shinyPerpendicular);
|
|
float theta = (pow(dotXH/shinyParallel, 2.0) + pow(dotYH/shinyPerpendicular, 2.0)) / (1.0 + dotNH);
|
|
return clamp(coeff * exp(-2.0 * theta), 0.0, 1.0);
|
|
}
|
|
|
|
// https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
|
|
// vec3 EnvBRDFApprox(vec3 SpecularColor, float Roughness, float NoV) {
|
|
// const vec4 c0 = { -1, -0.0275, -0.572, 0.022 };
|
|
// const vec4 c1 = { 1, 0.0425, 1.04, -0.04 };
|
|
// vec4 r = Roughness * c0 + c1;
|
|
// float a004 = min( r.x * r.x, exp2( -9.28 * NoV ) ) * r.x + r.y;
|
|
// vec2 AB = vec2( -1.04, 1.04 ) * a004 + r.zw;
|
|
// return SpecularColor * AB.x + AB.y;
|
|
// }
|
|
// float EnvBRDFApproxNonmetal(float Roughness, float NoV) {
|
|
// // Same as EnvBRDFApprox( 0.04, Roughness, NoV )
|
|
// const vec2 c0 = { -1, -0.0275 };
|
|
// const vec2 c1 = { 1, 0.0425 };
|
|
// vec2 r = Roughness * c0 + c1;
|
|
// return min( r.x * r.x, exp2( -9.28 * NoV ) ) * r.x + r.y;
|
|
// }
|
|
float D_Approx(const float Roughness, const float RoL) {
|
|
float a = Roughness * Roughness;
|
|
float a2 = a * a;
|
|
float rcp_a2 = 1.0 / a2;//rcp(a2);
|
|
// 0.5 / ln(2), 0.275 / ln(2)
|
|
float c = 0.72134752 * rcp_a2 + 0.39674113;
|
|
return rcp_a2 * exp2( c * RoL - c );
|
|
}
|
|
|
|
#endif
|