1121 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1121 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Bullet Continuous Collision Detection and Physics Library
 | |
| Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose, 
 | |
| including commercial applications, and to alter it and redistribute it freely, 
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| 
 | |
| #include "btHingeConstraint.h"
 | |
| #include "BulletDynamics/Dynamics/btRigidBody.h"
 | |
| #include "LinearMath/btTransformUtil.h"
 | |
| #include "LinearMath/btMinMax.h"
 | |
| #include <new>
 | |
| #include "btSolverBody.h"
 | |
| 
 | |
| 
 | |
| 
 | |
| //#define HINGE_USE_OBSOLETE_SOLVER false
 | |
| #define HINGE_USE_OBSOLETE_SOLVER false
 | |
| 
 | |
| #define HINGE_USE_FRAME_OFFSET true
 | |
| 
 | |
| #ifndef __SPU__
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB,
 | |
| 									 const btVector3& axisInA,const btVector3& axisInB, bool useReferenceFrameA)
 | |
| 									 :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB),
 | |
| #ifdef _BT_USE_CENTER_LIMIT_
 | |
| 									 m_limit(),
 | |
| #endif
 | |
| 									 m_angularOnly(false),
 | |
| 									 m_enableAngularMotor(false),
 | |
| 									 m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER),
 | |
| 									 m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET),
 | |
| 									 m_useReferenceFrameA(useReferenceFrameA),
 | |
| 									 m_flags(0),
 | |
| 									 m_normalCFM(0),
 | |
| 									 m_normalERP(0),
 | |
| 									 m_stopCFM(0),
 | |
| 									 m_stopERP(0)
 | |
| {
 | |
| 	m_rbAFrame.getOrigin() = pivotInA;
 | |
| 	
 | |
| 	// since no frame is given, assume this to be zero angle and just pick rb transform axis
 | |
| 	btVector3 rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(0);
 | |
| 
 | |
| 	btVector3 rbAxisA2;
 | |
| 	btScalar projection = axisInA.dot(rbAxisA1);
 | |
| 	if (projection >= 1.0f - SIMD_EPSILON) {
 | |
| 		rbAxisA1 = -rbA.getCenterOfMassTransform().getBasis().getColumn(2);
 | |
| 		rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1);
 | |
| 	} else if (projection <= -1.0f + SIMD_EPSILON) {
 | |
| 		rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(2);
 | |
| 		rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1);      
 | |
| 	} else {
 | |
| 		rbAxisA2 = axisInA.cross(rbAxisA1);
 | |
| 		rbAxisA1 = rbAxisA2.cross(axisInA);
 | |
| 	}
 | |
| 
 | |
| 	m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(),
 | |
| 									rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(),
 | |
| 									rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() );
 | |
| 
 | |
| 	btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB);
 | |
| 	btVector3 rbAxisB1 =  quatRotate(rotationArc,rbAxisA1);
 | |
| 	btVector3 rbAxisB2 =  axisInB.cross(rbAxisB1);	
 | |
| 	
 | |
| 	m_rbBFrame.getOrigin() = pivotInB;
 | |
| 	m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(),
 | |
| 									rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(),
 | |
| 									rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() );
 | |
| 	
 | |
| #ifndef	_BT_USE_CENTER_LIMIT_
 | |
| 	//start with free
 | |
| 	m_lowerLimit = btScalar(1.0f);
 | |
| 	m_upperLimit = btScalar(-1.0f);
 | |
| 	m_biasFactor = 0.3f;
 | |
| 	m_relaxationFactor = 1.0f;
 | |
| 	m_limitSoftness = 0.9f;
 | |
| 	m_solveLimit = false;
 | |
| #endif
 | |
| 	m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| btHingeConstraint::btHingeConstraint(btRigidBody& rbA,const btVector3& pivotInA,const btVector3& axisInA, bool useReferenceFrameA)
 | |
| :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA),
 | |
| #ifdef _BT_USE_CENTER_LIMIT_
 | |
| m_limit(),
 | |
| #endif
 | |
| m_angularOnly(false), m_enableAngularMotor(false), 
 | |
| m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER),
 | |
| m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET),
 | |
| m_useReferenceFrameA(useReferenceFrameA),
 | |
| m_flags(0),
 | |
| m_normalCFM(0),
 | |
| m_normalERP(0),
 | |
| m_stopCFM(0),
 | |
| m_stopERP(0)
 | |
| {
 | |
| 
 | |
| 	// since no frame is given, assume this to be zero angle and just pick rb transform axis
 | |
| 	// fixed axis in worldspace
 | |
| 	btVector3 rbAxisA1, rbAxisA2;
 | |
| 	btPlaneSpace1(axisInA, rbAxisA1, rbAxisA2);
 | |
| 
 | |
| 	m_rbAFrame.getOrigin() = pivotInA;
 | |
| 	m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(),
 | |
| 									rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(),
 | |
| 									rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() );
 | |
| 
 | |
| 	btVector3 axisInB = rbA.getCenterOfMassTransform().getBasis() * axisInA;
 | |
| 
 | |
| 	btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB);
 | |
| 	btVector3 rbAxisB1 =  quatRotate(rotationArc,rbAxisA1);
 | |
| 	btVector3 rbAxisB2 = axisInB.cross(rbAxisB1);
 | |
| 
 | |
| 
 | |
| 	m_rbBFrame.getOrigin() = rbA.getCenterOfMassTransform()(pivotInA);
 | |
| 	m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(),
 | |
| 									rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(),
 | |
| 									rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() );
 | |
| 	
 | |
| #ifndef	_BT_USE_CENTER_LIMIT_
 | |
| 	//start with free
 | |
| 	m_lowerLimit = btScalar(1.0f);
 | |
| 	m_upperLimit = btScalar(-1.0f);
 | |
| 	m_biasFactor = 0.3f;
 | |
| 	m_relaxationFactor = 1.0f;
 | |
| 	m_limitSoftness = 0.9f;
 | |
| 	m_solveLimit = false;
 | |
| #endif
 | |
| 	m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, 
 | |
| 								     const btTransform& rbAFrame, const btTransform& rbBFrame, bool useReferenceFrameA)
 | |
| :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB),m_rbAFrame(rbAFrame),m_rbBFrame(rbBFrame),
 | |
| #ifdef _BT_USE_CENTER_LIMIT_
 | |
| m_limit(),
 | |
| #endif
 | |
| m_angularOnly(false),
 | |
| m_enableAngularMotor(false),
 | |
| m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER),
 | |
| m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET),
 | |
| m_useReferenceFrameA(useReferenceFrameA),
 | |
| m_flags(0),
 | |
| m_normalCFM(0),
 | |
| m_normalERP(0),
 | |
| m_stopCFM(0),
 | |
| m_stopERP(0)
 | |
| {
 | |
| #ifndef	_BT_USE_CENTER_LIMIT_
 | |
| 	//start with free
 | |
| 	m_lowerLimit = btScalar(1.0f);
 | |
| 	m_upperLimit = btScalar(-1.0f);
 | |
| 	m_biasFactor = 0.3f;
 | |
| 	m_relaxationFactor = 1.0f;
 | |
| 	m_limitSoftness = 0.9f;
 | |
| 	m_solveLimit = false;
 | |
| #endif
 | |
| 	m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f);
 | |
| }			
 | |
| 
 | |
| 
 | |
| 
 | |
| btHingeConstraint::btHingeConstraint(btRigidBody& rbA, const btTransform& rbAFrame, bool useReferenceFrameA)
 | |
| :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA),m_rbAFrame(rbAFrame),m_rbBFrame(rbAFrame),
 | |
| #ifdef _BT_USE_CENTER_LIMIT_
 | |
| m_limit(),
 | |
| #endif
 | |
| m_angularOnly(false),
 | |
| m_enableAngularMotor(false),
 | |
| m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER),
 | |
| m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET),
 | |
| m_useReferenceFrameA(useReferenceFrameA),
 | |
| m_flags(0),
 | |
| m_normalCFM(0),
 | |
| m_normalERP(0),
 | |
| m_stopCFM(0),
 | |
| m_stopERP(0)
 | |
| {
 | |
| 	///not providing rigidbody B means implicitly using worldspace for body B
 | |
| 
 | |
| 	m_rbBFrame.getOrigin() = m_rbA.getCenterOfMassTransform()(m_rbAFrame.getOrigin());
 | |
| #ifndef	_BT_USE_CENTER_LIMIT_
 | |
| 	//start with free
 | |
| 	m_lowerLimit = btScalar(1.0f);
 | |
| 	m_upperLimit = btScalar(-1.0f);
 | |
| 	m_biasFactor = 0.3f;
 | |
| 	m_relaxationFactor = 1.0f;
 | |
| 	m_limitSoftness = 0.9f;
 | |
| 	m_solveLimit = false;
 | |
| #endif
 | |
| 	m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void	btHingeConstraint::buildJacobian()
 | |
| {
 | |
| 	if (m_useSolveConstraintObsolete)
 | |
| 	{
 | |
| 		m_appliedImpulse = btScalar(0.);
 | |
| 		m_accMotorImpulse = btScalar(0.);
 | |
| 
 | |
| 		if (!m_angularOnly)
 | |
| 		{
 | |
| 			btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin();
 | |
| 			btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin();
 | |
| 			btVector3 relPos = pivotBInW - pivotAInW;
 | |
| 
 | |
| 			btVector3 normal[3];
 | |
| 			if (relPos.length2() > SIMD_EPSILON)
 | |
| 			{
 | |
| 				normal[0] = relPos.normalized();
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				normal[0].setValue(btScalar(1.0),0,0);
 | |
| 			}
 | |
| 
 | |
| 			btPlaneSpace1(normal[0], normal[1], normal[2]);
 | |
| 
 | |
| 			for (int i=0;i<3;i++)
 | |
| 			{
 | |
| 				new (&m_jac[i]) btJacobianEntry(
 | |
| 				m_rbA.getCenterOfMassTransform().getBasis().transpose(),
 | |
| 				m_rbB.getCenterOfMassTransform().getBasis().transpose(),
 | |
| 				pivotAInW - m_rbA.getCenterOfMassPosition(),
 | |
| 				pivotBInW - m_rbB.getCenterOfMassPosition(),
 | |
| 				normal[i],
 | |
| 				m_rbA.getInvInertiaDiagLocal(),
 | |
| 				m_rbA.getInvMass(),
 | |
| 				m_rbB.getInvInertiaDiagLocal(),
 | |
| 				m_rbB.getInvMass());
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		//calculate two perpendicular jointAxis, orthogonal to hingeAxis
 | |
| 		//these two jointAxis require equal angular velocities for both bodies
 | |
| 
 | |
| 		//this is unused for now, it's a todo
 | |
| 		btVector3 jointAxis0local;
 | |
| 		btVector3 jointAxis1local;
 | |
| 		
 | |
| 		btPlaneSpace1(m_rbAFrame.getBasis().getColumn(2),jointAxis0local,jointAxis1local);
 | |
| 
 | |
| 		btVector3 jointAxis0 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis0local;
 | |
| 		btVector3 jointAxis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis1local;
 | |
| 		btVector3 hingeAxisWorld = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2);
 | |
| 			
 | |
| 		new (&m_jacAng[0])	btJacobianEntry(jointAxis0,
 | |
| 			m_rbA.getCenterOfMassTransform().getBasis().transpose(),
 | |
| 			m_rbB.getCenterOfMassTransform().getBasis().transpose(),
 | |
| 			m_rbA.getInvInertiaDiagLocal(),
 | |
| 			m_rbB.getInvInertiaDiagLocal());
 | |
| 
 | |
| 		new (&m_jacAng[1])	btJacobianEntry(jointAxis1,
 | |
| 			m_rbA.getCenterOfMassTransform().getBasis().transpose(),
 | |
| 			m_rbB.getCenterOfMassTransform().getBasis().transpose(),
 | |
| 			m_rbA.getInvInertiaDiagLocal(),
 | |
| 			m_rbB.getInvInertiaDiagLocal());
 | |
| 
 | |
| 		new (&m_jacAng[2])	btJacobianEntry(hingeAxisWorld,
 | |
| 			m_rbA.getCenterOfMassTransform().getBasis().transpose(),
 | |
| 			m_rbB.getCenterOfMassTransform().getBasis().transpose(),
 | |
| 			m_rbA.getInvInertiaDiagLocal(),
 | |
| 			m_rbB.getInvInertiaDiagLocal());
 | |
| 
 | |
| 			// clear accumulator
 | |
| 			m_accLimitImpulse = btScalar(0.);
 | |
| 
 | |
| 			// test angular limit
 | |
| 			testLimit(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
 | |
| 
 | |
| 		//Compute K = J*W*J' for hinge axis
 | |
| 		btVector3 axisA =  getRigidBodyA().getCenterOfMassTransform().getBasis() *  m_rbAFrame.getBasis().getColumn(2);
 | |
| 		m_kHinge =   1.0f / (getRigidBodyA().computeAngularImpulseDenominator(axisA) +
 | |
| 							 getRigidBodyB().computeAngularImpulseDenominator(axisA));
 | |
| 
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| #endif //__SPU__
 | |
| 
 | |
| 
 | |
| static inline btScalar btNormalizeAnglePositive(btScalar angle)
 | |
| {
 | |
|   return btFmod(btFmod(angle, btScalar(2.0*SIMD_PI)) + btScalar(2.0*SIMD_PI), btScalar(2.0*SIMD_PI));
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| static btScalar btShortestAngularDistance(btScalar accAngle, btScalar curAngle)
 | |
| {
 | |
| 	btScalar result = btNormalizeAngle(btNormalizeAnglePositive(btNormalizeAnglePositive(curAngle) -
 | |
| 	btNormalizeAnglePositive(accAngle)));
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static btScalar btShortestAngleUpdate(btScalar accAngle, btScalar curAngle)
 | |
| {
 | |
| 	btScalar tol(0.3);
 | |
| 	btScalar result = btShortestAngularDistance(accAngle, curAngle);
 | |
| 
 | |
| 	  if (btFabs(result) > tol)
 | |
| 		return curAngle;
 | |
| 	  else
 | |
| 		return accAngle + result;
 | |
| 
 | |
| 	return curAngle;
 | |
| }
 | |
| 
 | |
| 
 | |
| btScalar btHingeAccumulatedAngleConstraint::getAccumulatedHingeAngle()
 | |
| {
 | |
| 	btScalar hingeAngle = getHingeAngle();
 | |
| 	m_accumulatedAngle = btShortestAngleUpdate(m_accumulatedAngle,hingeAngle);
 | |
| 	return m_accumulatedAngle;
 | |
| }
 | |
| void	btHingeAccumulatedAngleConstraint::setAccumulatedHingeAngle(btScalar accAngle)
 | |
| {
 | |
| 	m_accumulatedAngle  = accAngle;
 | |
| }
 | |
| 
 | |
| void btHingeAccumulatedAngleConstraint::getInfo1(btConstraintInfo1* info)
 | |
| {
 | |
| 	//update m_accumulatedAngle
 | |
| 	btScalar curHingeAngle = getHingeAngle();
 | |
| 	m_accumulatedAngle = btShortestAngleUpdate(m_accumulatedAngle,curHingeAngle);
 | |
| 
 | |
| 	btHingeConstraint::getInfo1(info);
 | |
| 	
 | |
| }
 | |
| 
 | |
| 
 | |
| void btHingeConstraint::getInfo1(btConstraintInfo1* info)
 | |
| {
 | |
| 
 | |
| 
 | |
| 	if (m_useSolveConstraintObsolete)
 | |
| 	{
 | |
| 		info->m_numConstraintRows = 0;
 | |
| 		info->nub = 0;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		info->m_numConstraintRows = 5; // Fixed 3 linear + 2 angular
 | |
| 		info->nub = 1; 
 | |
| 		//always add the row, to avoid computation (data is not available yet)
 | |
| 		//prepare constraint
 | |
| 		testLimit(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
 | |
| 		if(getSolveLimit() || getEnableAngularMotor())
 | |
| 		{
 | |
| 			info->m_numConstraintRows++; // limit 3rd anguar as well
 | |
| 			info->nub--; 
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void btHingeConstraint::getInfo1NonVirtual(btConstraintInfo1* info)
 | |
| {
 | |
| 	if (m_useSolveConstraintObsolete)
 | |
| 	{
 | |
| 		info->m_numConstraintRows = 0;
 | |
| 		info->nub = 0;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		//always add the 'limit' row, to avoid computation (data is not available yet)
 | |
| 		info->m_numConstraintRows = 6; // Fixed 3 linear + 2 angular
 | |
| 		info->nub = 0; 
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void btHingeConstraint::getInfo2 (btConstraintInfo2* info)
 | |
| {
 | |
| 	if(m_useOffsetForConstraintFrame)
 | |
| 	{
 | |
| 		getInfo2InternalUsingFrameOffset(info, m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(),m_rbA.getAngularVelocity(),m_rbB.getAngularVelocity());
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		getInfo2Internal(info, m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(),m_rbA.getAngularVelocity(),m_rbB.getAngularVelocity());
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| void	btHingeConstraint::getInfo2NonVirtual (btConstraintInfo2* info,const btTransform& transA,const btTransform& transB,const btVector3& angVelA,const btVector3& angVelB)
 | |
| {
 | |
| 	///the regular (virtual) implementation getInfo2 already performs 'testLimit' during getInfo1, so we need to do it now
 | |
| 	testLimit(transA,transB);
 | |
| 
 | |
| 	getInfo2Internal(info,transA,transB,angVelA,angVelB);
 | |
| }
 | |
| 
 | |
| 
 | |
| void btHingeConstraint::getInfo2Internal(btConstraintInfo2* info, const btTransform& transA,const btTransform& transB,const btVector3& angVelA,const btVector3& angVelB)
 | |
| {
 | |
| 
 | |
| 	btAssert(!m_useSolveConstraintObsolete);
 | |
| 	int i, skip = info->rowskip;
 | |
| 	// transforms in world space
 | |
| 	btTransform trA = transA*m_rbAFrame;
 | |
| 	btTransform trB = transB*m_rbBFrame;
 | |
| 	// pivot point
 | |
| 	btVector3 pivotAInW = trA.getOrigin();
 | |
| 	btVector3 pivotBInW = trB.getOrigin();
 | |
| #if 0
 | |
| 	if (0)
 | |
| 	{
 | |
| 		for (i=0;i<6;i++)
 | |
| 		{
 | |
| 			info->m_J1linearAxis[i*skip]=0;
 | |
| 			info->m_J1linearAxis[i*skip+1]=0;
 | |
| 			info->m_J1linearAxis[i*skip+2]=0;
 | |
| 
 | |
| 			info->m_J1angularAxis[i*skip]=0;
 | |
| 			info->m_J1angularAxis[i*skip+1]=0;
 | |
| 			info->m_J1angularAxis[i*skip+2]=0;
 | |
| 
 | |
| 			info->m_J2linearAxis[i*skip]=0;
 | |
| 			info->m_J2linearAxis[i*skip+1]=0;
 | |
| 			info->m_J2linearAxis[i*skip+2]=0;
 | |
| 
 | |
| 			info->m_J2angularAxis[i*skip]=0;
 | |
| 			info->m_J2angularAxis[i*skip+1]=0;
 | |
| 			info->m_J2angularAxis[i*skip+2]=0;
 | |
| 
 | |
| 			info->m_constraintError[i*skip]=0.f;
 | |
| 		}
 | |
| 	}
 | |
| #endif //#if 0
 | |
| 	// linear (all fixed)
 | |
| 
 | |
| 	if (!m_angularOnly)
 | |
| 	{
 | |
| 		info->m_J1linearAxis[0] = 1;
 | |
| 		info->m_J1linearAxis[skip + 1] = 1;
 | |
| 		info->m_J1linearAxis[2 * skip + 2] = 1;
 | |
| 
 | |
| 		info->m_J2linearAxis[0] = -1;
 | |
| 		info->m_J2linearAxis[skip + 1] = -1;
 | |
| 		info->m_J2linearAxis[2 * skip + 2] = -1;
 | |
| 	}	
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 	btVector3 a1 = pivotAInW - transA.getOrigin();
 | |
| 	{
 | |
| 		btVector3* angular0 = (btVector3*)(info->m_J1angularAxis);
 | |
| 		btVector3* angular1 = (btVector3*)(info->m_J1angularAxis + skip);
 | |
| 		btVector3* angular2 = (btVector3*)(info->m_J1angularAxis + 2 * skip);
 | |
| 		btVector3 a1neg = -a1;
 | |
| 		a1neg.getSkewSymmetricMatrix(angular0,angular1,angular2);
 | |
| 	}
 | |
| 	btVector3 a2 = pivotBInW - transB.getOrigin();
 | |
| 	{
 | |
| 		btVector3* angular0 = (btVector3*)(info->m_J2angularAxis);
 | |
| 		btVector3* angular1 = (btVector3*)(info->m_J2angularAxis + skip);
 | |
| 		btVector3* angular2 = (btVector3*)(info->m_J2angularAxis + 2 * skip);
 | |
| 		a2.getSkewSymmetricMatrix(angular0,angular1,angular2);
 | |
| 	}
 | |
| 	// linear RHS
 | |
| 	btScalar normalErp = (m_flags & BT_HINGE_FLAGS_ERP_NORM) ? m_normalERP : info->erp;
 | |
| 
 | |
|     btScalar k = info->fps * normalErp;
 | |
| 	if (!m_angularOnly)
 | |
| 	{
 | |
| 		for(i = 0; i < 3; i++)
 | |
| 		{
 | |
| 			info->m_constraintError[i * skip] = k * (pivotBInW[i] - pivotAInW[i]);
 | |
| 		}
 | |
| 	}
 | |
| 	// make rotations around X and Y equal
 | |
| 	// the hinge axis should be the only unconstrained
 | |
| 	// rotational axis, the angular velocity of the two bodies perpendicular to
 | |
| 	// the hinge axis should be equal. thus the constraint equations are
 | |
| 	//    p*w1 - p*w2 = 0
 | |
| 	//    q*w1 - q*w2 = 0
 | |
| 	// where p and q are unit vectors normal to the hinge axis, and w1 and w2
 | |
| 	// are the angular velocity vectors of the two bodies.
 | |
| 	// get hinge axis (Z)
 | |
| 	btVector3 ax1 = trA.getBasis().getColumn(2);
 | |
| 	// get 2 orthos to hinge axis (X, Y)
 | |
| 	btVector3 p = trA.getBasis().getColumn(0);
 | |
| 	btVector3 q = trA.getBasis().getColumn(1);
 | |
| 	// set the two hinge angular rows 
 | |
|     int s3 = 3 * info->rowskip;
 | |
|     int s4 = 4 * info->rowskip;
 | |
| 
 | |
| 	info->m_J1angularAxis[s3 + 0] = p[0];
 | |
| 	info->m_J1angularAxis[s3 + 1] = p[1];
 | |
| 	info->m_J1angularAxis[s3 + 2] = p[2];
 | |
| 	info->m_J1angularAxis[s4 + 0] = q[0];
 | |
| 	info->m_J1angularAxis[s4 + 1] = q[1];
 | |
| 	info->m_J1angularAxis[s4 + 2] = q[2];
 | |
| 
 | |
| 	info->m_J2angularAxis[s3 + 0] = -p[0];
 | |
| 	info->m_J2angularAxis[s3 + 1] = -p[1];
 | |
| 	info->m_J2angularAxis[s3 + 2] = -p[2];
 | |
| 	info->m_J2angularAxis[s4 + 0] = -q[0];
 | |
| 	info->m_J2angularAxis[s4 + 1] = -q[1];
 | |
| 	info->m_J2angularAxis[s4 + 2] = -q[2];
 | |
|     // compute the right hand side of the constraint equation. set relative
 | |
|     // body velocities along p and q to bring the hinge back into alignment.
 | |
|     // if ax1,ax2 are the unit length hinge axes as computed from body1 and
 | |
|     // body2, we need to rotate both bodies along the axis u = (ax1 x ax2).
 | |
|     // if `theta' is the angle between ax1 and ax2, we need an angular velocity
 | |
|     // along u to cover angle erp*theta in one step :
 | |
|     //   |angular_velocity| = angle/time = erp*theta / stepsize
 | |
|     //                      = (erp*fps) * theta
 | |
|     //    angular_velocity  = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2|
 | |
|     //                      = (erp*fps) * theta * (ax1 x ax2) / sin(theta)
 | |
|     // ...as ax1 and ax2 are unit length. if theta is smallish,
 | |
|     // theta ~= sin(theta), so
 | |
|     //    angular_velocity  = (erp*fps) * (ax1 x ax2)
 | |
|     // ax1 x ax2 is in the plane space of ax1, so we project the angular
 | |
|     // velocity to p and q to find the right hand side.
 | |
|     btVector3 ax2 = trB.getBasis().getColumn(2);
 | |
| 	btVector3 u = ax1.cross(ax2);
 | |
| 	info->m_constraintError[s3] = k * u.dot(p);
 | |
| 	info->m_constraintError[s4] = k * u.dot(q);
 | |
| 	// check angular limits
 | |
| 	int nrow = 4; // last filled row
 | |
| 	int srow;
 | |
| 	btScalar limit_err = btScalar(0.0);
 | |
| 	int limit = 0;
 | |
| 	if(getSolveLimit())
 | |
| 	{
 | |
| #ifdef	_BT_USE_CENTER_LIMIT_
 | |
| 	limit_err = m_limit.getCorrection() * m_referenceSign;
 | |
| #else
 | |
| 	limit_err = m_correction * m_referenceSign;
 | |
| #endif
 | |
| 	limit = (limit_err > btScalar(0.0)) ? 1 : 2;
 | |
| 
 | |
| 	}
 | |
| 	// if the hinge has joint limits or motor, add in the extra row
 | |
| 	bool powered = getEnableAngularMotor();
 | |
| 	if(limit || powered)
 | |
| 	{
 | |
| 		nrow++;
 | |
| 		srow = nrow * info->rowskip;
 | |
| 		info->m_J1angularAxis[srow+0] = ax1[0];
 | |
| 		info->m_J1angularAxis[srow+1] = ax1[1];
 | |
| 		info->m_J1angularAxis[srow+2] = ax1[2];
 | |
| 
 | |
| 		info->m_J2angularAxis[srow+0] = -ax1[0];
 | |
| 		info->m_J2angularAxis[srow+1] = -ax1[1];
 | |
| 		info->m_J2angularAxis[srow+2] = -ax1[2];
 | |
| 
 | |
| 		btScalar lostop = getLowerLimit();
 | |
| 		btScalar histop = getUpperLimit();
 | |
| 		if(limit && (lostop == histop))
 | |
| 		{  // the joint motor is ineffective
 | |
| 			powered = false;
 | |
| 		}
 | |
| 		info->m_constraintError[srow] = btScalar(0.0f);
 | |
| 		btScalar currERP = (m_flags & BT_HINGE_FLAGS_ERP_STOP) ? m_stopERP : normalErp;
 | |
| 		if(powered)
 | |
| 		{
 | |
| 			if(m_flags & BT_HINGE_FLAGS_CFM_NORM)
 | |
| 			{
 | |
| 				info->cfm[srow] = m_normalCFM;
 | |
| 			}
 | |
| 			btScalar mot_fact = getMotorFactor(m_hingeAngle, lostop, histop, m_motorTargetVelocity, info->fps * currERP);
 | |
| 			info->m_constraintError[srow] += mot_fact * m_motorTargetVelocity * m_referenceSign;
 | |
| 			info->m_lowerLimit[srow] = - m_maxMotorImpulse;
 | |
| 			info->m_upperLimit[srow] =   m_maxMotorImpulse;
 | |
| 		}
 | |
| 		if(limit)
 | |
| 		{
 | |
| 			k = info->fps * currERP;
 | |
| 			info->m_constraintError[srow] += k * limit_err;
 | |
| 			if(m_flags & BT_HINGE_FLAGS_CFM_STOP)
 | |
| 			{
 | |
| 				info->cfm[srow] = m_stopCFM;
 | |
| 			}
 | |
| 			if(lostop == histop) 
 | |
| 			{
 | |
| 				// limited low and high simultaneously
 | |
| 				info->m_lowerLimit[srow] = -SIMD_INFINITY;
 | |
| 				info->m_upperLimit[srow] = SIMD_INFINITY;
 | |
| 			}
 | |
| 			else if(limit == 1) 
 | |
| 			{ // low limit
 | |
| 				info->m_lowerLimit[srow] = 0;
 | |
| 				info->m_upperLimit[srow] = SIMD_INFINITY;
 | |
| 			}
 | |
| 			else 
 | |
| 			{ // high limit
 | |
| 				info->m_lowerLimit[srow] = -SIMD_INFINITY;
 | |
| 				info->m_upperLimit[srow] = 0;
 | |
| 			}
 | |
| 			// bounce (we'll use slider parameter abs(1.0 - m_dampingLimAng) for that)
 | |
| #ifdef	_BT_USE_CENTER_LIMIT_
 | |
| 			btScalar bounce = m_limit.getRelaxationFactor();
 | |
| #else
 | |
| 			btScalar bounce = m_relaxationFactor;
 | |
| #endif
 | |
| 			if(bounce > btScalar(0.0))
 | |
| 			{
 | |
| 				btScalar vel = angVelA.dot(ax1);
 | |
| 				vel -= angVelB.dot(ax1);
 | |
| 				// only apply bounce if the velocity is incoming, and if the
 | |
| 				// resulting c[] exceeds what we already have.
 | |
| 				if(limit == 1)
 | |
| 				{	// low limit
 | |
| 					if(vel < 0)
 | |
| 					{
 | |
| 						btScalar newc = -bounce * vel;
 | |
| 						if(newc > info->m_constraintError[srow])
 | |
| 						{
 | |
| 							info->m_constraintError[srow] = newc;
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				else
 | |
| 				{	// high limit - all those computations are reversed
 | |
| 					if(vel > 0)
 | |
| 					{
 | |
| 						btScalar newc = -bounce * vel;
 | |
| 						if(newc < info->m_constraintError[srow])
 | |
| 						{
 | |
| 							info->m_constraintError[srow] = newc;
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| #ifdef	_BT_USE_CENTER_LIMIT_
 | |
| 			info->m_constraintError[srow] *= m_limit.getBiasFactor();
 | |
| #else
 | |
| 			info->m_constraintError[srow] *= m_biasFactor;
 | |
| #endif
 | |
| 		} // if(limit)
 | |
| 	} // if angular limit or powered
 | |
| }
 | |
| 
 | |
| 
 | |
| void btHingeConstraint::setFrames(const btTransform & frameA, const btTransform & frameB)
 | |
| {
 | |
| 	m_rbAFrame = frameA;
 | |
| 	m_rbBFrame = frameB;
 | |
| 	buildJacobian();
 | |
| }
 | |
| 
 | |
| 
 | |
| void	btHingeConstraint::updateRHS(btScalar	timeStep)
 | |
| {
 | |
| 	(void)timeStep;
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| btScalar btHingeConstraint::getHingeAngle()
 | |
| {
 | |
| 	return getHingeAngle(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
 | |
| }
 | |
| 
 | |
| btScalar btHingeConstraint::getHingeAngle(const btTransform& transA,const btTransform& transB)
 | |
| {
 | |
| 	const btVector3 refAxis0  = transA.getBasis() * m_rbAFrame.getBasis().getColumn(0);
 | |
| 	const btVector3 refAxis1  = transA.getBasis() * m_rbAFrame.getBasis().getColumn(1);
 | |
| 	const btVector3 swingAxis = transB.getBasis() * m_rbBFrame.getBasis().getColumn(1);
 | |
| //	btScalar angle = btAtan2Fast(swingAxis.dot(refAxis0), swingAxis.dot(refAxis1));
 | |
| 	btScalar angle = btAtan2(swingAxis.dot(refAxis0), swingAxis.dot(refAxis1));
 | |
| 	return m_referenceSign * angle;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void btHingeConstraint::testLimit(const btTransform& transA,const btTransform& transB)
 | |
| {
 | |
| 	// Compute limit information
 | |
| 	m_hingeAngle = getHingeAngle(transA,transB);
 | |
| #ifdef	_BT_USE_CENTER_LIMIT_
 | |
| 	m_limit.test(m_hingeAngle);
 | |
| #else
 | |
| 	m_correction = btScalar(0.);
 | |
| 	m_limitSign = btScalar(0.);
 | |
| 	m_solveLimit = false;
 | |
| 	if (m_lowerLimit <= m_upperLimit)
 | |
| 	{
 | |
| 		m_hingeAngle = btAdjustAngleToLimits(m_hingeAngle, m_lowerLimit, m_upperLimit);
 | |
| 		if (m_hingeAngle <= m_lowerLimit)
 | |
| 		{
 | |
| 			m_correction = (m_lowerLimit - m_hingeAngle);
 | |
| 			m_limitSign = 1.0f;
 | |
| 			m_solveLimit = true;
 | |
| 		} 
 | |
| 		else if (m_hingeAngle >= m_upperLimit)
 | |
| 		{
 | |
| 			m_correction = m_upperLimit - m_hingeAngle;
 | |
| 			m_limitSign = -1.0f;
 | |
| 			m_solveLimit = true;
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| static btVector3 vHinge(0, 0, btScalar(1));
 | |
| 
 | |
| void btHingeConstraint::setMotorTarget(const btQuaternion& qAinB, btScalar dt)
 | |
| {
 | |
| 	// convert target from body to constraint space
 | |
| 	btQuaternion qConstraint = m_rbBFrame.getRotation().inverse() * qAinB * m_rbAFrame.getRotation();
 | |
| 	qConstraint.normalize();
 | |
| 
 | |
| 	// extract "pure" hinge component
 | |
| 	btVector3 vNoHinge = quatRotate(qConstraint, vHinge); vNoHinge.normalize();
 | |
| 	btQuaternion qNoHinge = shortestArcQuat(vHinge, vNoHinge);
 | |
| 	btQuaternion qHinge = qNoHinge.inverse() * qConstraint;
 | |
| 	qHinge.normalize();
 | |
| 
 | |
| 	// compute angular target, clamped to limits
 | |
| 	btScalar targetAngle = qHinge.getAngle();
 | |
| 	if (targetAngle > SIMD_PI) // long way around. flip quat and recalculate.
 | |
| 	{
 | |
| 		qHinge = -(qHinge);
 | |
| 		targetAngle = qHinge.getAngle();
 | |
| 	}
 | |
| 	if (qHinge.getZ() < 0)
 | |
| 		targetAngle = -targetAngle;
 | |
| 
 | |
| 	setMotorTarget(targetAngle, dt);
 | |
| }
 | |
| 
 | |
| void btHingeConstraint::setMotorTarget(btScalar targetAngle, btScalar dt)
 | |
| {
 | |
| #ifdef	_BT_USE_CENTER_LIMIT_
 | |
| 	m_limit.fit(targetAngle);
 | |
| #else
 | |
| 	if (m_lowerLimit < m_upperLimit)
 | |
| 	{
 | |
| 		if (targetAngle < m_lowerLimit)
 | |
| 			targetAngle = m_lowerLimit;
 | |
| 		else if (targetAngle > m_upperLimit)
 | |
| 			targetAngle = m_upperLimit;
 | |
| 	}
 | |
| #endif
 | |
| 	// compute angular velocity
 | |
| 	btScalar curAngle  = getHingeAngle(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
 | |
| 	btScalar dAngle = targetAngle - curAngle;
 | |
| 	m_motorTargetVelocity = dAngle / dt;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void btHingeConstraint::getInfo2InternalUsingFrameOffset(btConstraintInfo2* info, const btTransform& transA,const btTransform& transB,const btVector3& angVelA,const btVector3& angVelB)
 | |
| {
 | |
| 	btAssert(!m_useSolveConstraintObsolete);
 | |
| 	int i, s = info->rowskip;
 | |
| 	// transforms in world space
 | |
| 	btTransform trA = transA*m_rbAFrame;
 | |
| 	btTransform trB = transB*m_rbBFrame;
 | |
| 	// pivot point
 | |
| //	btVector3 pivotAInW = trA.getOrigin();
 | |
| //	btVector3 pivotBInW = trB.getOrigin();
 | |
| #if 1
 | |
| 	// difference between frames in WCS
 | |
| 	btVector3 ofs = trB.getOrigin() - trA.getOrigin();
 | |
| 	// now get weight factors depending on masses
 | |
| 	btScalar miA = getRigidBodyA().getInvMass();
 | |
| 	btScalar miB = getRigidBodyB().getInvMass();
 | |
| 	bool hasStaticBody = (miA < SIMD_EPSILON) || (miB < SIMD_EPSILON);
 | |
| 	btScalar miS = miA + miB;
 | |
| 	btScalar factA, factB;
 | |
| 	if(miS > btScalar(0.f))
 | |
| 	{
 | |
| 		factA = miB / miS;
 | |
| 	}
 | |
| 	else 
 | |
| 	{
 | |
| 		factA = btScalar(0.5f);
 | |
| 	}
 | |
| 	factB = btScalar(1.0f) - factA;
 | |
| 	// get the desired direction of hinge axis
 | |
| 	// as weighted sum of Z-orthos of frameA and frameB in WCS
 | |
| 	btVector3 ax1A = trA.getBasis().getColumn(2);
 | |
| 	btVector3 ax1B = trB.getBasis().getColumn(2);
 | |
| 	btVector3 ax1 = ax1A * factA + ax1B * factB;
 | |
| 	ax1.normalize();
 | |
| 	// fill first 3 rows 
 | |
| 	// we want: velA + wA x relA == velB + wB x relB
 | |
| 	btTransform bodyA_trans = transA;
 | |
| 	btTransform bodyB_trans = transB;
 | |
| 	int s0 = 0;
 | |
| 	int s1 = s;
 | |
| 	int s2 = s * 2;
 | |
| 	int nrow = 2; // last filled row
 | |
| 	btVector3 tmpA, tmpB, relA, relB, p, q;
 | |
| 	// get vector from bodyB to frameB in WCS
 | |
| 	relB = trB.getOrigin() - bodyB_trans.getOrigin();
 | |
| 	// get its projection to hinge axis
 | |
| 	btVector3 projB = ax1 * relB.dot(ax1);
 | |
| 	// get vector directed from bodyB to hinge axis (and orthogonal to it)
 | |
| 	btVector3 orthoB = relB - projB;
 | |
| 	// same for bodyA
 | |
| 	relA = trA.getOrigin() - bodyA_trans.getOrigin();
 | |
| 	btVector3 projA = ax1 * relA.dot(ax1);
 | |
| 	btVector3 orthoA = relA - projA;
 | |
| 	btVector3 totalDist = projA - projB;
 | |
| 	// get offset vectors relA and relB
 | |
| 	relA = orthoA + totalDist * factA;
 | |
| 	relB = orthoB - totalDist * factB;
 | |
| 	// now choose average ortho to hinge axis
 | |
| 	p = orthoB * factA + orthoA * factB;
 | |
| 	btScalar len2 = p.length2();
 | |
| 	if(len2 > SIMD_EPSILON)
 | |
| 	{
 | |
| 		p /= btSqrt(len2);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		p = trA.getBasis().getColumn(1);
 | |
| 	}
 | |
| 	// make one more ortho
 | |
| 	q = ax1.cross(p);
 | |
| 	// fill three rows
 | |
| 	tmpA = relA.cross(p);
 | |
| 	tmpB = relB.cross(p);
 | |
|     for (i=0; i<3; i++) info->m_J1angularAxis[s0+i] = tmpA[i];
 | |
|     for (i=0; i<3; i++) info->m_J2angularAxis[s0+i] = -tmpB[i];
 | |
| 	tmpA = relA.cross(q);
 | |
| 	tmpB = relB.cross(q);
 | |
| 	if(hasStaticBody && getSolveLimit())
 | |
| 	{ // to make constraint between static and dynamic objects more rigid
 | |
| 		// remove wA (or wB) from equation if angular limit is hit
 | |
| 		tmpB *= factB;
 | |
| 		tmpA *= factA;
 | |
| 	}
 | |
| 	for (i=0; i<3; i++) info->m_J1angularAxis[s1+i] = tmpA[i];
 | |
|     for (i=0; i<3; i++) info->m_J2angularAxis[s1+i] = -tmpB[i];
 | |
| 	tmpA = relA.cross(ax1);
 | |
| 	tmpB = relB.cross(ax1);
 | |
| 	if(hasStaticBody)
 | |
| 	{ // to make constraint between static and dynamic objects more rigid
 | |
| 		// remove wA (or wB) from equation
 | |
| 		tmpB *= factB;
 | |
| 		tmpA *= factA;
 | |
| 	}
 | |
| 	for (i=0; i<3; i++) info->m_J1angularAxis[s2+i] = tmpA[i];
 | |
|     for (i=0; i<3; i++) info->m_J2angularAxis[s2+i] = -tmpB[i];
 | |
| 
 | |
| 	btScalar normalErp = (m_flags & BT_HINGE_FLAGS_ERP_NORM)? m_normalERP : info->erp;
 | |
| 	btScalar k = info->fps * normalErp;
 | |
| 
 | |
| 	if (!m_angularOnly)
 | |
| 	{
 | |
| 		for (i=0; i<3; i++) info->m_J1linearAxis[s0+i] = p[i];
 | |
| 		for (i=0; i<3; i++) info->m_J1linearAxis[s1+i] = q[i];
 | |
| 		for (i=0; i<3; i++) info->m_J1linearAxis[s2+i] = ax1[i];
 | |
| 
 | |
| 		for (i=0; i<3; i++) info->m_J2linearAxis[s0+i] = -p[i];
 | |
| 		for (i=0; i<3; i++) info->m_J2linearAxis[s1+i] = -q[i];
 | |
| 		for (i=0; i<3; i++) info->m_J2linearAxis[s2+i] = -ax1[i];
 | |
| 
 | |
| 	// compute three elements of right hand side
 | |
| 	
 | |
| 		btScalar rhs = k * p.dot(ofs);
 | |
| 		info->m_constraintError[s0] = rhs;
 | |
| 		rhs = k * q.dot(ofs);
 | |
| 		info->m_constraintError[s1] = rhs;
 | |
| 		rhs = k * ax1.dot(ofs);
 | |
| 		info->m_constraintError[s2] = rhs;
 | |
| 	}
 | |
| 	// the hinge axis should be the only unconstrained
 | |
| 	// rotational axis, the angular velocity of the two bodies perpendicular to
 | |
| 	// the hinge axis should be equal. thus the constraint equations are
 | |
| 	//    p*w1 - p*w2 = 0
 | |
| 	//    q*w1 - q*w2 = 0
 | |
| 	// where p and q are unit vectors normal to the hinge axis, and w1 and w2
 | |
| 	// are the angular velocity vectors of the two bodies.
 | |
| 	int s3 = 3 * s;
 | |
| 	int s4 = 4 * s;
 | |
| 	info->m_J1angularAxis[s3 + 0] = p[0];
 | |
| 	info->m_J1angularAxis[s3 + 1] = p[1];
 | |
| 	info->m_J1angularAxis[s3 + 2] = p[2];
 | |
| 	info->m_J1angularAxis[s4 + 0] = q[0];
 | |
| 	info->m_J1angularAxis[s4 + 1] = q[1];
 | |
| 	info->m_J1angularAxis[s4 + 2] = q[2];
 | |
| 
 | |
| 	info->m_J2angularAxis[s3 + 0] = -p[0];
 | |
| 	info->m_J2angularAxis[s3 + 1] = -p[1];
 | |
| 	info->m_J2angularAxis[s3 + 2] = -p[2];
 | |
| 	info->m_J2angularAxis[s4 + 0] = -q[0];
 | |
| 	info->m_J2angularAxis[s4 + 1] = -q[1];
 | |
| 	info->m_J2angularAxis[s4 + 2] = -q[2];
 | |
| 	// compute the right hand side of the constraint equation. set relative
 | |
| 	// body velocities along p and q to bring the hinge back into alignment.
 | |
| 	// if ax1A,ax1B are the unit length hinge axes as computed from bodyA and
 | |
| 	// bodyB, we need to rotate both bodies along the axis u = (ax1 x ax2).
 | |
| 	// if "theta" is the angle between ax1 and ax2, we need an angular velocity
 | |
| 	// along u to cover angle erp*theta in one step :
 | |
| 	//   |angular_velocity| = angle/time = erp*theta / stepsize
 | |
| 	//                      = (erp*fps) * theta
 | |
| 	//    angular_velocity  = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2|
 | |
| 	//                      = (erp*fps) * theta * (ax1 x ax2) / sin(theta)
 | |
| 	// ...as ax1 and ax2 are unit length. if theta is smallish,
 | |
| 	// theta ~= sin(theta), so
 | |
| 	//    angular_velocity  = (erp*fps) * (ax1 x ax2)
 | |
| 	// ax1 x ax2 is in the plane space of ax1, so we project the angular
 | |
| 	// velocity to p and q to find the right hand side.
 | |
| 	k = info->fps * normalErp;//??
 | |
| 
 | |
| 	btVector3 u = ax1A.cross(ax1B);
 | |
| 	info->m_constraintError[s3] = k * u.dot(p);
 | |
| 	info->m_constraintError[s4] = k * u.dot(q);
 | |
| #endif
 | |
| 	// check angular limits
 | |
| 	nrow = 4; // last filled row
 | |
| 	int srow;
 | |
| 	btScalar limit_err = btScalar(0.0);
 | |
| 	int limit = 0;
 | |
| 	if(getSolveLimit())
 | |
| 	{
 | |
| #ifdef	_BT_USE_CENTER_LIMIT_
 | |
| 	limit_err = m_limit.getCorrection() * m_referenceSign;
 | |
| #else
 | |
| 	limit_err = m_correction * m_referenceSign;
 | |
| #endif
 | |
| 	limit = (limit_err > btScalar(0.0)) ? 1 : 2;
 | |
| 
 | |
| 	}
 | |
| 	// if the hinge has joint limits or motor, add in the extra row
 | |
| 	bool powered = getEnableAngularMotor();
 | |
| 	if(limit || powered)
 | |
| 	{
 | |
| 		nrow++;
 | |
| 		srow = nrow * info->rowskip;
 | |
| 		info->m_J1angularAxis[srow+0] = ax1[0];
 | |
| 		info->m_J1angularAxis[srow+1] = ax1[1];
 | |
| 		info->m_J1angularAxis[srow+2] = ax1[2];
 | |
| 
 | |
| 		info->m_J2angularAxis[srow+0] = -ax1[0];
 | |
| 		info->m_J2angularAxis[srow+1] = -ax1[1];
 | |
| 		info->m_J2angularAxis[srow+2] = -ax1[2];
 | |
| 
 | |
| 		btScalar lostop = getLowerLimit();
 | |
| 		btScalar histop = getUpperLimit();
 | |
| 		if(limit && (lostop == histop))
 | |
| 		{  // the joint motor is ineffective
 | |
| 			powered = false;
 | |
| 		}
 | |
| 		info->m_constraintError[srow] = btScalar(0.0f);
 | |
| 		btScalar currERP = (m_flags & BT_HINGE_FLAGS_ERP_STOP) ? m_stopERP : normalErp;
 | |
| 		if(powered)
 | |
| 		{
 | |
| 			if(m_flags & BT_HINGE_FLAGS_CFM_NORM)
 | |
| 			{
 | |
| 				info->cfm[srow] = m_normalCFM;
 | |
| 			}
 | |
| 			btScalar mot_fact = getMotorFactor(m_hingeAngle, lostop, histop, m_motorTargetVelocity, info->fps * currERP);
 | |
| 			info->m_constraintError[srow] += mot_fact * m_motorTargetVelocity * m_referenceSign;
 | |
| 			info->m_lowerLimit[srow] = - m_maxMotorImpulse;
 | |
| 			info->m_upperLimit[srow] =   m_maxMotorImpulse;
 | |
| 		}
 | |
| 		if(limit)
 | |
| 		{
 | |
| 			k = info->fps * currERP;
 | |
| 			info->m_constraintError[srow] += k * limit_err;
 | |
| 			if(m_flags & BT_HINGE_FLAGS_CFM_STOP)
 | |
| 			{
 | |
| 				info->cfm[srow] = m_stopCFM;
 | |
| 			}
 | |
| 			if(lostop == histop) 
 | |
| 			{
 | |
| 				// limited low and high simultaneously
 | |
| 				info->m_lowerLimit[srow] = -SIMD_INFINITY;
 | |
| 				info->m_upperLimit[srow] = SIMD_INFINITY;
 | |
| 			}
 | |
| 			else if(limit == 1) 
 | |
| 			{ // low limit
 | |
| 				info->m_lowerLimit[srow] = 0;
 | |
| 				info->m_upperLimit[srow] = SIMD_INFINITY;
 | |
| 			}
 | |
| 			else 
 | |
| 			{ // high limit
 | |
| 				info->m_lowerLimit[srow] = -SIMD_INFINITY;
 | |
| 				info->m_upperLimit[srow] = 0;
 | |
| 			}
 | |
| 			// bounce (we'll use slider parameter abs(1.0 - m_dampingLimAng) for that)
 | |
| #ifdef	_BT_USE_CENTER_LIMIT_
 | |
| 			btScalar bounce = m_limit.getRelaxationFactor();
 | |
| #else
 | |
| 			btScalar bounce = m_relaxationFactor;
 | |
| #endif
 | |
| 			if(bounce > btScalar(0.0))
 | |
| 			{
 | |
| 				btScalar vel = angVelA.dot(ax1);
 | |
| 				vel -= angVelB.dot(ax1);
 | |
| 				// only apply bounce if the velocity is incoming, and if the
 | |
| 				// resulting c[] exceeds what we already have.
 | |
| 				if(limit == 1)
 | |
| 				{	// low limit
 | |
| 					if(vel < 0)
 | |
| 					{
 | |
| 						btScalar newc = -bounce * vel;
 | |
| 						if(newc > info->m_constraintError[srow])
 | |
| 						{
 | |
| 							info->m_constraintError[srow] = newc;
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				else
 | |
| 				{	// high limit - all those computations are reversed
 | |
| 					if(vel > 0)
 | |
| 					{
 | |
| 						btScalar newc = -bounce * vel;
 | |
| 						if(newc < info->m_constraintError[srow])
 | |
| 						{
 | |
| 							info->m_constraintError[srow] = newc;
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| #ifdef	_BT_USE_CENTER_LIMIT_
 | |
| 			info->m_constraintError[srow] *= m_limit.getBiasFactor();
 | |
| #else
 | |
| 			info->m_constraintError[srow] *= m_biasFactor;
 | |
| #endif
 | |
| 		} // if(limit)
 | |
| 	} // if angular limit or powered
 | |
| }
 | |
| 
 | |
| 
 | |
| ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5). 
 | |
| ///If no axis is provided, it uses the default axis for this constraint.
 | |
| void btHingeConstraint::setParam(int num, btScalar value, int axis)
 | |
| {
 | |
| 	if((axis == -1) || (axis == 5))
 | |
| 	{
 | |
| 		switch(num)
 | |
| 		{	
 | |
| 			case BT_CONSTRAINT_STOP_ERP :
 | |
| 				m_stopERP = value;
 | |
| 				m_flags |= BT_HINGE_FLAGS_ERP_STOP;
 | |
| 				break;
 | |
| 			case BT_CONSTRAINT_STOP_CFM :
 | |
| 				m_stopCFM = value;
 | |
| 				m_flags |= BT_HINGE_FLAGS_CFM_STOP;
 | |
| 				break;
 | |
| 			case BT_CONSTRAINT_CFM :
 | |
| 				m_normalCFM = value;
 | |
| 				m_flags |= BT_HINGE_FLAGS_CFM_NORM;
 | |
| 				break;
 | |
| 			case BT_CONSTRAINT_ERP:
 | |
| 				m_normalERP = value;
 | |
| 				m_flags |= BT_HINGE_FLAGS_ERP_NORM;
 | |
| 				break;
 | |
| 			default : 
 | |
| 				btAssertConstrParams(0);
 | |
| 		}
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		btAssertConstrParams(0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| ///return the local value of parameter
 | |
| btScalar btHingeConstraint::getParam(int num, int axis) const 
 | |
| {
 | |
| 	btScalar retVal = 0;
 | |
| 	if((axis == -1) || (axis == 5))
 | |
| 	{
 | |
| 		switch(num)
 | |
| 		{	
 | |
| 			case BT_CONSTRAINT_STOP_ERP :
 | |
| 				btAssertConstrParams(m_flags & BT_HINGE_FLAGS_ERP_STOP);
 | |
| 				retVal = m_stopERP;
 | |
| 				break;
 | |
| 			case BT_CONSTRAINT_STOP_CFM :
 | |
| 				btAssertConstrParams(m_flags & BT_HINGE_FLAGS_CFM_STOP);
 | |
| 				retVal = m_stopCFM;
 | |
| 				break;
 | |
| 			case BT_CONSTRAINT_CFM :
 | |
| 				btAssertConstrParams(m_flags & BT_HINGE_FLAGS_CFM_NORM);
 | |
| 				retVal = m_normalCFM;
 | |
| 				break;
 | |
| 			case BT_CONSTRAINT_ERP:
 | |
| 				btAssertConstrParams(m_flags & BT_HINGE_FLAGS_ERP_NORM);
 | |
| 				retVal = m_normalERP;
 | |
| 				break;
 | |
| 			default : 
 | |
| 				btAssertConstrParams(0);
 | |
| 		}
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		btAssertConstrParams(0);
 | |
| 	}
 | |
| 	return retVal;
 | |
| }
 | |
| 
 | |
| 
 |