1430 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1430 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
Bullet Continuous Collision Detection and Physics Library
 | 
						|
Copyright (c) 2013 Erwin Coumans  http://bulletphysics.org
 | 
						|
 | 
						|
This software is provided 'as-is', without any express or implied warranty.
 | 
						|
In no event will the authors be held liable for any damages arising from the use of this software.
 | 
						|
Permission is granted to anyone to use this software for any purpose, 
 | 
						|
including commercial applications, and to alter it and redistribute it freely, 
 | 
						|
subject to the following restrictions:
 | 
						|
 | 
						|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | 
						|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | 
						|
3. This notice may not be removed or altered from any source distribution.
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
#include "btMultiBodyConstraintSolver.h"
 | 
						|
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
 | 
						|
#include "btMultiBodyLinkCollider.h"
 | 
						|
 | 
						|
#include "BulletDynamics/ConstraintSolver/btSolverBody.h"
 | 
						|
#include "btMultiBodyConstraint.h"
 | 
						|
#include "BulletDynamics/ConstraintSolver/btContactSolverInfo.h"
 | 
						|
 | 
						|
#include "LinearMath/btQuickprof.h"
 | 
						|
 | 
						|
btScalar btMultiBodyConstraintSolver::solveSingleIteration(int iteration, btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
 | 
						|
{
 | 
						|
	btScalar leastSquaredResidual  = btSequentialImpulseConstraintSolver::solveSingleIteration(iteration, bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer);
 | 
						|
	
 | 
						|
	//solve featherstone non-contact constraints
 | 
						|
 | 
						|
	//printf("m_multiBodyNonContactConstraints = %d\n",m_multiBodyNonContactConstraints.size());
 | 
						|
 | 
						|
	for (int j=0;j<m_multiBodyNonContactConstraints.size();j++)
 | 
						|
	{
 | 
						|
		int index = iteration&1? j : m_multiBodyNonContactConstraints.size()-1-j;
 | 
						|
 | 
						|
		btMultiBodySolverConstraint& constraint = m_multiBodyNonContactConstraints[index];
 | 
						|
		
 | 
						|
		btScalar residual = resolveSingleConstraintRowGeneric(constraint);
 | 
						|
		leastSquaredResidual += residual*residual;
 | 
						|
 | 
						|
		if(constraint.m_multiBodyA) 
 | 
						|
			constraint.m_multiBodyA->setPosUpdated(false);
 | 
						|
		if(constraint.m_multiBodyB) 
 | 
						|
			constraint.m_multiBodyB->setPosUpdated(false);
 | 
						|
	}
 | 
						|
 | 
						|
	//solve featherstone normal contact
 | 
						|
	for (int j0=0;j0<m_multiBodyNormalContactConstraints.size();j0++)
 | 
						|
	{
 | 
						|
		int index = j0;//iteration&1? j0 : m_multiBodyNormalContactConstraints.size()-1-j0;
 | 
						|
 | 
						|
		btMultiBodySolverConstraint& constraint = m_multiBodyNormalContactConstraints[index];
 | 
						|
		btScalar residual = 0.f;
 | 
						|
 | 
						|
		if (iteration < infoGlobal.m_numIterations)
 | 
						|
		{
 | 
						|
			residual = resolveSingleConstraintRowGeneric(constraint);
 | 
						|
		}
 | 
						|
 | 
						|
		leastSquaredResidual += residual*residual;
 | 
						|
 
 | 
						|
		if(constraint.m_multiBodyA) 
 | 
						|
			constraint.m_multiBodyA->setPosUpdated(false);
 | 
						|
		if(constraint.m_multiBodyB) 
 | 
						|
			constraint.m_multiBodyB->setPosUpdated(false);
 | 
						|
	}
 | 
						|
	
 | 
						|
	//solve featherstone frictional contact
 | 
						|
 | 
						|
	for (int j1=0;j1<this->m_multiBodyFrictionContactConstraints.size();j1++)
 | 
						|
	{
 | 
						|
		if (iteration < infoGlobal.m_numIterations)
 | 
						|
		{
 | 
						|
			int index = j1;//iteration&1? j1 : m_multiBodyFrictionContactConstraints.size()-1-j1;
 | 
						|
 | 
						|
			btMultiBodySolverConstraint& frictionConstraint = m_multiBodyFrictionContactConstraints[index];
 | 
						|
			btScalar totalImpulse = m_multiBodyNormalContactConstraints[frictionConstraint.m_frictionIndex].m_appliedImpulse;
 | 
						|
			//adjust friction limits here
 | 
						|
			if (totalImpulse>btScalar(0))
 | 
						|
			{
 | 
						|
				frictionConstraint.m_lowerLimit = -(frictionConstraint.m_friction*totalImpulse);
 | 
						|
				frictionConstraint.m_upperLimit = frictionConstraint.m_friction*totalImpulse;
 | 
						|
				btScalar residual = resolveSingleConstraintRowGeneric(frictionConstraint);
 | 
						|
				leastSquaredResidual += residual*residual;
 | 
						|
 | 
						|
				if(frictionConstraint.m_multiBodyA) 
 | 
						|
					frictionConstraint.m_multiBodyA->setPosUpdated(false);
 | 
						|
				if(frictionConstraint.m_multiBodyB) 
 | 
						|
					frictionConstraint.m_multiBodyB->setPosUpdated(false);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return leastSquaredResidual;
 | 
						|
}
 | 
						|
 | 
						|
btScalar btMultiBodyConstraintSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
 | 
						|
{
 | 
						|
	m_multiBodyNonContactConstraints.resize(0);
 | 
						|
	m_multiBodyNormalContactConstraints.resize(0);
 | 
						|
	m_multiBodyFrictionContactConstraints.resize(0);
 | 
						|
	m_data.m_jacobians.resize(0);
 | 
						|
	m_data.m_deltaVelocitiesUnitImpulse.resize(0);
 | 
						|
	m_data.m_deltaVelocities.resize(0);
 | 
						|
 | 
						|
	for (int i=0;i<numBodies;i++)
 | 
						|
	{
 | 
						|
		const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(bodies[i]);
 | 
						|
		if (fcA)
 | 
						|
		{
 | 
						|
			fcA->m_multiBody->setCompanionId(-1);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	btScalar val = btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup( bodies,numBodies,manifoldPtr, numManifolds, constraints,numConstraints,infoGlobal,debugDrawer);
 | 
						|
 | 
						|
	return val;
 | 
						|
}
 | 
						|
 | 
						|
void	btMultiBodyConstraintSolver::applyDeltaVee(btScalar* delta_vee, btScalar impulse, int velocityIndex, int ndof)
 | 
						|
{
 | 
						|
    for (int i = 0; i < ndof; ++i) 
 | 
						|
		m_data.m_deltaVelocities[velocityIndex+i] += delta_vee[i] * impulse;
 | 
						|
}
 | 
						|
 | 
						|
btScalar btMultiBodyConstraintSolver::resolveSingleConstraintRowGeneric(const btMultiBodySolverConstraint& c)
 | 
						|
{
 | 
						|
 | 
						|
	btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm;
 | 
						|
	btScalar deltaVelADotn=0;
 | 
						|
	btScalar deltaVelBDotn=0;
 | 
						|
	btSolverBody* bodyA = 0;
 | 
						|
	btSolverBody* bodyB = 0;
 | 
						|
	int ndofA=0;
 | 
						|
	int ndofB=0;
 | 
						|
 | 
						|
	if (c.m_multiBodyA)
 | 
						|
	{
 | 
						|
		ndofA  = c.m_multiBodyA->getNumDofs() + 6;
 | 
						|
		for (int i = 0; i < ndofA; ++i) 
 | 
						|
			deltaVelADotn += m_data.m_jacobians[c.m_jacAindex+i] * m_data.m_deltaVelocities[c.m_deltaVelAindex+i];
 | 
						|
	} else if(c.m_solverBodyIdA >= 0)
 | 
						|
	{
 | 
						|
		bodyA = &m_tmpSolverBodyPool[c.m_solverBodyIdA];
 | 
						|
		deltaVelADotn += c.m_contactNormal1.dot(bodyA->internalGetDeltaLinearVelocity()) 	+ c.m_relpos1CrossNormal.dot(bodyA->internalGetDeltaAngularVelocity());
 | 
						|
	}
 | 
						|
 | 
						|
	if (c.m_multiBodyB)
 | 
						|
	{
 | 
						|
		ndofB  = c.m_multiBodyB->getNumDofs() + 6;
 | 
						|
		for (int i = 0; i < ndofB; ++i) 
 | 
						|
			deltaVelBDotn += m_data.m_jacobians[c.m_jacBindex+i] * m_data.m_deltaVelocities[c.m_deltaVelBindex+i];
 | 
						|
	} else if(c.m_solverBodyIdB >= 0)
 | 
						|
	{
 | 
						|
		bodyB = &m_tmpSolverBodyPool[c.m_solverBodyIdB];
 | 
						|
		deltaVelBDotn += c.m_contactNormal2.dot(bodyB->internalGetDeltaLinearVelocity())  + c.m_relpos2CrossNormal.dot(bodyB->internalGetDeltaAngularVelocity());
 | 
						|
	}
 | 
						|
 | 
						|
	
 | 
						|
	deltaImpulse	-=	deltaVelADotn*c.m_jacDiagABInv;//m_jacDiagABInv = 1./denom
 | 
						|
	deltaImpulse	-=	deltaVelBDotn*c.m_jacDiagABInv;
 | 
						|
	const btScalar sum = btScalar(c.m_appliedImpulse) + deltaImpulse;
 | 
						|
	
 | 
						|
	if (sum < c.m_lowerLimit)
 | 
						|
	{
 | 
						|
		deltaImpulse = c.m_lowerLimit-c.m_appliedImpulse;
 | 
						|
		c.m_appliedImpulse = c.m_lowerLimit;
 | 
						|
	}
 | 
						|
	else if (sum > c.m_upperLimit) 
 | 
						|
	{
 | 
						|
		deltaImpulse = c.m_upperLimit-c.m_appliedImpulse;
 | 
						|
		c.m_appliedImpulse = c.m_upperLimit;
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		c.m_appliedImpulse = sum;
 | 
						|
	}
 | 
						|
 | 
						|
	if (c.m_multiBodyA)
 | 
						|
	{
 | 
						|
		applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse,c.m_deltaVelAindex,ndofA);
 | 
						|
#ifdef DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
 | 
						|
		//note: update of the actual velocities (below) in the multibody does not have to happen now since m_deltaVelocities can be applied after all iterations
 | 
						|
		//it would make the multibody solver more like the regular one with m_deltaVelocities being equivalent to btSolverBody::m_deltaLinearVelocity/m_deltaAngularVelocity
 | 
						|
		c.m_multiBodyA->applyDeltaVeeMultiDof2(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse);
 | 
						|
#endif //DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
 | 
						|
	} else if(c.m_solverBodyIdA >= 0)
 | 
						|
	{
 | 
						|
		bodyA->internalApplyImpulse(c.m_contactNormal1*bodyA->internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
 | 
						|
 | 
						|
	}
 | 
						|
	if (c.m_multiBodyB)
 | 
						|
	{
 | 
						|
		applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse,c.m_deltaVelBindex,ndofB);
 | 
						|
#ifdef DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
 | 
						|
		//note: update of the actual velocities (below) in the multibody does not have to happen now since m_deltaVelocities can be applied after all iterations
 | 
						|
		//it would make the multibody solver more like the regular one with m_deltaVelocities being equivalent to btSolverBody::m_deltaLinearVelocity/m_deltaAngularVelocity
 | 
						|
		c.m_multiBodyB->applyDeltaVeeMultiDof2(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse);
 | 
						|
#endif //DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
 | 
						|
	} else if(c.m_solverBodyIdB >= 0)
 | 
						|
	{
 | 
						|
		bodyB->internalApplyImpulse(c.m_contactNormal2*bodyB->internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
 | 
						|
	}
 | 
						|
	return deltaImpulse;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
void btMultiBodyConstraintSolver::setupMultiBodyContactConstraint(btMultiBodySolverConstraint& solverConstraint, 
 | 
						|
																 const btVector3& contactNormal,
 | 
						|
																 btManifoldPoint& cp, const btContactSolverInfo& infoGlobal,
 | 
						|
																 btScalar& relaxation,
 | 
						|
																 bool isFriction, btScalar desiredVelocity, btScalar cfmSlip)
 | 
						|
{
 | 
						|
			
 | 
						|
	BT_PROFILE("setupMultiBodyContactConstraint");
 | 
						|
	btVector3 rel_pos1;
 | 
						|
	btVector3 rel_pos2;
 | 
						|
 | 
						|
	btMultiBody* multiBodyA = solverConstraint.m_multiBodyA;
 | 
						|
	btMultiBody* multiBodyB = solverConstraint.m_multiBodyB;
 | 
						|
 | 
						|
	const btVector3& pos1 = cp.getPositionWorldOnA();
 | 
						|
	const btVector3& pos2 = cp.getPositionWorldOnB();
 | 
						|
 | 
						|
	btSolverBody* bodyA = multiBodyA ? 0 : &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA];
 | 
						|
	btSolverBody* bodyB = multiBodyB ? 0 : &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB];
 | 
						|
 | 
						|
	btRigidBody* rb0 = multiBodyA ? 0 : bodyA->m_originalBody;
 | 
						|
	btRigidBody* rb1 = multiBodyB ? 0 : bodyB->m_originalBody;
 | 
						|
 | 
						|
	if (bodyA)
 | 
						|
		rel_pos1 = pos1 - bodyA->getWorldTransform().getOrigin(); 
 | 
						|
	if (bodyB)
 | 
						|
		rel_pos2 = pos2 - bodyB->getWorldTransform().getOrigin();
 | 
						|
 | 
						|
	relaxation = infoGlobal.m_sor;
 | 
						|
	
 | 
						|
	btScalar invTimeStep = btScalar(1)/infoGlobal.m_timeStep;
 | 
						|
	
 | 
						|
	 //cfm = 1 /       ( dt * kp + kd )
 | 
						|
    //erp = dt * kp / ( dt * kp + kd )
 | 
						|
    
 | 
						|
    btScalar cfm;
 | 
						|
	btScalar erp;
 | 
						|
	if (isFriction)
 | 
						|
	{
 | 
						|
		cfm = infoGlobal.m_frictionCFM;
 | 
						|
		erp = infoGlobal.m_frictionERP;
 | 
						|
	} else
 | 
						|
	{
 | 
						|
		cfm = infoGlobal.m_globalCfm;
 | 
						|
		erp = infoGlobal.m_erp2;
 | 
						|
 | 
						|
		if ((cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_CFM) || (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_ERP))
 | 
						|
		{
 | 
						|
			if (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_CFM)
 | 
						|
				cfm  = cp.m_contactCFM;
 | 
						|
			if (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_ERP)
 | 
						|
				erp = cp.m_contactERP;                
 | 
						|
		} else
 | 
						|
		{
 | 
						|
			if (cp.m_contactPointFlags & BT_CONTACT_FLAG_CONTACT_STIFFNESS_DAMPING)
 | 
						|
			{
 | 
						|
				btScalar denom = ( infoGlobal.m_timeStep * cp.m_combinedContactStiffness1 + cp.m_combinedContactDamping1 );
 | 
						|
				if (denom < SIMD_EPSILON)
 | 
						|
				{
 | 
						|
					denom = SIMD_EPSILON;
 | 
						|
				}
 | 
						|
				cfm = btScalar(1) / denom; 
 | 
						|
				erp = (infoGlobal.m_timeStep * cp.m_combinedContactStiffness1) / denom;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	cfm *= invTimeStep;
 | 
						|
 | 
						|
	if (multiBodyA)
 | 
						|
	{
 | 
						|
		if (solverConstraint.m_linkA<0)
 | 
						|
		{
 | 
						|
			rel_pos1 = pos1 - multiBodyA->getBasePos();
 | 
						|
		} else
 | 
						|
		{
 | 
						|
			rel_pos1 = pos1 - multiBodyA->getLink(solverConstraint.m_linkA).m_cachedWorldTransform.getOrigin();
 | 
						|
		}
 | 
						|
		const int ndofA  = multiBodyA->getNumDofs() + 6;
 | 
						|
 | 
						|
		solverConstraint.m_deltaVelAindex = multiBodyA->getCompanionId();
 | 
						|
 | 
						|
		if (solverConstraint.m_deltaVelAindex <0)
 | 
						|
		{
 | 
						|
			solverConstraint.m_deltaVelAindex = m_data.m_deltaVelocities.size();
 | 
						|
			multiBodyA->setCompanionId(solverConstraint.m_deltaVelAindex);
 | 
						|
			m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofA);
 | 
						|
		} else
 | 
						|
		{
 | 
						|
			btAssert(m_data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex+ndofA);
 | 
						|
		}
 | 
						|
 | 
						|
		solverConstraint.m_jacAindex = m_data.m_jacobians.size();
 | 
						|
		m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofA);
 | 
						|
		m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofA);
 | 
						|
		btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
 | 
						|
 | 
						|
		btScalar* jac1=&m_data.m_jacobians[solverConstraint.m_jacAindex];
 | 
						|
		multiBodyA->fillContactJacobianMultiDof(solverConstraint.m_linkA, cp.getPositionWorldOnA(), contactNormal, jac1, m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
 | 
						|
		btScalar* delta = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
 | 
						|
		multiBodyA->calcAccelerationDeltasMultiDof(&m_data.m_jacobians[solverConstraint.m_jacAindex],delta,m_data.scratch_r, m_data.scratch_v);
 | 
						|
 | 
						|
		btVector3 torqueAxis0 = rel_pos1.cross(contactNormal);
 | 
						|
		solverConstraint.m_relpos1CrossNormal = torqueAxis0;
 | 
						|
		solverConstraint.m_contactNormal1 = contactNormal;
 | 
						|
	} else
 | 
						|
	{
 | 
						|
		btVector3 torqueAxis0 = rel_pos1.cross(contactNormal);
 | 
						|
		solverConstraint.m_relpos1CrossNormal = torqueAxis0;
 | 
						|
		solverConstraint.m_contactNormal1 = contactNormal;
 | 
						|
		solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0);
 | 
						|
	}
 | 
						|
 | 
						|
	
 | 
						|
 | 
						|
	if (multiBodyB)
 | 
						|
	{
 | 
						|
		if (solverConstraint.m_linkB<0)
 | 
						|
		{
 | 
						|
			rel_pos2 = pos2 - multiBodyB->getBasePos();
 | 
						|
		} else
 | 
						|
		{
 | 
						|
			rel_pos2 = pos2 - multiBodyB->getLink(solverConstraint.m_linkB).m_cachedWorldTransform.getOrigin();
 | 
						|
		}
 | 
						|
 | 
						|
		const int ndofB  = multiBodyB->getNumDofs() + 6;
 | 
						|
 | 
						|
		solverConstraint.m_deltaVelBindex = multiBodyB->getCompanionId();
 | 
						|
		if (solverConstraint.m_deltaVelBindex <0)
 | 
						|
		{
 | 
						|
			solverConstraint.m_deltaVelBindex = m_data.m_deltaVelocities.size();
 | 
						|
			multiBodyB->setCompanionId(solverConstraint.m_deltaVelBindex);
 | 
						|
			m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofB);
 | 
						|
		}
 | 
						|
 | 
						|
		solverConstraint.m_jacBindex = m_data.m_jacobians.size();
 | 
						|
 | 
						|
		m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofB);
 | 
						|
		m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofB);
 | 
						|
		btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
 | 
						|
 | 
						|
		multiBodyB->fillContactJacobianMultiDof(solverConstraint.m_linkB, cp.getPositionWorldOnB(), -contactNormal, &m_data.m_jacobians[solverConstraint.m_jacBindex], m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
 | 
						|
		multiBodyB->calcAccelerationDeltasMultiDof(&m_data.m_jacobians[solverConstraint.m_jacBindex],&m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex],m_data.scratch_r, m_data.scratch_v);
 | 
						|
		
 | 
						|
		btVector3 torqueAxis1 = rel_pos2.cross(contactNormal);		
 | 
						|
		solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
 | 
						|
		solverConstraint.m_contactNormal2 = -contactNormal;
 | 
						|
	
 | 
						|
	} else
 | 
						|
	{
 | 
						|
		btVector3 torqueAxis1 = rel_pos2.cross(contactNormal);		
 | 
						|
		solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
 | 
						|
		solverConstraint.m_contactNormal2 = -contactNormal;
 | 
						|
	
 | 
						|
		solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0);
 | 
						|
	}
 | 
						|
 | 
						|
	{
 | 
						|
						
 | 
						|
		btVector3 vec;
 | 
						|
		btScalar denom0 = 0.f;
 | 
						|
		btScalar denom1 = 0.f;
 | 
						|
		btScalar* jacB = 0;
 | 
						|
		btScalar* jacA = 0;
 | 
						|
		btScalar* lambdaA =0;
 | 
						|
		btScalar* lambdaB =0;
 | 
						|
		int ndofA  = 0;
 | 
						|
		if (multiBodyA)
 | 
						|
		{
 | 
						|
			ndofA  = multiBodyA->getNumDofs() + 6;
 | 
						|
			jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
 | 
						|
			lambdaA = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
 | 
						|
			for (int i = 0; i < ndofA; ++i)
 | 
						|
			{
 | 
						|
				btScalar j = jacA[i] ;
 | 
						|
				btScalar l =lambdaA[i];
 | 
						|
				denom0 += j*l;
 | 
						|
			}
 | 
						|
		} else
 | 
						|
		{
 | 
						|
			if (rb0)
 | 
						|
			{
 | 
						|
				vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
 | 
						|
				denom0 = rb0->getInvMass() + contactNormal.dot(vec);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (multiBodyB)
 | 
						|
		{
 | 
						|
			const int ndofB  = multiBodyB->getNumDofs() + 6;
 | 
						|
			jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
 | 
						|
			lambdaB = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
 | 
						|
			for (int i = 0; i < ndofB; ++i)
 | 
						|
			{
 | 
						|
				btScalar j = jacB[i] ;
 | 
						|
				btScalar l =lambdaB[i];
 | 
						|
				denom1 += j*l;
 | 
						|
			}
 | 
						|
 | 
						|
		} else
 | 
						|
		{
 | 
						|
			if (rb1)
 | 
						|
			{
 | 
						|
				vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
 | 
						|
				denom1 = rb1->getInvMass() + contactNormal.dot(vec);
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		 
 | 
						|
 | 
						|
		 btScalar d = denom0+denom1+cfm;
 | 
						|
		 if (d>SIMD_EPSILON)
 | 
						|
		 {
 | 
						|
			solverConstraint.m_jacDiagABInv = relaxation/(d);
 | 
						|
		 } else
 | 
						|
		 {
 | 
						|
			//disable the constraint row to handle singularity/redundant constraint
 | 
						|
			solverConstraint.m_jacDiagABInv  = 0.f;
 | 
						|
		 }
 | 
						|
		
 | 
						|
	}
 | 
						|
 | 
						|
	
 | 
						|
	//compute rhs and remaining solverConstraint fields
 | 
						|
 | 
						|
	
 | 
						|
 | 
						|
	btScalar restitution = 0.f;
 | 
						|
    btScalar distance = 0;
 | 
						|
    if (!isFriction)
 | 
						|
    {
 | 
						|
        distance = cp.getDistance()+infoGlobal.m_linearSlop;
 | 
						|
    } else
 | 
						|
    {
 | 
						|
        if (cp.m_contactPointFlags & BT_CONTACT_FLAG_FRICTION_ANCHOR)
 | 
						|
        {
 | 
						|
          distance = (cp.getPositionWorldOnA() - cp.getPositionWorldOnB()).dot(contactNormal);
 | 
						|
        }
 | 
						|
    }
 | 
						|
  
 | 
						|
    
 | 
						|
	btScalar rel_vel = 0.f;
 | 
						|
	int ndofA  = 0;
 | 
						|
	int ndofB  = 0;
 | 
						|
	{
 | 
						|
 | 
						|
		btVector3 vel1,vel2;
 | 
						|
		if (multiBodyA)
 | 
						|
		{
 | 
						|
			ndofA  = multiBodyA->getNumDofs() + 6;
 | 
						|
			btScalar* jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
 | 
						|
			for (int i = 0; i < ndofA ; ++i) 
 | 
						|
				rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
 | 
						|
		} else
 | 
						|
		{
 | 
						|
			if (rb0)
 | 
						|
			{
 | 
						|
				rel_vel += (rb0->getVelocityInLocalPoint(rel_pos1) + 
 | 
						|
							(rb0->getTotalTorque()*rb0->getInvInertiaTensorWorld()*infoGlobal.m_timeStep).cross(rel_pos1)+
 | 
						|
							rb0->getTotalForce()*rb0->getInvMass()*infoGlobal.m_timeStep).dot(solverConstraint.m_contactNormal1);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (multiBodyB)
 | 
						|
		{
 | 
						|
			ndofB  = multiBodyB->getNumDofs() + 6;
 | 
						|
			btScalar* jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
 | 
						|
			for (int i = 0; i < ndofB ; ++i) 
 | 
						|
				rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];
 | 
						|
 | 
						|
		} else
 | 
						|
		{
 | 
						|
			if (rb1)
 | 
						|
			{
 | 
						|
				rel_vel += (rb1->getVelocityInLocalPoint(rel_pos2)+
 | 
						|
					(rb1->getTotalTorque()*rb1->getInvInertiaTensorWorld()*infoGlobal.m_timeStep).cross(rel_pos2) +
 | 
						|
					rb1->getTotalForce()*rb1->getInvMass()*infoGlobal.m_timeStep).dot(solverConstraint.m_contactNormal2);
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		solverConstraint.m_friction = cp.m_combinedFriction;
 | 
						|
 | 
						|
		if(!isFriction)
 | 
						|
		{
 | 
						|
			restitution =  restitutionCurve(rel_vel, cp.m_combinedRestitution, infoGlobal.m_restitutionVelocityThreshold);	
 | 
						|
			if (restitution <= btScalar(0.))
 | 
						|
			{
 | 
						|
				restitution = 0.f;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	///warm starting (or zero if disabled)
 | 
						|
	//disable warmstarting for btMultiBody, it has issues gaining energy (==explosion)
 | 
						|
	if (0)//infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
 | 
						|
	{
 | 
						|
		solverConstraint.m_appliedImpulse = isFriction ? 0 : cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
 | 
						|
 | 
						|
		if (solverConstraint.m_appliedImpulse)
 | 
						|
		{
 | 
						|
			if (multiBodyA)
 | 
						|
			{
 | 
						|
				btScalar impulse = solverConstraint.m_appliedImpulse;
 | 
						|
				btScalar* deltaV = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
 | 
						|
				multiBodyA->applyDeltaVeeMultiDof(deltaV,impulse);
 | 
						|
				
 | 
						|
				applyDeltaVee(deltaV,impulse,solverConstraint.m_deltaVelAindex,ndofA);
 | 
						|
			} else
 | 
						|
			{
 | 
						|
				if (rb0)
 | 
						|
					bodyA->internalApplyImpulse(solverConstraint.m_contactNormal1*bodyA->internalGetInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
 | 
						|
			}
 | 
						|
			if (multiBodyB)
 | 
						|
			{
 | 
						|
				btScalar impulse = solverConstraint.m_appliedImpulse;
 | 
						|
				btScalar* deltaV = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
 | 
						|
				multiBodyB->applyDeltaVeeMultiDof(deltaV,impulse);
 | 
						|
				applyDeltaVee(deltaV,impulse,solverConstraint.m_deltaVelBindex,ndofB);
 | 
						|
			} else
 | 
						|
			{
 | 
						|
				if (rb1)
 | 
						|
					bodyB->internalApplyImpulse(-solverConstraint.m_contactNormal2*bodyB->internalGetInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-(btScalar)solverConstraint.m_appliedImpulse);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	} else
 | 
						|
	{
 | 
						|
		solverConstraint.m_appliedImpulse = 0.f;
 | 
						|
	}
 | 
						|
 | 
						|
	solverConstraint.m_appliedPushImpulse = 0.f;
 | 
						|
 | 
						|
	{
 | 
						|
 | 
						|
		btScalar positionalError = 0.f;
 | 
						|
		btScalar velocityError = restitution - rel_vel;// * damping;	//note for friction restitution is always set to 0 (check above) so it is acutally velocityError = -rel_vel for friction
 | 
						|
		if (isFriction)
 | 
						|
		{
 | 
						|
			positionalError = -distance * erp/infoGlobal.m_timeStep;
 | 
						|
		} else
 | 
						|
		{
 | 
						|
    			if (distance>0)
 | 
						|
			{
 | 
						|
				positionalError = 0;
 | 
						|
				velocityError -= distance / infoGlobal.m_timeStep;
 | 
						|
 | 
						|
			} else
 | 
						|
			{
 | 
						|
				positionalError = -distance * erp/infoGlobal.m_timeStep;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		btScalar  penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
 | 
						|
		btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv;
 | 
						|
 | 
						|
		if(!isFriction)
 | 
						|
		{
 | 
						|
		//	if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
 | 
						|
			{
 | 
						|
				//combine position and velocity into rhs
 | 
						|
				solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
 | 
						|
				solverConstraint.m_rhsPenetration = 0.f;
 | 
						|
 | 
						|
			}
 | 
						|
		/*else
 | 
						|
			{
 | 
						|
				//split position and velocity into rhs and m_rhsPenetration
 | 
						|
				solverConstraint.m_rhs = velocityImpulse;
 | 
						|
				solverConstraint.m_rhsPenetration = penetrationImpulse;
 | 
						|
			}
 | 
						|
			*/
 | 
						|
			solverConstraint.m_lowerLimit = 0;
 | 
						|
			solverConstraint.m_upperLimit = 1e10f;
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
 | 
						|
			solverConstraint.m_rhsPenetration = 0.f;
 | 
						|
			solverConstraint.m_lowerLimit = -solverConstraint.m_friction;
 | 
						|
			solverConstraint.m_upperLimit = solverConstraint.m_friction;
 | 
						|
		}
 | 
						|
 | 
						|
		solverConstraint.m_cfm = cfm*solverConstraint.m_jacDiagABInv;
 | 
						|
		
 | 
						|
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void btMultiBodyConstraintSolver::setupMultiBodyTorsionalFrictionConstraint(btMultiBodySolverConstraint& solverConstraint,
 | 
						|
                                                                  const btVector3& constraintNormal,
 | 
						|
                                                                  btManifoldPoint& cp,
 | 
						|
                                                                    btScalar combinedTorsionalFriction,
 | 
						|
                                                                    const btContactSolverInfo& infoGlobal,
 | 
						|
                                                                  btScalar& relaxation,
 | 
						|
                                                                  bool isFriction, btScalar desiredVelocity, btScalar cfmSlip)
 | 
						|
{
 | 
						|
    
 | 
						|
    BT_PROFILE("setupMultiBodyRollingFrictionConstraint");
 | 
						|
    btVector3 rel_pos1;
 | 
						|
    btVector3 rel_pos2;
 | 
						|
    
 | 
						|
    btMultiBody* multiBodyA = solverConstraint.m_multiBodyA;
 | 
						|
    btMultiBody* multiBodyB = solverConstraint.m_multiBodyB;
 | 
						|
    
 | 
						|
    const btVector3& pos1 = cp.getPositionWorldOnA();
 | 
						|
    const btVector3& pos2 = cp.getPositionWorldOnB();
 | 
						|
    
 | 
						|
    btSolverBody* bodyA = multiBodyA ? 0 : &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA];
 | 
						|
    btSolverBody* bodyB = multiBodyB ? 0 : &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB];
 | 
						|
    
 | 
						|
    btRigidBody* rb0 = multiBodyA ? 0 : bodyA->m_originalBody;
 | 
						|
    btRigidBody* rb1 = multiBodyB ? 0 : bodyB->m_originalBody;
 | 
						|
    
 | 
						|
    if (bodyA)
 | 
						|
        rel_pos1 = pos1 - bodyA->getWorldTransform().getOrigin();
 | 
						|
    if (bodyB)
 | 
						|
        rel_pos2 = pos2 - bodyB->getWorldTransform().getOrigin();
 | 
						|
    
 | 
						|
    relaxation = infoGlobal.m_sor;
 | 
						|
    
 | 
						|
   // btScalar invTimeStep = btScalar(1)/infoGlobal.m_timeStep;
 | 
						|
    
 | 
						|
    
 | 
						|
    if (multiBodyA)
 | 
						|
    {
 | 
						|
        if (solverConstraint.m_linkA<0)
 | 
						|
        {
 | 
						|
            rel_pos1 = pos1 - multiBodyA->getBasePos();
 | 
						|
        } else
 | 
						|
        {
 | 
						|
            rel_pos1 = pos1 - multiBodyA->getLink(solverConstraint.m_linkA).m_cachedWorldTransform.getOrigin();
 | 
						|
        }
 | 
						|
        const int ndofA  = multiBodyA->getNumDofs() + 6;
 | 
						|
        
 | 
						|
        solverConstraint.m_deltaVelAindex = multiBodyA->getCompanionId();
 | 
						|
        
 | 
						|
        if (solverConstraint.m_deltaVelAindex <0)
 | 
						|
        {
 | 
						|
            solverConstraint.m_deltaVelAindex = m_data.m_deltaVelocities.size();
 | 
						|
            multiBodyA->setCompanionId(solverConstraint.m_deltaVelAindex);
 | 
						|
            m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofA);
 | 
						|
        } else
 | 
						|
        {
 | 
						|
            btAssert(m_data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex+ndofA);
 | 
						|
        }
 | 
						|
        
 | 
						|
        solverConstraint.m_jacAindex = m_data.m_jacobians.size();
 | 
						|
        m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofA);
 | 
						|
        m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofA);
 | 
						|
        btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
 | 
						|
        
 | 
						|
        btScalar* jac1=&m_data.m_jacobians[solverConstraint.m_jacAindex];
 | 
						|
        multiBodyA->fillConstraintJacobianMultiDof(solverConstraint.m_linkA, cp.getPositionWorldOnA(), constraintNormal, btVector3(0,0,0), jac1, m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
 | 
						|
        btScalar* delta = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
 | 
						|
        multiBodyA->calcAccelerationDeltasMultiDof(&m_data.m_jacobians[solverConstraint.m_jacAindex],delta,m_data.scratch_r, m_data.scratch_v);
 | 
						|
        
 | 
						|
        btVector3 torqueAxis0 = -constraintNormal;
 | 
						|
        solverConstraint.m_relpos1CrossNormal = torqueAxis0;
 | 
						|
        solverConstraint.m_contactNormal1 = btVector3(0,0,0);
 | 
						|
    } else
 | 
						|
    {
 | 
						|
        btVector3 torqueAxis0 = -constraintNormal;
 | 
						|
        solverConstraint.m_relpos1CrossNormal = torqueAxis0;
 | 
						|
        solverConstraint.m_contactNormal1 = btVector3(0,0,0);
 | 
						|
        solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0);
 | 
						|
    }
 | 
						|
    
 | 
						|
    
 | 
						|
    
 | 
						|
    if (multiBodyB)
 | 
						|
    {
 | 
						|
        if (solverConstraint.m_linkB<0)
 | 
						|
        {
 | 
						|
            rel_pos2 = pos2 - multiBodyB->getBasePos();
 | 
						|
        } else
 | 
						|
        {
 | 
						|
            rel_pos2 = pos2 - multiBodyB->getLink(solverConstraint.m_linkB).m_cachedWorldTransform.getOrigin();
 | 
						|
        }
 | 
						|
        
 | 
						|
        const int ndofB  = multiBodyB->getNumDofs() + 6;
 | 
						|
        
 | 
						|
        solverConstraint.m_deltaVelBindex = multiBodyB->getCompanionId();
 | 
						|
        if (solverConstraint.m_deltaVelBindex <0)
 | 
						|
        {
 | 
						|
            solverConstraint.m_deltaVelBindex = m_data.m_deltaVelocities.size();
 | 
						|
            multiBodyB->setCompanionId(solverConstraint.m_deltaVelBindex);
 | 
						|
            m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofB);
 | 
						|
        }
 | 
						|
        
 | 
						|
        solverConstraint.m_jacBindex = m_data.m_jacobians.size();
 | 
						|
        
 | 
						|
        m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofB);
 | 
						|
        m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofB);
 | 
						|
        btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
 | 
						|
        
 | 
						|
        multiBodyB->fillConstraintJacobianMultiDof(solverConstraint.m_linkB, cp.getPositionWorldOnB(), -constraintNormal, btVector3(0,0,0), &m_data.m_jacobians[solverConstraint.m_jacBindex], m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
 | 
						|
        multiBodyB->calcAccelerationDeltasMultiDof(&m_data.m_jacobians[solverConstraint.m_jacBindex],&m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex],m_data.scratch_r, m_data.scratch_v);
 | 
						|
        
 | 
						|
        btVector3 torqueAxis1 = constraintNormal;
 | 
						|
        solverConstraint.m_relpos2CrossNormal = torqueAxis1;
 | 
						|
        solverConstraint.m_contactNormal2 = -btVector3(0,0,0);
 | 
						|
        
 | 
						|
    } else
 | 
						|
    {
 | 
						|
        btVector3 torqueAxis1 = constraintNormal;
 | 
						|
        solverConstraint.m_relpos2CrossNormal = torqueAxis1;
 | 
						|
        solverConstraint.m_contactNormal2 = -btVector3(0,0,0);
 | 
						|
        
 | 
						|
        solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0);
 | 
						|
    }
 | 
						|
    
 | 
						|
    {
 | 
						|
        
 | 
						|
        btScalar denom0 = 0.f;
 | 
						|
        btScalar denom1 = 0.f;
 | 
						|
        btScalar* jacB = 0;
 | 
						|
        btScalar* jacA = 0;
 | 
						|
        btScalar* lambdaA =0;
 | 
						|
        btScalar* lambdaB =0;
 | 
						|
        int ndofA  = 0;
 | 
						|
        if (multiBodyA)
 | 
						|
        {
 | 
						|
            ndofA  = multiBodyA->getNumDofs() + 6;
 | 
						|
            jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
 | 
						|
            lambdaA = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
 | 
						|
            for (int i = 0; i < ndofA; ++i)
 | 
						|
            {
 | 
						|
                btScalar j = jacA[i] ;
 | 
						|
                btScalar l =lambdaA[i];
 | 
						|
                denom0 += j*l;
 | 
						|
            }
 | 
						|
        } else
 | 
						|
        {
 | 
						|
            if (rb0)
 | 
						|
            {
 | 
						|
				btVector3 iMJaA = rb0?rb0->getInvInertiaTensorWorld()*solverConstraint.m_relpos1CrossNormal:btVector3(0,0,0);
 | 
						|
				denom0 = iMJaA.dot(solverConstraint.m_relpos1CrossNormal);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (multiBodyB)
 | 
						|
        {
 | 
						|
            const int ndofB  = multiBodyB->getNumDofs() + 6;
 | 
						|
            jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
 | 
						|
            lambdaB = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
 | 
						|
            for (int i = 0; i < ndofB; ++i)
 | 
						|
            {
 | 
						|
                btScalar j = jacB[i] ;
 | 
						|
                btScalar l =lambdaB[i];
 | 
						|
                denom1 += j*l;
 | 
						|
            }
 | 
						|
            
 | 
						|
        } else
 | 
						|
        {
 | 
						|
            if (rb1)
 | 
						|
            {
 | 
						|
				btVector3 iMJaB = rb1?rb1->getInvInertiaTensorWorld()*solverConstraint.m_relpos2CrossNormal:btVector3(0,0,0);
 | 
						|
				denom1 = iMJaB.dot(solverConstraint.m_relpos2CrossNormal);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        
 | 
						|
        
 | 
						|
        
 | 
						|
        btScalar d = denom0+denom1+infoGlobal.m_globalCfm;
 | 
						|
        if (d>SIMD_EPSILON)
 | 
						|
        {
 | 
						|
            solverConstraint.m_jacDiagABInv = relaxation/(d);
 | 
						|
        } else
 | 
						|
        {
 | 
						|
            //disable the constraint row to handle singularity/redundant constraint
 | 
						|
            solverConstraint.m_jacDiagABInv  = 0.f;
 | 
						|
        }
 | 
						|
        
 | 
						|
    }
 | 
						|
    
 | 
						|
    
 | 
						|
    //compute rhs and remaining solverConstraint fields
 | 
						|
    
 | 
						|
    
 | 
						|
    
 | 
						|
    btScalar restitution = 0.f;
 | 
						|
    btScalar penetration = isFriction? 0 : cp.getDistance();
 | 
						|
    
 | 
						|
    btScalar rel_vel = 0.f;
 | 
						|
    int ndofA  = 0;
 | 
						|
    int ndofB  = 0;
 | 
						|
    {
 | 
						|
        
 | 
						|
        btVector3 vel1,vel2;
 | 
						|
        if (multiBodyA)
 | 
						|
        {
 | 
						|
            ndofA  = multiBodyA->getNumDofs() + 6;
 | 
						|
            btScalar* jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
 | 
						|
            for (int i = 0; i < ndofA ; ++i)
 | 
						|
                rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
 | 
						|
        } else
 | 
						|
        {
 | 
						|
            if (rb0)
 | 
						|
            {
 | 
						|
				btSolverBody* solverBodyA = &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA];
 | 
						|
				rel_vel += solverConstraint.m_contactNormal1.dot(rb0?solverBodyA->m_linearVelocity+solverBodyA->m_externalForceImpulse:btVector3(0,0,0))
 | 
						|
				+ solverConstraint.m_relpos1CrossNormal.dot(rb0?solverBodyA->m_angularVelocity:btVector3(0,0,0));
 | 
						|
	
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (multiBodyB)
 | 
						|
        {
 | 
						|
            ndofB  = multiBodyB->getNumDofs() + 6;
 | 
						|
            btScalar* jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
 | 
						|
            for (int i = 0; i < ndofB ; ++i)
 | 
						|
                rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];
 | 
						|
            
 | 
						|
        } else
 | 
						|
        {
 | 
						|
            if (rb1)
 | 
						|
            {
 | 
						|
				btSolverBody* solverBodyB = &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB];
 | 
						|
				rel_vel += solverConstraint.m_contactNormal2.dot(rb1?solverBodyB->m_linearVelocity+solverBodyB->m_externalForceImpulse:btVector3(0,0,0))
 | 
						|
			+ solverConstraint.m_relpos2CrossNormal.dot(rb1?solverBodyB->m_angularVelocity:btVector3(0,0,0));
 | 
						|
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        solverConstraint.m_friction =combinedTorsionalFriction;
 | 
						|
        
 | 
						|
        if(!isFriction)
 | 
						|
        {
 | 
						|
            restitution =  restitutionCurve(rel_vel, cp.m_combinedRestitution, infoGlobal.m_restitutionVelocityThreshold);
 | 
						|
            if (restitution <= btScalar(0.))
 | 
						|
            {
 | 
						|
                restitution = 0.f;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    
 | 
						|
    solverConstraint.m_appliedImpulse = 0.f;
 | 
						|
    solverConstraint.m_appliedPushImpulse = 0.f;
 | 
						|
    
 | 
						|
    {
 | 
						|
        
 | 
						|
        btScalar velocityError = 0 - rel_vel;// * damping;	//note for friction restitution is always set to 0 (check above) so it is acutally velocityError = -rel_vel for friction
 | 
						|
        
 | 
						|
       
 | 
						|
        
 | 
						|
        btScalar velocityImpulse = velocityError*solverConstraint.m_jacDiagABInv;
 | 
						|
        
 | 
						|
        solverConstraint.m_rhs = velocityImpulse;
 | 
						|
        solverConstraint.m_rhsPenetration = 0.f;
 | 
						|
        solverConstraint.m_lowerLimit = -solverConstraint.m_friction;
 | 
						|
        solverConstraint.m_upperLimit = solverConstraint.m_friction;
 | 
						|
        
 | 
						|
        solverConstraint.m_cfm = infoGlobal.m_globalCfm*solverConstraint.m_jacDiagABInv;
 | 
						|
        
 | 
						|
        
 | 
						|
        
 | 
						|
    }
 | 
						|
    
 | 
						|
}
 | 
						|
 | 
						|
btMultiBodySolverConstraint&	btMultiBodyConstraintSolver::addMultiBodyFrictionConstraint(const btVector3& normalAxis,btPersistentManifold* manifold,int frictionIndex,btManifoldPoint& cp,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip)
 | 
						|
{
 | 
						|
	BT_PROFILE("addMultiBodyFrictionConstraint");
 | 
						|
	btMultiBodySolverConstraint& solverConstraint = m_multiBodyFrictionContactConstraints.expandNonInitializing();
 | 
						|
    solverConstraint.m_orgConstraint = 0;
 | 
						|
    solverConstraint.m_orgDofIndex = -1;
 | 
						|
    
 | 
						|
	solverConstraint.m_frictionIndex = frictionIndex;
 | 
						|
	bool isFriction = true;
 | 
						|
 | 
						|
	const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
 | 
						|
	const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
 | 
						|
	
 | 
						|
	btMultiBody* mbA = fcA? fcA->m_multiBody : 0;
 | 
						|
	btMultiBody* mbB = fcB? fcB->m_multiBody : 0;
 | 
						|
 | 
						|
	int solverBodyIdA = mbA? -1 : getOrInitSolverBody(*colObj0,infoGlobal.m_timeStep);
 | 
						|
	int solverBodyIdB = mbB ? -1 : getOrInitSolverBody(*colObj1,infoGlobal.m_timeStep);
 | 
						|
 | 
						|
	solverConstraint.m_solverBodyIdA = solverBodyIdA;
 | 
						|
	solverConstraint.m_solverBodyIdB = solverBodyIdB;
 | 
						|
	solverConstraint.m_multiBodyA = mbA;
 | 
						|
	if (mbA)
 | 
						|
		solverConstraint.m_linkA = fcA->m_link;
 | 
						|
 | 
						|
	solverConstraint.m_multiBodyB = mbB;
 | 
						|
	if (mbB)
 | 
						|
		solverConstraint.m_linkB = fcB->m_link;
 | 
						|
 | 
						|
	solverConstraint.m_originalContactPoint = &cp;
 | 
						|
 | 
						|
	setupMultiBodyContactConstraint(solverConstraint, normalAxis, cp, infoGlobal,relaxation,isFriction, desiredVelocity, cfmSlip);
 | 
						|
	return solverConstraint;
 | 
						|
}
 | 
						|
 | 
						|
btMultiBodySolverConstraint&	btMultiBodyConstraintSolver::addMultiBodyTorsionalFrictionConstraint(const btVector3& normalAxis,btPersistentManifold* manifold,int frictionIndex,btManifoldPoint& cp,
 | 
						|
                                                                btScalar combinedTorsionalFriction,
 | 
						|
                                                                                                     btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip)
 | 
						|
{
 | 
						|
    BT_PROFILE("addMultiBodyRollingFrictionConstraint");
 | 
						|
    btMultiBodySolverConstraint& solverConstraint = m_multiBodyFrictionContactConstraints.expandNonInitializing();
 | 
						|
    solverConstraint.m_orgConstraint = 0;
 | 
						|
    solverConstraint.m_orgDofIndex = -1;
 | 
						|
    
 | 
						|
    solverConstraint.m_frictionIndex = frictionIndex;
 | 
						|
    bool isFriction = true;
 | 
						|
    
 | 
						|
    const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
 | 
						|
    const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
 | 
						|
    
 | 
						|
    btMultiBody* mbA = fcA? fcA->m_multiBody : 0;
 | 
						|
    btMultiBody* mbB = fcB? fcB->m_multiBody : 0;
 | 
						|
    
 | 
						|
    int solverBodyIdA = mbA? -1 : getOrInitSolverBody(*colObj0,infoGlobal.m_timeStep);
 | 
						|
    int solverBodyIdB = mbB ? -1 : getOrInitSolverBody(*colObj1,infoGlobal.m_timeStep);
 | 
						|
    
 | 
						|
    solverConstraint.m_solverBodyIdA = solverBodyIdA;
 | 
						|
    solverConstraint.m_solverBodyIdB = solverBodyIdB;
 | 
						|
    solverConstraint.m_multiBodyA = mbA;
 | 
						|
    if (mbA)
 | 
						|
        solverConstraint.m_linkA = fcA->m_link;
 | 
						|
    
 | 
						|
    solverConstraint.m_multiBodyB = mbB;
 | 
						|
    if (mbB)
 | 
						|
        solverConstraint.m_linkB = fcB->m_link;
 | 
						|
    
 | 
						|
    solverConstraint.m_originalContactPoint = &cp;
 | 
						|
    
 | 
						|
    setupMultiBodyTorsionalFrictionConstraint(solverConstraint, normalAxis, cp, combinedTorsionalFriction,infoGlobal,relaxation,isFriction, desiredVelocity, cfmSlip);
 | 
						|
    return solverConstraint;
 | 
						|
}
 | 
						|
 | 
						|
void	btMultiBodyConstraintSolver::convertMultiBodyContact(btPersistentManifold* manifold,const btContactSolverInfo& infoGlobal)
 | 
						|
{
 | 
						|
	const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
 | 
						|
	const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
 | 
						|
	
 | 
						|
	btMultiBody* mbA = fcA? fcA->m_multiBody : 0;
 | 
						|
	btMultiBody* mbB = fcB? fcB->m_multiBody : 0;
 | 
						|
 | 
						|
	btCollisionObject* colObj0=0,*colObj1=0;
 | 
						|
 | 
						|
	colObj0 = (btCollisionObject*)manifold->getBody0();
 | 
						|
	colObj1 = (btCollisionObject*)manifold->getBody1();
 | 
						|
 | 
						|
	int solverBodyIdA = mbA? -1 : getOrInitSolverBody(*colObj0,infoGlobal.m_timeStep);
 | 
						|
	int solverBodyIdB = mbB ? -1 : getOrInitSolverBody(*colObj1,infoGlobal.m_timeStep);
 | 
						|
 | 
						|
//	btSolverBody* solverBodyA = mbA ? 0 : &m_tmpSolverBodyPool[solverBodyIdA];
 | 
						|
//	btSolverBody* solverBodyB = mbB ? 0 : &m_tmpSolverBodyPool[solverBodyIdB];
 | 
						|
 | 
						|
 | 
						|
	///avoid collision response between two static objects
 | 
						|
//	if (!solverBodyA || (solverBodyA->m_invMass.isZero() && (!solverBodyB || solverBodyB->m_invMass.isZero())))
 | 
						|
	//	return;
 | 
						|
 | 
						|
    //only a single rollingFriction per manifold
 | 
						|
    int rollingFriction=1;
 | 
						|
    
 | 
						|
	for (int j=0;j<manifold->getNumContacts();j++)
 | 
						|
	{
 | 
						|
 | 
						|
		btManifoldPoint& cp = manifold->getContactPoint(j);
 | 
						|
 | 
						|
		if (cp.getDistance() <= manifold->getContactProcessingThreshold())
 | 
						|
		{
 | 
						|
		
 | 
						|
			btScalar relaxation;
 | 
						|
 | 
						|
			int frictionIndex = m_multiBodyNormalContactConstraints.size();
 | 
						|
 | 
						|
			btMultiBodySolverConstraint& solverConstraint = m_multiBodyNormalContactConstraints.expandNonInitializing();
 | 
						|
 | 
						|
	//		btRigidBody* rb0 = btRigidBody::upcast(colObj0);
 | 
						|
	//		btRigidBody* rb1 = btRigidBody::upcast(colObj1);
 | 
						|
            solverConstraint.m_orgConstraint = 0;
 | 
						|
            solverConstraint.m_orgDofIndex = -1;
 | 
						|
			solverConstraint.m_solverBodyIdA = solverBodyIdA;
 | 
						|
			solverConstraint.m_solverBodyIdB = solverBodyIdB;
 | 
						|
			solverConstraint.m_multiBodyA = mbA;
 | 
						|
			if (mbA)
 | 
						|
				solverConstraint.m_linkA = fcA->m_link;
 | 
						|
 | 
						|
			solverConstraint.m_multiBodyB = mbB;
 | 
						|
			if (mbB)
 | 
						|
				solverConstraint.m_linkB = fcB->m_link;
 | 
						|
 | 
						|
			solverConstraint.m_originalContactPoint = &cp;
 | 
						|
 | 
						|
			bool isFriction = false;
 | 
						|
			setupMultiBodyContactConstraint(solverConstraint, cp.m_normalWorldOnB,cp, infoGlobal, relaxation, isFriction);
 | 
						|
 | 
						|
//			const btVector3& pos1 = cp.getPositionWorldOnA();
 | 
						|
//			const btVector3& pos2 = cp.getPositionWorldOnB();
 | 
						|
 | 
						|
			/////setup the friction constraints
 | 
						|
#define ENABLE_FRICTION
 | 
						|
#ifdef ENABLE_FRICTION
 | 
						|
			solverConstraint.m_frictionIndex = frictionIndex;
 | 
						|
 | 
						|
			///Bullet has several options to set the friction directions
 | 
						|
			///By default, each contact has only a single friction direction that is recomputed automatically every frame
 | 
						|
			///based on the relative linear velocity.
 | 
						|
			///If the relative velocity is zero, it will automatically compute a friction direction.
 | 
						|
			
 | 
						|
			///You can also enable two friction directions, using the SOLVER_USE_2_FRICTION_DIRECTIONS.
 | 
						|
			///In that case, the second friction direction will be orthogonal to both contact normal and first friction direction.
 | 
						|
			///
 | 
						|
			///If you choose SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION, then the friction will be independent from the relative projected velocity.
 | 
						|
			///
 | 
						|
			///The user can manually override the friction directions for certain contacts using a contact callback, 
 | 
						|
			///and set the cp.m_lateralFrictionInitialized to true
 | 
						|
			///In that case, you can set the target relative motion in each friction direction (cp.m_contactMotion1 and cp.m_contactMotion2)
 | 
						|
			///this will give a conveyor belt effect
 | 
						|
			///
 | 
						|
 | 
						|
			btPlaneSpace1(cp.m_normalWorldOnB,cp.m_lateralFrictionDir1,cp.m_lateralFrictionDir2);
 | 
						|
			cp.m_lateralFrictionDir1.normalize();
 | 
						|
			cp.m_lateralFrictionDir2.normalize();
 | 
						|
 | 
						|
            if (rollingFriction > 0 )
 | 
						|
             {
 | 
						|
                if (cp.m_combinedSpinningFriction>0)
 | 
						|
                {
 | 
						|
                    addMultiBodyTorsionalFrictionConstraint(cp.m_normalWorldOnB,manifold,frictionIndex,cp,cp.m_combinedSpinningFriction, colObj0,colObj1, relaxation,infoGlobal);
 | 
						|
                }
 | 
						|
                if (cp.m_combinedRollingFriction>0)
 | 
						|
                {
 | 
						|
 | 
						|
					applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
 | 
						|
					applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
 | 
						|
					applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
 | 
						|
					applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
 | 
						|
					
 | 
						|
					if (cp.m_lateralFrictionDir1.length()>0.001)
 | 
						|
	                    addMultiBodyTorsionalFrictionConstraint(cp.m_lateralFrictionDir1,manifold,frictionIndex,cp,cp.m_combinedRollingFriction, colObj0,colObj1, relaxation,infoGlobal);
 | 
						|
 | 
						|
					if (cp.m_lateralFrictionDir2.length()>0.001)
 | 
						|
                    addMultiBodyTorsionalFrictionConstraint(cp.m_lateralFrictionDir2,manifold,frictionIndex,cp,cp.m_combinedRollingFriction, colObj0,colObj1, relaxation,infoGlobal);
 | 
						|
                }
 | 
						|
              rollingFriction--;
 | 
						|
            }
 | 
						|
			if (!(infoGlobal.m_solverMode & SOLVER_ENABLE_FRICTION_DIRECTION_CACHING) || !(cp.m_contactPointFlags&BT_CONTACT_FLAG_LATERAL_FRICTION_INITIALIZED))
 | 
						|
			{/*
 | 
						|
				cp.m_lateralFrictionDir1 = vel - cp.m_normalWorldOnB * rel_vel;
 | 
						|
				btScalar lat_rel_vel = cp.m_lateralFrictionDir1.length2();
 | 
						|
				if (!(infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION) && lat_rel_vel > SIMD_EPSILON)
 | 
						|
				{
 | 
						|
					cp.m_lateralFrictionDir1 *= 1.f/btSqrt(lat_rel_vel);
 | 
						|
					if((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
 | 
						|
					{
 | 
						|
						cp.m_lateralFrictionDir2 = cp.m_lateralFrictionDir1.cross(cp.m_normalWorldOnB);
 | 
						|
						cp.m_lateralFrictionDir2.normalize();//??
 | 
						|
						applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
 | 
						|
						applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
 | 
						|
						addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
 | 
						|
 | 
						|
					}
 | 
						|
 | 
						|
					applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
 | 
						|
					applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
 | 
						|
					addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
 | 
						|
 | 
						|
				} else
 | 
						|
				*/
 | 
						|
				{
 | 
						|
					
 | 
						|
 | 
						|
					applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
 | 
						|
					applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
 | 
						|
					addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1,manifold,frictionIndex,cp,colObj0,colObj1, relaxation,infoGlobal);
 | 
						|
                    
 | 
						|
 | 
						|
					if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
 | 
						|
					{
 | 
						|
						applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
 | 
						|
						applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
 | 
						|
						addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2,manifold,frictionIndex,cp,colObj0,colObj1, relaxation,infoGlobal);
 | 
						|
					}
 | 
						|
 | 
						|
					if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS) && (infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION))
 | 
						|
					{
 | 
						|
						cp.m_contactPointFlags|=BT_CONTACT_FLAG_LATERAL_FRICTION_INITIALIZED;
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
			} else
 | 
						|
			{
 | 
						|
				addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1,manifold,frictionIndex,cp,colObj0,colObj1, relaxation,infoGlobal,cp.m_contactMotion1, cp.m_frictionCFM);
 | 
						|
 | 
						|
				if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
 | 
						|
					addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2,manifold,frictionIndex,cp,colObj0,colObj1, relaxation, infoGlobal,cp.m_contactMotion2, cp.m_frictionCFM);
 | 
						|
 | 
						|
				//setMultiBodyFrictionConstraintImpulse( solverConstraint, solverBodyIdA, solverBodyIdB, cp, infoGlobal);
 | 
						|
				//todo:
 | 
						|
				solverConstraint.m_appliedImpulse = 0.f;
 | 
						|
				solverConstraint.m_appliedPushImpulse = 0.f;
 | 
						|
			}
 | 
						|
		
 | 
						|
 | 
						|
#endif //ENABLE_FRICTION
 | 
						|
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void btMultiBodyConstraintSolver::convertContacts(btPersistentManifold** manifoldPtr,int numManifolds, const btContactSolverInfo& infoGlobal)
 | 
						|
{
 | 
						|
	//btPersistentManifold* manifold = 0;
 | 
						|
 | 
						|
	for (int i=0;i<numManifolds;i++)
 | 
						|
	{
 | 
						|
		btPersistentManifold* manifold= manifoldPtr[i];
 | 
						|
		const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
 | 
						|
		const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
 | 
						|
		if (!fcA && !fcB)
 | 
						|
		{
 | 
						|
			//the contact doesn't involve any Featherstone btMultiBody, so deal with the regular btRigidBody/btCollisionObject case
 | 
						|
			convertContact(manifold,infoGlobal);
 | 
						|
		} else
 | 
						|
		{
 | 
						|
			convertMultiBodyContact(manifold,infoGlobal);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	//also convert the multibody constraints, if any
 | 
						|
 | 
						|
	
 | 
						|
	for (int i=0;i<m_tmpNumMultiBodyConstraints;i++)
 | 
						|
	{
 | 
						|
		btMultiBodyConstraint* c = m_tmpMultiBodyConstraints[i];
 | 
						|
		m_data.m_solverBodyPool = &m_tmpSolverBodyPool;
 | 
						|
		m_data.m_fixedBodyId = m_fixedBodyId;
 | 
						|
		
 | 
						|
		c->createConstraintRows(m_multiBodyNonContactConstraints,m_data,	infoGlobal);
 | 
						|
	}
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
btScalar btMultiBodyConstraintSolver::solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& info, btIDebugDraw* debugDrawer,btDispatcher* dispatcher)
 | 
						|
{
 | 
						|
	return btSequentialImpulseConstraintSolver::solveGroup(bodies,numBodies,manifold,numManifolds,constraints,numConstraints,info,debugDrawer,dispatcher);
 | 
						|
}
 | 
						|
 | 
						|
#if 0
 | 
						|
static void applyJointFeedback(btMultiBodyJacobianData& data, const btMultiBodySolverConstraint& solverConstraint, int jacIndex, btMultiBody* mb, btScalar appliedImpulse)
 | 
						|
{
 | 
						|
	if (appliedImpulse!=0 && mb->internalNeedsJointFeedback())
 | 
						|
	{
 | 
						|
		//todo: get rid of those temporary memory allocations for the joint feedback
 | 
						|
		btAlignedObjectArray<btScalar> forceVector;
 | 
						|
		int numDofsPlusBase = 6+mb->getNumDofs();
 | 
						|
		forceVector.resize(numDofsPlusBase);
 | 
						|
		for (int i=0;i<numDofsPlusBase;i++)
 | 
						|
		{
 | 
						|
			forceVector[i] = data.m_jacobians[jacIndex+i]*appliedImpulse;
 | 
						|
		}
 | 
						|
		btAlignedObjectArray<btScalar> output;
 | 
						|
		output.resize(numDofsPlusBase);
 | 
						|
		bool applyJointFeedback = true;
 | 
						|
		mb->calcAccelerationDeltasMultiDof(&forceVector[0],&output[0],data.scratch_r,data.scratch_v,applyJointFeedback);
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
void btMultiBodyConstraintSolver::writeBackSolverBodyToMultiBody(btMultiBodySolverConstraint& c, btScalar deltaTime)
 | 
						|
{
 | 
						|
#if 1 
 | 
						|
	
 | 
						|
	//bod->addBaseForce(m_gravity * bod->getBaseMass());
 | 
						|
	//bod->addLinkForce(j, m_gravity * bod->getLinkMass(j));
 | 
						|
 | 
						|
	if (c.m_orgConstraint)
 | 
						|
	{
 | 
						|
		c.m_orgConstraint->internalSetAppliedImpulse(c.m_orgDofIndex,c.m_appliedImpulse);
 | 
						|
	}
 | 
						|
	
 | 
						|
 | 
						|
	if (c.m_multiBodyA)
 | 
						|
	{
 | 
						|
		
 | 
						|
		c.m_multiBodyA->setCompanionId(-1);
 | 
						|
		btVector3 force = c.m_contactNormal1*(c.m_appliedImpulse/deltaTime);
 | 
						|
		btVector3 torque = c.m_relpos1CrossNormal*(c.m_appliedImpulse/deltaTime);
 | 
						|
		if (c.m_linkA<0)
 | 
						|
		{
 | 
						|
			c.m_multiBodyA->addBaseConstraintForce(force);
 | 
						|
			c.m_multiBodyA->addBaseConstraintTorque(torque);
 | 
						|
		} else
 | 
						|
		{
 | 
						|
			c.m_multiBodyA->addLinkConstraintForce(c.m_linkA,force);
 | 
						|
				//b3Printf("force = %f,%f,%f\n",force[0],force[1],force[2]);//[0],torque[1],torque[2]);
 | 
						|
			c.m_multiBodyA->addLinkConstraintTorque(c.m_linkA,torque);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	
 | 
						|
	if (c.m_multiBodyB)
 | 
						|
	{
 | 
						|
		{
 | 
						|
			c.m_multiBodyB->setCompanionId(-1);
 | 
						|
			btVector3 force = c.m_contactNormal2*(c.m_appliedImpulse/deltaTime);
 | 
						|
			btVector3 torque = c.m_relpos2CrossNormal*(c.m_appliedImpulse/deltaTime);
 | 
						|
			if (c.m_linkB<0)
 | 
						|
			{
 | 
						|
				c.m_multiBodyB->addBaseConstraintForce(force);
 | 
						|
				c.m_multiBodyB->addBaseConstraintTorque(torque);
 | 
						|
			} else
 | 
						|
			{
 | 
						|
				{
 | 
						|
					c.m_multiBodyB->addLinkConstraintForce(c.m_linkB,force);
 | 
						|
					//b3Printf("t = %f,%f,%f\n",force[0],force[1],force[2]);//[0],torque[1],torque[2]);
 | 
						|
					c.m_multiBodyB->addLinkConstraintTorque(c.m_linkB,torque);
 | 
						|
				}
 | 
						|
					
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
 | 
						|
 | 
						|
	if (c.m_multiBodyA)
 | 
						|
	{
 | 
						|
		
 | 
						|
		if(c.m_multiBodyA->isMultiDof())
 | 
						|
		{
 | 
						|
			c.m_multiBodyA->applyDeltaVeeMultiDof(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],c.m_appliedImpulse);
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			c.m_multiBodyA->applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],c.m_appliedImpulse);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	
 | 
						|
	if (c.m_multiBodyB)
 | 
						|
	{
 | 
						|
		if(c.m_multiBodyB->isMultiDof())
 | 
						|
		{
 | 
						|
			c.m_multiBodyB->applyDeltaVeeMultiDof(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],c.m_appliedImpulse);
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			c.m_multiBodyB->applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],c.m_appliedImpulse);
 | 
						|
		}
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
btScalar btMultiBodyConstraintSolver::solveGroupCacheFriendlyFinish(btCollisionObject** bodies,int numBodies,const btContactSolverInfo& infoGlobal)
 | 
						|
{
 | 
						|
	BT_PROFILE("btMultiBodyConstraintSolver::solveGroupCacheFriendlyFinish");
 | 
						|
	int numPoolConstraints = m_multiBodyNormalContactConstraints.size();
 | 
						|
	
 | 
						|
 | 
						|
	//write back the delta v to the multi bodies, either as applied impulse (direct velocity change) 
 | 
						|
	//or as applied force, so we can measure the joint reaction forces easier
 | 
						|
	for (int i=0;i<numPoolConstraints;i++)
 | 
						|
	{
 | 
						|
		btMultiBodySolverConstraint& solverConstraint = m_multiBodyNormalContactConstraints[i];
 | 
						|
		writeBackSolverBodyToMultiBody(solverConstraint,infoGlobal.m_timeStep);
 | 
						|
 | 
						|
		writeBackSolverBodyToMultiBody(m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex],infoGlobal.m_timeStep);
 | 
						|
 | 
						|
		if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
 | 
						|
		{
 | 
						|
			writeBackSolverBodyToMultiBody(m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1],infoGlobal.m_timeStep);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	for (int i=0;i<m_multiBodyNonContactConstraints.size();i++)
 | 
						|
	{
 | 
						|
		btMultiBodySolverConstraint& solverConstraint = m_multiBodyNonContactConstraints[i];
 | 
						|
		writeBackSolverBodyToMultiBody(solverConstraint,infoGlobal.m_timeStep);
 | 
						|
	}
 | 
						|
 | 
						|
	
 | 
						|
	if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
 | 
						|
	{
 | 
						|
		BT_PROFILE("warm starting write back");
 | 
						|
		for (int j=0;j<numPoolConstraints;j++)
 | 
						|
		{
 | 
						|
			const btMultiBodySolverConstraint& solverConstraint = m_multiBodyNormalContactConstraints[j];
 | 
						|
			btManifoldPoint* pt = (btManifoldPoint*) solverConstraint.m_originalContactPoint;
 | 
						|
			btAssert(pt);
 | 
						|
			pt->m_appliedImpulse = solverConstraint.m_appliedImpulse;
 | 
						|
			pt->m_appliedImpulseLateral1 = m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_appliedImpulse;
 | 
						|
			
 | 
						|
			//printf("pt->m_appliedImpulseLateral1 = %f\n", pt->m_appliedImpulseLateral1);
 | 
						|
			if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
 | 
						|
			{
 | 
						|
				pt->m_appliedImpulseLateral2 = m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_appliedImpulse;
 | 
						|
			}
 | 
						|
			//do a callback here?
 | 
						|
		}
 | 
						|
	}
 | 
						|
#if 0
 | 
						|
	//multibody joint feedback
 | 
						|
	{
 | 
						|
		BT_PROFILE("multi body joint feedback");
 | 
						|
		for (int j=0;j<numPoolConstraints;j++)
 | 
						|
		{
 | 
						|
			const btMultiBodySolverConstraint& solverConstraint = m_multiBodyNormalContactConstraints[j];
 | 
						|
		
 | 
						|
			//apply the joint feedback into all links of the btMultiBody
 | 
						|
			//todo: double-check the signs of the applied impulse
 | 
						|
 | 
						|
			if(solverConstraint.m_multiBodyA && solverConstraint.m_multiBodyA->isMultiDof())
 | 
						|
			{
 | 
						|
				applyJointFeedback(m_data,solverConstraint, solverConstraint.m_jacAindex,solverConstraint.m_multiBodyA, solverConstraint.m_appliedImpulse*btSimdScalar(1./infoGlobal.m_timeStep));
 | 
						|
			}
 | 
						|
			if(solverConstraint.m_multiBodyB && solverConstraint.m_multiBodyB->isMultiDof())
 | 
						|
			{
 | 
						|
				applyJointFeedback(m_data,solverConstraint, solverConstraint.m_jacBindex,solverConstraint.m_multiBodyB,solverConstraint.m_appliedImpulse*btSimdScalar(-1./infoGlobal.m_timeStep));
 | 
						|
			}
 | 
						|
#if 0
 | 
						|
			if (m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyA && m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyA->isMultiDof())
 | 
						|
			{
 | 
						|
				applyJointFeedback(m_data,m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex],
 | 
						|
					m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_jacAindex,
 | 
						|
					m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyA,
 | 
						|
					m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_appliedImpulse*btSimdScalar(1./infoGlobal.m_timeStep));
 | 
						|
 | 
						|
			}
 | 
						|
			if (m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyB && m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyB->isMultiDof())
 | 
						|
			{
 | 
						|
				applyJointFeedback(m_data,m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex],
 | 
						|
					m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_jacBindex,
 | 
						|
					m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyB,
 | 
						|
					m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_appliedImpulse*btSimdScalar(-1./infoGlobal.m_timeStep));
 | 
						|
			}
 | 
						|
		
 | 
						|
			if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
 | 
						|
			{
 | 
						|
				if (m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyA && m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyA->isMultiDof())
 | 
						|
				{
 | 
						|
					applyJointFeedback(m_data,m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1],
 | 
						|
						m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_jacAindex,
 | 
						|
						m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyA,
 | 
						|
						m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_appliedImpulse*btSimdScalar(1./infoGlobal.m_timeStep));
 | 
						|
				}
 | 
						|
 | 
						|
				if (m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyB && m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyB->isMultiDof())
 | 
						|
				{
 | 
						|
					applyJointFeedback(m_data,m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1],
 | 
						|
						m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_jacBindex,
 | 
						|
						m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyB,
 | 
						|
						m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_appliedImpulse*btSimdScalar(-1./infoGlobal.m_timeStep));
 | 
						|
				}
 | 
						|
			}
 | 
						|
#endif
 | 
						|
		}
 | 
						|
	
 | 
						|
		for (int i=0;i<m_multiBodyNonContactConstraints.size();i++)
 | 
						|
		{
 | 
						|
			const btMultiBodySolverConstraint& solverConstraint = m_multiBodyNonContactConstraints[i];
 | 
						|
			if(solverConstraint.m_multiBodyA && solverConstraint.m_multiBodyA->isMultiDof())
 | 
						|
			{
 | 
						|
				applyJointFeedback(m_data,solverConstraint, solverConstraint.m_jacAindex,solverConstraint.m_multiBodyA, solverConstraint.m_appliedImpulse*btSimdScalar(1./infoGlobal.m_timeStep));
 | 
						|
			}
 | 
						|
			if(solverConstraint.m_multiBodyB && solverConstraint.m_multiBodyB->isMultiDof())
 | 
						|
			{
 | 
						|
				applyJointFeedback(m_data,solverConstraint, solverConstraint.m_jacBindex,solverConstraint.m_multiBodyB,solverConstraint.m_appliedImpulse*btSimdScalar(1./infoGlobal.m_timeStep));
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	numPoolConstraints = m_multiBodyNonContactConstraints.size();
 | 
						|
 | 
						|
#if 0
 | 
						|
	//@todo: m_originalContactPoint is not initialized for btMultiBodySolverConstraint
 | 
						|
	for (int i=0;i<numPoolConstraints;i++)
 | 
						|
	{
 | 
						|
		const btMultiBodySolverConstraint& c = m_multiBodyNonContactConstraints[i];
 | 
						|
 | 
						|
		btTypedConstraint* constr = (btTypedConstraint*)c.m_originalContactPoint;
 | 
						|
		btJointFeedback* fb = constr->getJointFeedback();
 | 
						|
		if (fb)
 | 
						|
		{
 | 
						|
			fb->m_appliedForceBodyA += c.m_contactNormal1*c.m_appliedImpulse*constr->getRigidBodyA().getLinearFactor()/infoGlobal.m_timeStep;
 | 
						|
			fb->m_appliedForceBodyB += c.m_contactNormal2*c.m_appliedImpulse*constr->getRigidBodyB().getLinearFactor()/infoGlobal.m_timeStep;
 | 
						|
			fb->m_appliedTorqueBodyA += c.m_relpos1CrossNormal* constr->getRigidBodyA().getAngularFactor()*c.m_appliedImpulse/infoGlobal.m_timeStep;
 | 
						|
			fb->m_appliedTorqueBodyB += c.m_relpos2CrossNormal* constr->getRigidBodyB().getAngularFactor()*c.m_appliedImpulse/infoGlobal.m_timeStep; /*RGM ???? */
 | 
						|
			
 | 
						|
		}
 | 
						|
 | 
						|
		constr->internalSetAppliedImpulse(c.m_appliedImpulse);
 | 
						|
		if (btFabs(c.m_appliedImpulse)>=constr->getBreakingImpulseThreshold())
 | 
						|
		{
 | 
						|
			constr->setEnabled(false);
 | 
						|
		}
 | 
						|
 | 
						|
	}
 | 
						|
#endif 
 | 
						|
#endif
 | 
						|
 | 
						|
	return btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyFinish(bodies,numBodies,infoGlobal);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void  btMultiBodyConstraintSolver::solveMultiBodyGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,btMultiBodyConstraint** multiBodyConstraints, int numMultiBodyConstraints, const btContactSolverInfo& info, btIDebugDraw* debugDrawer,btDispatcher* dispatcher)
 | 
						|
{
 | 
						|
	//printf("solveMultiBodyGroup start\n");
 | 
						|
	m_tmpMultiBodyConstraints = multiBodyConstraints;
 | 
						|
	m_tmpNumMultiBodyConstraints = numMultiBodyConstraints;
 | 
						|
	
 | 
						|
	btSequentialImpulseConstraintSolver::solveGroup(bodies,numBodies,manifold,numManifolds,constraints,numConstraints,info,debugDrawer,dispatcher);
 | 
						|
 | 
						|
	m_tmpMultiBodyConstraints = 0;
 | 
						|
	m_tmpNumMultiBodyConstraints = 0;
 | 
						|
	
 | 
						|
 | 
						|
}
 |