641 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			641 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
 | 
						|
/*! \file gim_tri_collision.h
 | 
						|
\author Francisco Leon Najera
 | 
						|
*/
 | 
						|
/*
 | 
						|
-----------------------------------------------------------------------------
 | 
						|
This source file is part of GIMPACT Library.
 | 
						|
 | 
						|
For the latest info, see http://gimpact.sourceforge.net/
 | 
						|
 | 
						|
Copyright (c) 2006 Francisco Leon Najera. C.C. 80087371.
 | 
						|
email: projectileman@yahoo.com
 | 
						|
 | 
						|
 This library is free software; you can redistribute it and/or
 | 
						|
 modify it under the terms of EITHER:
 | 
						|
   (1) The GNU Lesser General Public License as published by the Free
 | 
						|
       Software Foundation; either version 2.1 of the License, or (at
 | 
						|
       your option) any later version. The text of the GNU Lesser
 | 
						|
       General Public License is included with this library in the
 | 
						|
       file GIMPACT-LICENSE-LGPL.TXT.
 | 
						|
   (2) The BSD-style license that is included with this library in
 | 
						|
       the file GIMPACT-LICENSE-BSD.TXT.
 | 
						|
   (3) The zlib/libpng license that is included with this library in
 | 
						|
       the file GIMPACT-LICENSE-ZLIB.TXT.
 | 
						|
 | 
						|
 This library is distributed in the hope that it will be useful,
 | 
						|
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files
 | 
						|
 GIMPACT-LICENSE-LGPL.TXT, GIMPACT-LICENSE-ZLIB.TXT and GIMPACT-LICENSE-BSD.TXT for more details.
 | 
						|
 | 
						|
-----------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
 | 
						|
#include "gim_tri_collision.h"
 | 
						|
 | 
						|
 | 
						|
#define TRI_LOCAL_EPSILON 0.000001f
 | 
						|
#define MIN_EDGE_EDGE_DIS 0.00001f
 | 
						|
 | 
						|
 | 
						|
class GIM_TRIANGLE_CALCULATION_CACHE
 | 
						|
{
 | 
						|
public:
 | 
						|
	GREAL margin;	
 | 
						|
	btVector3 tu_vertices[3];
 | 
						|
	btVector3 tv_vertices[3];
 | 
						|
	btVector4 tu_plane;
 | 
						|
	btVector4 tv_plane;
 | 
						|
	btVector3 closest_point_u;
 | 
						|
	btVector3 closest_point_v;
 | 
						|
	btVector3 edge_edge_dir;
 | 
						|
	btVector3 distances;
 | 
						|
	GREAL du[4];
 | 
						|
	GREAL du0du1;
 | 
						|
	GREAL du0du2;
 | 
						|
	GREAL dv[4];
 | 
						|
	GREAL dv0dv1;
 | 
						|
	GREAL dv0dv2;	
 | 
						|
	btVector3 temp_points[MAX_TRI_CLIPPING];
 | 
						|
	btVector3 temp_points1[MAX_TRI_CLIPPING];
 | 
						|
	btVector3 contact_points[MAX_TRI_CLIPPING];
 | 
						|
	
 | 
						|
 | 
						|
 | 
						|
	//! if returns false, the faces are paralele
 | 
						|
	SIMD_FORCE_INLINE bool compute_intervals(
 | 
						|
					const GREAL &D0,
 | 
						|
					const GREAL &D1,
 | 
						|
					const GREAL &D2,
 | 
						|
					const GREAL &D0D1,
 | 
						|
					const GREAL &D0D2,
 | 
						|
					GREAL & scale_edge0,
 | 
						|
					GREAL & scale_edge1,
 | 
						|
					GUINT &edge_index0,
 | 
						|
					GUINT &edge_index1)
 | 
						|
	{
 | 
						|
		if(D0D1>0.0f)
 | 
						|
		{
 | 
						|
			/* here we know that D0D2<=0.0 */
 | 
						|
			/* that is D0, D1 are on the same side, D2 on the other or on the plane */
 | 
						|
			scale_edge0 = -D2/(D0-D2);
 | 
						|
			scale_edge1 = -D1/(D2-D1);
 | 
						|
			edge_index0 = 2;edge_index1 = 1;
 | 
						|
		}
 | 
						|
		else if(D0D2>0.0f)
 | 
						|
		{
 | 
						|
			/* here we know that d0d1<=0.0 */
 | 
						|
			scale_edge0 = -D0/(D1-D0);
 | 
						|
			scale_edge1 = -D1/(D2-D1);
 | 
						|
			edge_index0 = 0;edge_index1 = 1;
 | 
						|
		}
 | 
						|
		else if(D1*D2>0.0f || D0!=0.0f)
 | 
						|
		{
 | 
						|
			/* here we know that d0d1<=0.0 or that D0!=0.0 */
 | 
						|
			scale_edge0 = -D0/(D1-D0);
 | 
						|
			scale_edge1 = -D2/(D0-D2);
 | 
						|
			edge_index0 = 0 ;edge_index1 = 2;
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	//! clip triangle
 | 
						|
	/*!
 | 
						|
	*/
 | 
						|
	SIMD_FORCE_INLINE GUINT clip_triangle(
 | 
						|
		const btVector4 & tri_plane,
 | 
						|
		const btVector3 * tripoints,
 | 
						|
		const btVector3 * srcpoints,
 | 
						|
		btVector3 * clip_points)
 | 
						|
	{
 | 
						|
		// edge 0
 | 
						|
 | 
						|
		btVector4 edgeplane;
 | 
						|
 | 
						|
		EDGE_PLANE(tripoints[0],tripoints[1],tri_plane,edgeplane);
 | 
						|
 | 
						|
		GUINT clipped_count = PLANE_CLIP_TRIANGLE3D(
 | 
						|
			edgeplane,srcpoints[0],srcpoints[1],srcpoints[2],temp_points);
 | 
						|
 | 
						|
		if(clipped_count == 0) return 0;
 | 
						|
 | 
						|
		// edge 1
 | 
						|
 | 
						|
		EDGE_PLANE(tripoints[1],tripoints[2],tri_plane,edgeplane);
 | 
						|
 | 
						|
		clipped_count = PLANE_CLIP_POLYGON3D(
 | 
						|
			edgeplane,temp_points,clipped_count,temp_points1);
 | 
						|
 | 
						|
		if(clipped_count == 0) return 0;
 | 
						|
 | 
						|
		// edge 2
 | 
						|
 | 
						|
		EDGE_PLANE(tripoints[2],tripoints[0],tri_plane,edgeplane);
 | 
						|
 | 
						|
		clipped_count = PLANE_CLIP_POLYGON3D(
 | 
						|
			edgeplane,temp_points1,clipped_count,clip_points);
 | 
						|
 | 
						|
		return clipped_count;
 | 
						|
 | 
						|
 | 
						|
		/*GUINT i0 = (tri_plane.closestAxis()+1)%3;
 | 
						|
		GUINT i1 = (i0+1)%3;
 | 
						|
		// edge 0
 | 
						|
		btVector3 temp_points[MAX_TRI_CLIPPING];
 | 
						|
		btVector3 temp_points1[MAX_TRI_CLIPPING];
 | 
						|
 | 
						|
		GUINT clipped_count= PLANE_CLIP_TRIANGLE_GENERIC(
 | 
						|
			0,srcpoints[0],srcpoints[1],srcpoints[2],temp_points,
 | 
						|
			DISTANCE_EDGE(tripoints[0],tripoints[1],i0,i1));
 | 
						|
		
 | 
						|
		
 | 
						|
		if(clipped_count == 0) return 0;
 | 
						|
 | 
						|
		// edge 1
 | 
						|
		clipped_count = PLANE_CLIP_POLYGON_GENERIC(
 | 
						|
			0,temp_points,clipped_count,temp_points1,
 | 
						|
			DISTANCE_EDGE(tripoints[1],tripoints[2],i0,i1));
 | 
						|
 | 
						|
		if(clipped_count == 0) return 0;
 | 
						|
 | 
						|
		// edge 2
 | 
						|
		clipped_count = PLANE_CLIP_POLYGON_GENERIC(
 | 
						|
			0,temp_points1,clipped_count,clipped_points,
 | 
						|
			DISTANCE_EDGE(tripoints[2],tripoints[0],i0,i1));
 | 
						|
 | 
						|
		return clipped_count;*/
 | 
						|
	}
 | 
						|
 | 
						|
	SIMD_FORCE_INLINE void sort_isect(
 | 
						|
		GREAL & isect0,GREAL & isect1,GUINT &e0,GUINT &e1,btVector3 & vec0,btVector3 & vec1)
 | 
						|
	{
 | 
						|
		if(isect1<isect0)
 | 
						|
		{
 | 
						|
			//swap
 | 
						|
			GIM_SWAP_NUMBERS(isect0,isect1);
 | 
						|
			GIM_SWAP_NUMBERS(e0,e1);
 | 
						|
			btVector3 tmp = vec0;
 | 
						|
			vec0 = vec1;
 | 
						|
			vec1 = tmp;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	//! Test verifying interval intersection with the direction between planes
 | 
						|
	/*!
 | 
						|
	\pre tv_plane and tu_plane must be set
 | 
						|
	\post
 | 
						|
	distances[2] is set with the distance
 | 
						|
	closest_point_u, closest_point_v, edge_edge_dir are set too
 | 
						|
	\return
 | 
						|
	- 0: faces are paralele
 | 
						|
	- 1: face U casts face V
 | 
						|
	- 2: face V casts face U
 | 
						|
	- 3: nearest edges
 | 
						|
	*/
 | 
						|
	SIMD_FORCE_INLINE GUINT cross_line_intersection_test()
 | 
						|
	{
 | 
						|
		// Compute direction of intersection line
 | 
						|
		edge_edge_dir = tu_plane.cross(tv_plane);
 | 
						|
		GREAL Dlen;
 | 
						|
		VEC_LENGTH(edge_edge_dir,Dlen);
 | 
						|
 | 
						|
		if(Dlen<0.0001)
 | 
						|
		{
 | 
						|
			return 0; //faces near paralele
 | 
						|
		}
 | 
						|
 | 
						|
		edge_edge_dir*= 1/Dlen;//normalize
 | 
						|
 | 
						|
 | 
						|
		// Compute interval for triangle 1
 | 
						|
		GUINT tu_e0,tu_e1;//edge indices
 | 
						|
		GREAL tu_scale_e0,tu_scale_e1;//edge scale
 | 
						|
		if(!compute_intervals(du[0],du[1],du[2],
 | 
						|
			du0du1,du0du2,tu_scale_e0,tu_scale_e1,tu_e0,tu_e1)) return 0;
 | 
						|
 | 
						|
		// Compute interval for triangle 2
 | 
						|
		GUINT tv_e0,tv_e1;//edge indices
 | 
						|
		GREAL tv_scale_e0,tv_scale_e1;//edge scale
 | 
						|
 | 
						|
		if(!compute_intervals(dv[0],dv[1],dv[2],
 | 
						|
			dv0dv1,dv0dv2,tv_scale_e0,tv_scale_e1,tv_e0,tv_e1)) return 0;
 | 
						|
 | 
						|
		//proyected vertices
 | 
						|
		btVector3 up_e0 = tu_vertices[tu_e0].lerp(tu_vertices[(tu_e0+1)%3],tu_scale_e0);
 | 
						|
		btVector3 up_e1 = tu_vertices[tu_e1].lerp(tu_vertices[(tu_e1+1)%3],tu_scale_e1);
 | 
						|
 | 
						|
		btVector3 vp_e0 = tv_vertices[tv_e0].lerp(tv_vertices[(tv_e0+1)%3],tv_scale_e0);
 | 
						|
		btVector3 vp_e1 = tv_vertices[tv_e1].lerp(tv_vertices[(tv_e1+1)%3],tv_scale_e1);
 | 
						|
 | 
						|
		//proyected intervals
 | 
						|
		GREAL isect_u[] = {up_e0.dot(edge_edge_dir),up_e1.dot(edge_edge_dir)};
 | 
						|
		GREAL isect_v[] = {vp_e0.dot(edge_edge_dir),vp_e1.dot(edge_edge_dir)};
 | 
						|
 | 
						|
		sort_isect(isect_u[0],isect_u[1],tu_e0,tu_e1,up_e0,up_e1);
 | 
						|
		sort_isect(isect_v[0],isect_v[1],tv_e0,tv_e1,vp_e0,vp_e1);
 | 
						|
 | 
						|
		const GREAL midpoint_u = 0.5f*(isect_u[0]+isect_u[1]); // midpoint
 | 
						|
		const GREAL midpoint_v = 0.5f*(isect_v[0]+isect_v[1]); // midpoint
 | 
						|
 | 
						|
		if(midpoint_u<midpoint_v)
 | 
						|
		{
 | 
						|
			if(isect_u[1]>=isect_v[1]) // face U casts face V
 | 
						|
			{
 | 
						|
				return 1;
 | 
						|
			}
 | 
						|
			else if(isect_v[0]<=isect_u[0]) // face V casts face U
 | 
						|
			{
 | 
						|
				return 2;
 | 
						|
			}
 | 
						|
			// closest points
 | 
						|
			closest_point_u = up_e1;
 | 
						|
			closest_point_v = vp_e0;
 | 
						|
			// calc edges and separation
 | 
						|
 | 
						|
			if(isect_u[1]+ MIN_EDGE_EDGE_DIS<isect_v[0]) //calc distance between two lines instead
 | 
						|
			{
 | 
						|
				SEGMENT_COLLISION(
 | 
						|
					tu_vertices[tu_e1],tu_vertices[(tu_e1+1)%3],
 | 
						|
					tv_vertices[tv_e0],tv_vertices[(tv_e0+1)%3],
 | 
						|
					closest_point_u,
 | 
						|
					closest_point_v);
 | 
						|
 | 
						|
				edge_edge_dir = closest_point_u-closest_point_v;
 | 
						|
				VEC_LENGTH(edge_edge_dir,distances[2]);
 | 
						|
				edge_edge_dir *= 1.0f/distances[2];// normalize
 | 
						|
			}
 | 
						|
			else
 | 
						|
			{
 | 
						|
				distances[2] = isect_v[0]-isect_u[1];//distance negative
 | 
						|
				//edge_edge_dir *= -1.0f; //normal pointing from V to U
 | 
						|
			}
 | 
						|
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			if(isect_v[1]>=isect_u[1]) // face V casts face U
 | 
						|
			{
 | 
						|
				return 2;
 | 
						|
			}
 | 
						|
			else if(isect_u[0]<=isect_v[0]) // face U casts face V
 | 
						|
			{
 | 
						|
				return 1;
 | 
						|
			}
 | 
						|
			// closest points
 | 
						|
			closest_point_u = up_e0;
 | 
						|
			closest_point_v = vp_e1;
 | 
						|
			// calc edges and separation
 | 
						|
 | 
						|
			if(isect_v[1]+MIN_EDGE_EDGE_DIS<isect_u[0]) //calc distance between two lines instead
 | 
						|
			{
 | 
						|
				SEGMENT_COLLISION(
 | 
						|
					tu_vertices[tu_e0],tu_vertices[(tu_e0+1)%3],
 | 
						|
					tv_vertices[tv_e1],tv_vertices[(tv_e1+1)%3],
 | 
						|
					closest_point_u,
 | 
						|
					closest_point_v);
 | 
						|
 | 
						|
				edge_edge_dir = closest_point_u-closest_point_v;
 | 
						|
				VEC_LENGTH(edge_edge_dir,distances[2]);
 | 
						|
				edge_edge_dir *= 1.0f/distances[2];// normalize
 | 
						|
			}
 | 
						|
			else
 | 
						|
			{
 | 
						|
				distances[2] = isect_u[0]-isect_v[1];//distance negative
 | 
						|
				//edge_edge_dir *= -1.0f; //normal pointing from V to U
 | 
						|
			}
 | 
						|
		}
 | 
						|
		return 3;
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	//! collides by two sides
 | 
						|
	SIMD_FORCE_INLINE bool triangle_collision(
 | 
						|
					const btVector3 & u0,
 | 
						|
					const btVector3 & u1,
 | 
						|
					const btVector3 & u2,
 | 
						|
					GREAL margin_u,
 | 
						|
					const btVector3 & v0,
 | 
						|
					const btVector3 & v1,
 | 
						|
					const btVector3 & v2,
 | 
						|
					GREAL margin_v,
 | 
						|
					GIM_TRIANGLE_CONTACT_DATA & contacts)
 | 
						|
	{
 | 
						|
 | 
						|
		margin = margin_u + margin_v;
 | 
						|
 | 
						|
		tu_vertices[0] = u0;
 | 
						|
		tu_vertices[1] = u1;
 | 
						|
		tu_vertices[2] = u2;
 | 
						|
 | 
						|
		tv_vertices[0] = v0;
 | 
						|
		tv_vertices[1] = v1;
 | 
						|
		tv_vertices[2] = v2;
 | 
						|
 | 
						|
		//create planes
 | 
						|
		// plane v vs U points
 | 
						|
 | 
						|
		TRIANGLE_PLANE(tv_vertices[0],tv_vertices[1],tv_vertices[2],tv_plane);
 | 
						|
 | 
						|
		du[0] = DISTANCE_PLANE_POINT(tv_plane,tu_vertices[0]);
 | 
						|
		du[1] = DISTANCE_PLANE_POINT(tv_plane,tu_vertices[1]);
 | 
						|
		du[2] = DISTANCE_PLANE_POINT(tv_plane,tu_vertices[2]);
 | 
						|
 | 
						|
 | 
						|
		du0du1 = du[0] * du[1];
 | 
						|
		du0du2 = du[0] * du[2];
 | 
						|
 | 
						|
 | 
						|
		if(du0du1>0.0f && du0du2>0.0f)	// same sign on all of them + not equal 0 ?
 | 
						|
		{
 | 
						|
			if(du[0]<0) //we need test behind the triangle plane
 | 
						|
			{
 | 
						|
				distances[0] = GIM_MAX3(du[0],du[1],du[2]);
 | 
						|
				distances[0] = -distances[0];
 | 
						|
				if(distances[0]>margin) return false; //never intersect
 | 
						|
 | 
						|
				//reorder triangle v
 | 
						|
				VEC_SWAP(tv_vertices[0],tv_vertices[1]);
 | 
						|
				VEC_SCALE_4(tv_plane,-1.0f,tv_plane);
 | 
						|
			}
 | 
						|
			else
 | 
						|
			{
 | 
						|
				distances[0] = GIM_MIN3(du[0],du[1],du[2]);
 | 
						|
				if(distances[0]>margin) return false; //never intersect
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			//Look if we need to invert the triangle
 | 
						|
			distances[0] = (du[0]+du[1]+du[2])/3.0f; //centroid
 | 
						|
 | 
						|
			if(distances[0]<0.0f)
 | 
						|
			{
 | 
						|
				//reorder triangle v
 | 
						|
				VEC_SWAP(tv_vertices[0],tv_vertices[1]);
 | 
						|
				VEC_SCALE_4(tv_plane,-1.0f,tv_plane);
 | 
						|
 | 
						|
				distances[0] = GIM_MAX3(du[0],du[1],du[2]);
 | 
						|
				distances[0] = -distances[0];
 | 
						|
			}
 | 
						|
			else
 | 
						|
			{
 | 
						|
				distances[0] = GIM_MIN3(du[0],du[1],du[2]);
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
 | 
						|
		// plane U vs V points
 | 
						|
 | 
						|
		TRIANGLE_PLANE(tu_vertices[0],tu_vertices[1],tu_vertices[2],tu_plane);
 | 
						|
 | 
						|
		dv[0] = DISTANCE_PLANE_POINT(tu_plane,tv_vertices[0]);
 | 
						|
		dv[1] = DISTANCE_PLANE_POINT(tu_plane,tv_vertices[1]);
 | 
						|
		dv[2] = DISTANCE_PLANE_POINT(tu_plane,tv_vertices[2]);
 | 
						|
 | 
						|
		dv0dv1 = dv[0] * dv[1];
 | 
						|
		dv0dv2 = dv[0] * dv[2];
 | 
						|
 | 
						|
 | 
						|
		if(dv0dv1>0.0f && dv0dv2>0.0f)	// same sign on all of them + not equal 0 ?
 | 
						|
		{
 | 
						|
			if(dv[0]<0) //we need test behind the triangle plane
 | 
						|
			{
 | 
						|
				distances[1] = GIM_MAX3(dv[0],dv[1],dv[2]);
 | 
						|
				distances[1] = -distances[1];
 | 
						|
				if(distances[1]>margin) return false; //never intersect
 | 
						|
 | 
						|
				//reorder triangle u
 | 
						|
				VEC_SWAP(tu_vertices[0],tu_vertices[1]);
 | 
						|
				VEC_SCALE_4(tu_plane,-1.0f,tu_plane);
 | 
						|
			}
 | 
						|
			else
 | 
						|
			{
 | 
						|
				distances[1] = GIM_MIN3(dv[0],dv[1],dv[2]);
 | 
						|
				if(distances[1]>margin) return false; //never intersect
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			//Look if we need to invert the triangle
 | 
						|
			distances[1] = (dv[0]+dv[1]+dv[2])/3.0f; //centroid
 | 
						|
 | 
						|
			if(distances[1]<0.0f)
 | 
						|
			{
 | 
						|
				//reorder triangle v
 | 
						|
				VEC_SWAP(tu_vertices[0],tu_vertices[1]);
 | 
						|
				VEC_SCALE_4(tu_plane,-1.0f,tu_plane);
 | 
						|
 | 
						|
				distances[1] = GIM_MAX3(dv[0],dv[1],dv[2]);
 | 
						|
				distances[1] = -distances[1];
 | 
						|
			}
 | 
						|
			else
 | 
						|
			{
 | 
						|
				distances[1] = GIM_MIN3(dv[0],dv[1],dv[2]);
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		GUINT bl;
 | 
						|
		/* bl = cross_line_intersection_test();
 | 
						|
		if(bl==3)
 | 
						|
		{
 | 
						|
			//take edge direction too
 | 
						|
			bl = distances.maxAxis();
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{*/
 | 
						|
			bl = 0;
 | 
						|
			if(distances[0]<distances[1]) bl = 1;
 | 
						|
		//}
 | 
						|
 | 
						|
		if(bl==2) //edge edge separation
 | 
						|
		{
 | 
						|
			if(distances[2]>margin) return false;
 | 
						|
 | 
						|
			contacts.m_penetration_depth = -distances[2] + margin;
 | 
						|
			contacts.m_points[0] = closest_point_v;
 | 
						|
			contacts.m_point_count = 1;
 | 
						|
			VEC_COPY(contacts.m_separating_normal,edge_edge_dir);
 | 
						|
 | 
						|
			return true;
 | 
						|
		}
 | 
						|
 | 
						|
		//clip face against other
 | 
						|
 | 
						|
		
 | 
						|
		GUINT point_count;
 | 
						|
		//TODO
 | 
						|
		if(bl == 0) //clip U points against V
 | 
						|
		{
 | 
						|
			point_count = clip_triangle(tv_plane,tv_vertices,tu_vertices,contact_points);
 | 
						|
			if(point_count == 0) return false;						
 | 
						|
			contacts.merge_points(tv_plane,margin,contact_points,point_count);			
 | 
						|
		}
 | 
						|
		else //clip V points against U
 | 
						|
		{
 | 
						|
			point_count = clip_triangle(tu_plane,tu_vertices,tv_vertices,contact_points);
 | 
						|
			if(point_count == 0) return false;			
 | 
						|
			contacts.merge_points(tu_plane,margin,contact_points,point_count);
 | 
						|
			contacts.m_separating_normal *= -1.f;
 | 
						|
		}
 | 
						|
		if(contacts.m_point_count == 0) return false;
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/*class GIM_TRIANGLE_CALCULATION_CACHE
 | 
						|
{
 | 
						|
public:
 | 
						|
	GREAL margin;
 | 
						|
	GUINT clipped_count;
 | 
						|
	btVector3 tu_vertices[3];
 | 
						|
	btVector3 tv_vertices[3];
 | 
						|
	btVector3 temp_points[MAX_TRI_CLIPPING];
 | 
						|
	btVector3 temp_points1[MAX_TRI_CLIPPING];
 | 
						|
	btVector3 clipped_points[MAX_TRI_CLIPPING];
 | 
						|
	GIM_TRIANGLE_CONTACT_DATA contacts1;
 | 
						|
	GIM_TRIANGLE_CONTACT_DATA contacts2;
 | 
						|
 | 
						|
 | 
						|
	//! clip triangle
 | 
						|
	GUINT clip_triangle(
 | 
						|
		const btVector4 & tri_plane,
 | 
						|
		const btVector3 * tripoints,
 | 
						|
		const btVector3 * srcpoints,
 | 
						|
		btVector3 * clipped_points)
 | 
						|
	{
 | 
						|
		// edge 0
 | 
						|
 | 
						|
		btVector4 edgeplane;
 | 
						|
 | 
						|
		EDGE_PLANE(tripoints[0],tripoints[1],tri_plane,edgeplane);
 | 
						|
 | 
						|
		GUINT clipped_count = PLANE_CLIP_TRIANGLE3D(
 | 
						|
			edgeplane,srcpoints[0],srcpoints[1],srcpoints[2],temp_points);
 | 
						|
 | 
						|
		if(clipped_count == 0) return 0;
 | 
						|
 | 
						|
		// edge 1
 | 
						|
 | 
						|
		EDGE_PLANE(tripoints[1],tripoints[2],tri_plane,edgeplane);
 | 
						|
 | 
						|
		clipped_count = PLANE_CLIP_POLYGON3D(
 | 
						|
			edgeplane,temp_points,clipped_count,temp_points1);
 | 
						|
 | 
						|
		if(clipped_count == 0) return 0;
 | 
						|
 | 
						|
		// edge 2
 | 
						|
 | 
						|
		EDGE_PLANE(tripoints[2],tripoints[0],tri_plane,edgeplane);
 | 
						|
 | 
						|
		clipped_count = PLANE_CLIP_POLYGON3D(
 | 
						|
			edgeplane,temp_points1,clipped_count,clipped_points);
 | 
						|
 | 
						|
		return clipped_count;
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
	//! collides only on one side
 | 
						|
	bool triangle_collision(
 | 
						|
					const btVector3 & u0,
 | 
						|
					const btVector3 & u1,
 | 
						|
					const btVector3 & u2,
 | 
						|
					GREAL margin_u,
 | 
						|
					const btVector3 & v0,
 | 
						|
					const btVector3 & v1,
 | 
						|
					const btVector3 & v2,
 | 
						|
					GREAL margin_v,
 | 
						|
					GIM_TRIANGLE_CONTACT_DATA & contacts)
 | 
						|
	{
 | 
						|
 | 
						|
		margin = margin_u + margin_v;
 | 
						|
 | 
						|
		
 | 
						|
		tu_vertices[0] = u0;
 | 
						|
		tu_vertices[1] = u1;
 | 
						|
		tu_vertices[2] = u2;
 | 
						|
 | 
						|
		tv_vertices[0] = v0;
 | 
						|
		tv_vertices[1] = v1;
 | 
						|
		tv_vertices[2] = v2;
 | 
						|
 | 
						|
		//create planes
 | 
						|
		// plane v vs U points
 | 
						|
 | 
						|
 | 
						|
		TRIANGLE_PLANE(tv_vertices[0],tv_vertices[1],tv_vertices[2],contacts1.m_separating_normal);
 | 
						|
 | 
						|
		clipped_count = clip_triangle(
 | 
						|
			contacts1.m_separating_normal,tv_vertices,tu_vertices,clipped_points);
 | 
						|
 | 
						|
		if(clipped_count == 0 )
 | 
						|
		{
 | 
						|
			 return false;//Reject
 | 
						|
		}
 | 
						|
 | 
						|
		//find most deep interval face1
 | 
						|
		contacts1.merge_points(contacts1.m_separating_normal,margin,clipped_points,clipped_count);
 | 
						|
		if(contacts1.m_point_count == 0) return false; // too far
 | 
						|
 | 
						|
		//Normal pointing to triangle1
 | 
						|
		//contacts1.m_separating_normal *= -1.f;
 | 
						|
 | 
						|
		//Clip tri1 by tri2 edges
 | 
						|
 | 
						|
		TRIANGLE_PLANE(tu_vertices[0],tu_vertices[1],tu_vertices[2],contacts2.m_separating_normal);
 | 
						|
 | 
						|
		clipped_count = clip_triangle(
 | 
						|
			contacts2.m_separating_normal,tu_vertices,tv_vertices,clipped_points);
 | 
						|
 | 
						|
		if(clipped_count == 0 )
 | 
						|
		{
 | 
						|
			 return false;//Reject
 | 
						|
		}
 | 
						|
 | 
						|
		//find most deep interval face1
 | 
						|
		contacts2.merge_points(contacts2.m_separating_normal,margin,clipped_points,clipped_count);
 | 
						|
		if(contacts2.m_point_count == 0) return false; // too far
 | 
						|
 | 
						|
		contacts2.m_separating_normal *= -1.f;
 | 
						|
 | 
						|
		////check most dir for contacts
 | 
						|
		if(contacts2.m_penetration_depth<contacts1.m_penetration_depth)
 | 
						|
		{
 | 
						|
			contacts.copy_from(contacts2);
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			contacts.copy_from(contacts1);
 | 
						|
		}
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
};*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
bool GIM_TRIANGLE::collide_triangle_hard_test(
 | 
						|
		const GIM_TRIANGLE & other,
 | 
						|
		GIM_TRIANGLE_CONTACT_DATA & contact_data) const
 | 
						|
{
 | 
						|
	GIM_TRIANGLE_CALCULATION_CACHE calc_cache;	
 | 
						|
	return calc_cache.triangle_collision(
 | 
						|
					m_vertices[0],m_vertices[1],m_vertices[2],m_margin,
 | 
						|
					other.m_vertices[0],other.m_vertices[1],other.m_vertices[2],other.m_margin,
 | 
						|
					contact_data);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 |