620 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			620 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Bullet Continuous Collision Detection and Physics Library
 | |
| Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose, 
 | |
| including commercial applications, and to alter it and redistribute it freely, 
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| #ifndef BT_RIGIDBODY_H
 | |
| #define BT_RIGIDBODY_H
 | |
| 
 | |
| #include "LinearMath/btAlignedObjectArray.h"
 | |
| #include "LinearMath/btTransform.h"
 | |
| #include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
 | |
| #include "BulletCollision/CollisionDispatch/btCollisionObject.h"
 | |
| 
 | |
| class btCollisionShape;
 | |
| class btMotionState;
 | |
| class btTypedConstraint;
 | |
| 
 | |
| 
 | |
| extern btScalar gDeactivationTime;
 | |
| extern bool gDisableDeactivation;
 | |
| 
 | |
| #ifdef BT_USE_DOUBLE_PRECISION
 | |
| #define btRigidBodyData	btRigidBodyDoubleData
 | |
| #define btRigidBodyDataName	"btRigidBodyDoubleData"
 | |
| #else
 | |
| #define btRigidBodyData	btRigidBodyFloatData
 | |
| #define btRigidBodyDataName	"btRigidBodyFloatData"
 | |
| #endif //BT_USE_DOUBLE_PRECISION
 | |
| 
 | |
| 
 | |
| enum	btRigidBodyFlags
 | |
| {
 | |
| 	BT_DISABLE_WORLD_GRAVITY = 1,
 | |
| 	///BT_ENABLE_GYROPSCOPIC_FORCE flags is enabled by default in Bullet 2.83 and onwards.
 | |
| 	///and it BT_ENABLE_GYROPSCOPIC_FORCE becomes equivalent to BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY
 | |
| 	///See Demos/GyroscopicDemo and computeGyroscopicImpulseImplicit
 | |
| 	BT_ENABLE_GYROSCOPIC_FORCE_EXPLICIT = 2,
 | |
| 	BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_WORLD=4,
 | |
| 	BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY=8,
 | |
| 	BT_ENABLE_GYROPSCOPIC_FORCE = BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY,
 | |
| };
 | |
| 
 | |
| 
 | |
| ///The btRigidBody is the main class for rigid body objects. It is derived from btCollisionObject, so it keeps a pointer to a btCollisionShape.
 | |
| ///It is recommended for performance and memory use to share btCollisionShape objects whenever possible.
 | |
| ///There are 3 types of rigid bodies: 
 | |
| ///- A) Dynamic rigid bodies, with positive mass. Motion is controlled by rigid body dynamics.
 | |
| ///- B) Fixed objects with zero mass. They are not moving (basically collision objects)
 | |
| ///- C) Kinematic objects, which are objects without mass, but the user can move them. There is on-way interaction, and Bullet calculates a velocity based on the timestep and previous and current world transform.
 | |
| ///Bullet automatically deactivates dynamic rigid bodies, when the velocity is below a threshold for a given time.
 | |
| ///Deactivated (sleeping) rigid bodies don't take any processing time, except a minor broadphase collision detection impact (to allow active objects to activate/wake up sleeping objects)
 | |
| class btRigidBody  : public btCollisionObject
 | |
| {
 | |
| 
 | |
| 	btMatrix3x3	m_invInertiaTensorWorld;
 | |
| 	btVector3		m_linearVelocity;
 | |
| 	btVector3		m_angularVelocity;
 | |
| 	btScalar		m_inverseMass;
 | |
| 	btVector3		m_linearFactor;
 | |
| 
 | |
| 	btVector3		m_gravity;	
 | |
| 	btVector3		m_gravity_acceleration;
 | |
| 	btVector3		m_invInertiaLocal;
 | |
| 	btVector3		m_totalForce;
 | |
| 	btVector3		m_totalTorque;
 | |
| 	
 | |
| 	btScalar		m_linearDamping;
 | |
| 	btScalar		m_angularDamping;
 | |
| 
 | |
| 	bool			m_additionalDamping;
 | |
| 	btScalar		m_additionalDampingFactor;
 | |
| 	btScalar		m_additionalLinearDampingThresholdSqr;
 | |
| 	btScalar		m_additionalAngularDampingThresholdSqr;
 | |
| 	btScalar		m_additionalAngularDampingFactor;
 | |
| 
 | |
| 
 | |
| 	btScalar		m_linearSleepingThreshold;
 | |
| 	btScalar		m_angularSleepingThreshold;
 | |
| 
 | |
| 	//m_optionalMotionState allows to automatic synchronize the world transform for active objects
 | |
| 	btMotionState*	m_optionalMotionState;
 | |
| 
 | |
| 	//keep track of typed constraints referencing this rigid body, to disable collision between linked bodies
 | |
| 	btAlignedObjectArray<btTypedConstraint*> m_constraintRefs;
 | |
| 
 | |
| 	int				m_rigidbodyFlags;
 | |
| 	
 | |
| 	int				m_debugBodyId;
 | |
| 	
 | |
| 
 | |
| protected:
 | |
| 
 | |
| 	ATTRIBUTE_ALIGNED16(btVector3		m_deltaLinearVelocity);
 | |
| 	btVector3		m_deltaAngularVelocity;
 | |
| 	btVector3		m_angularFactor;
 | |
| 	btVector3		m_invMass;
 | |
| 	btVector3		m_pushVelocity;
 | |
| 	btVector3		m_turnVelocity;
 | |
| 
 | |
| 
 | |
| public:
 | |
| 
 | |
| 
 | |
| 	///The btRigidBodyConstructionInfo structure provides information to create a rigid body. Setting mass to zero creates a fixed (non-dynamic) rigid body.
 | |
| 	///For dynamic objects, you can use the collision shape to approximate the local inertia tensor, otherwise use the zero vector (default argument)
 | |
| 	///You can use the motion state to synchronize the world transform between physics and graphics objects. 
 | |
| 	///And if the motion state is provided, the rigid body will initialize its initial world transform from the motion state,
 | |
| 	///m_startWorldTransform is only used when you don't provide a motion state.
 | |
| 	struct	btRigidBodyConstructionInfo
 | |
| 	{
 | |
| 		btScalar			m_mass;
 | |
| 
 | |
| 		///When a motionState is provided, the rigid body will initialize its world transform from the motion state
 | |
| 		///In this case, m_startWorldTransform is ignored.
 | |
| 		btMotionState*		m_motionState;
 | |
| 		btTransform	m_startWorldTransform;
 | |
| 
 | |
| 		btCollisionShape*	m_collisionShape;
 | |
| 		btVector3			m_localInertia;
 | |
| 		btScalar			m_linearDamping;
 | |
| 		btScalar			m_angularDamping;
 | |
| 
 | |
| 		///best simulation results when friction is non-zero
 | |
| 		btScalar			m_friction;
 | |
| 		///the m_rollingFriction prevents rounded shapes, such as spheres, cylinders and capsules from rolling forever.
 | |
| 		///See Bullet/Demos/RollingFrictionDemo for usage
 | |
| 		btScalar			m_rollingFriction;
 | |
|         btScalar			m_spinningFriction;//torsional friction around contact normal
 | |
|         
 | |
| 		///best simulation results using zero restitution.
 | |
| 		btScalar			m_restitution;
 | |
| 
 | |
| 		btScalar			m_linearSleepingThreshold;
 | |
| 		btScalar			m_angularSleepingThreshold;
 | |
| 
 | |
| 		//Additional damping can help avoiding lowpass jitter motion, help stability for ragdolls etc.
 | |
| 		//Such damping is undesirable, so once the overall simulation quality of the rigid body dynamics system has improved, this should become obsolete
 | |
| 		bool				m_additionalDamping;
 | |
| 		btScalar			m_additionalDampingFactor;
 | |
| 		btScalar			m_additionalLinearDampingThresholdSqr;
 | |
| 		btScalar			m_additionalAngularDampingThresholdSqr;
 | |
| 		btScalar			m_additionalAngularDampingFactor;
 | |
| 
 | |
| 		btRigidBodyConstructionInfo(	btScalar mass, btMotionState* motionState, btCollisionShape* collisionShape, const btVector3& localInertia=btVector3(0,0,0)):
 | |
| 		m_mass(mass),
 | |
| 			m_motionState(motionState),
 | |
| 			m_collisionShape(collisionShape),
 | |
| 			m_localInertia(localInertia),
 | |
| 			m_linearDamping(btScalar(0.)),
 | |
| 			m_angularDamping(btScalar(0.)),
 | |
| 			m_friction(btScalar(0.5)),
 | |
| 			m_rollingFriction(btScalar(0)),
 | |
|             m_spinningFriction(btScalar(0)),
 | |
| 			m_restitution(btScalar(0.)),
 | |
| 			m_linearSleepingThreshold(btScalar(0.8)),
 | |
| 			m_angularSleepingThreshold(btScalar(1.f)),
 | |
| 			m_additionalDamping(false),
 | |
| 			m_additionalDampingFactor(btScalar(0.005)),
 | |
| 			m_additionalLinearDampingThresholdSqr(btScalar(0.01)),
 | |
| 			m_additionalAngularDampingThresholdSqr(btScalar(0.01)),
 | |
| 			m_additionalAngularDampingFactor(btScalar(0.01))
 | |
| 		{
 | |
| 			m_startWorldTransform.setIdentity();
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	///btRigidBody constructor using construction info
 | |
| 	btRigidBody(	const btRigidBodyConstructionInfo& constructionInfo);
 | |
| 
 | |
| 	///btRigidBody constructor for backwards compatibility. 
 | |
| 	///To specify friction (etc) during rigid body construction, please use the other constructor (using btRigidBodyConstructionInfo)
 | |
| 	btRigidBody(	btScalar mass, btMotionState* motionState, btCollisionShape* collisionShape, const btVector3& localInertia=btVector3(0,0,0));
 | |
| 
 | |
| 
 | |
| 	virtual ~btRigidBody()
 | |
|         { 
 | |
|                 //No constraints should point to this rigidbody
 | |
| 		//Remove constraints from the dynamics world before you delete the related rigidbodies. 
 | |
|                 btAssert(m_constraintRefs.size()==0); 
 | |
|         }
 | |
| 
 | |
| protected:
 | |
| 
 | |
| 	///setupRigidBody is only used internally by the constructor
 | |
| 	void	setupRigidBody(const btRigidBodyConstructionInfo& constructionInfo);
 | |
| 
 | |
| public:
 | |
| 
 | |
| 	void			proceedToTransform(const btTransform& newTrans); 
 | |
| 	
 | |
| 	///to keep collision detection and dynamics separate we don't store a rigidbody pointer
 | |
| 	///but a rigidbody is derived from btCollisionObject, so we can safely perform an upcast
 | |
| 	static const btRigidBody*	upcast(const btCollisionObject* colObj)
 | |
| 	{
 | |
| 		if (colObj->getInternalType()&btCollisionObject::CO_RIGID_BODY)
 | |
| 			return (const btRigidBody*)colObj;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	static btRigidBody*	upcast(btCollisionObject* colObj)
 | |
| 	{
 | |
| 		if (colObj->getInternalType()&btCollisionObject::CO_RIGID_BODY)
 | |
| 			return (btRigidBody*)colObj;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	
 | |
| 	/// continuous collision detection needs prediction
 | |
| 	void			predictIntegratedTransform(btScalar step, btTransform& predictedTransform) ;
 | |
| 	
 | |
| 	void			saveKinematicState(btScalar step);
 | |
| 	
 | |
| 	void			applyGravity();
 | |
| 	
 | |
| 	void			setGravity(const btVector3& acceleration);  
 | |
| 
 | |
| 	const btVector3&	getGravity() const
 | |
| 	{
 | |
| 		return m_gravity_acceleration;
 | |
| 	}
 | |
| 
 | |
| 	void			setDamping(btScalar lin_damping, btScalar ang_damping);
 | |
| 
 | |
| 	btScalar getLinearDamping() const
 | |
| 	{
 | |
| 		return m_linearDamping;
 | |
| 	}
 | |
| 
 | |
| 	btScalar getAngularDamping() const
 | |
| 	{
 | |
| 		return m_angularDamping;
 | |
| 	}
 | |
| 
 | |
| 	btScalar getLinearSleepingThreshold() const
 | |
| 	{
 | |
| 		return m_linearSleepingThreshold;
 | |
| 	}
 | |
| 
 | |
| 	btScalar getAngularSleepingThreshold() const
 | |
| 	{
 | |
| 		return m_angularSleepingThreshold;
 | |
| 	}
 | |
| 
 | |
| 	void			applyDamping(btScalar timeStep);
 | |
| 
 | |
| 	SIMD_FORCE_INLINE const btCollisionShape*	getCollisionShape() const {
 | |
| 		return m_collisionShape;
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE btCollisionShape*	getCollisionShape() {
 | |
| 			return m_collisionShape;
 | |
| 	}
 | |
| 	
 | |
| 	void			setMassProps(btScalar mass, const btVector3& inertia);
 | |
| 	
 | |
| 	const btVector3& getLinearFactor() const
 | |
| 	{
 | |
| 		return m_linearFactor;
 | |
| 	}
 | |
| 	void setLinearFactor(const btVector3& linearFactor)
 | |
| 	{
 | |
| 		m_linearFactor = linearFactor;
 | |
| 		m_invMass = m_linearFactor*m_inverseMass;
 | |
| 	}
 | |
| 	btScalar		getInvMass() const { return m_inverseMass; }
 | |
| 	const btMatrix3x3& getInvInertiaTensorWorld() const { 
 | |
| 		return m_invInertiaTensorWorld; 
 | |
| 	}
 | |
| 		
 | |
| 	void			integrateVelocities(btScalar step);
 | |
| 
 | |
| 	void			setCenterOfMassTransform(const btTransform& xform);
 | |
| 
 | |
| 	void			applyCentralForce(const btVector3& force)
 | |
| 	{
 | |
| 		m_totalForce += force*m_linearFactor;
 | |
| 	}
 | |
| 
 | |
| 	const btVector3& getTotalForce() const
 | |
| 	{
 | |
| 		return m_totalForce;
 | |
| 	};
 | |
| 
 | |
| 	const btVector3& getTotalTorque() const
 | |
| 	{
 | |
| 		return m_totalTorque;
 | |
| 	};
 | |
|     
 | |
| 	const btVector3& getInvInertiaDiagLocal() const
 | |
| 	{
 | |
| 		return m_invInertiaLocal;
 | |
| 	};
 | |
| 
 | |
| 	void	setInvInertiaDiagLocal(const btVector3& diagInvInertia)
 | |
| 	{
 | |
| 		m_invInertiaLocal = diagInvInertia;
 | |
| 	}
 | |
| 
 | |
| 	void	setSleepingThresholds(btScalar linear,btScalar angular)
 | |
| 	{
 | |
| 		m_linearSleepingThreshold = linear;
 | |
| 		m_angularSleepingThreshold = angular;
 | |
| 	}
 | |
| 
 | |
| 	void	applyTorque(const btVector3& torque)
 | |
| 	{
 | |
| 		m_totalTorque += torque*m_angularFactor;
 | |
| 	}
 | |
| 	
 | |
| 	void	applyForce(const btVector3& force, const btVector3& rel_pos) 
 | |
| 	{
 | |
| 		applyCentralForce(force);
 | |
| 		applyTorque(rel_pos.cross(force*m_linearFactor));
 | |
| 	}
 | |
| 	
 | |
| 	void applyCentralImpulse(const btVector3& impulse)
 | |
| 	{
 | |
| 		m_linearVelocity += impulse *m_linearFactor * m_inverseMass;
 | |
| 	}
 | |
| 	
 | |
|   	void applyTorqueImpulse(const btVector3& torque)
 | |
| 	{
 | |
| 			m_angularVelocity += m_invInertiaTensorWorld * torque * m_angularFactor;
 | |
| 	}
 | |
| 	
 | |
| 	void applyImpulse(const btVector3& impulse, const btVector3& rel_pos) 
 | |
| 	{
 | |
| 		if (m_inverseMass != btScalar(0.))
 | |
| 		{
 | |
| 			applyCentralImpulse(impulse);
 | |
| 			if (m_angularFactor)
 | |
| 			{
 | |
| 				applyTorqueImpulse(rel_pos.cross(impulse*m_linearFactor));
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	void clearForces() 
 | |
| 	{
 | |
| 		m_totalForce.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
 | |
| 		m_totalTorque.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
 | |
| 	}
 | |
| 	
 | |
| 	void updateInertiaTensor();    
 | |
| 	
 | |
| 	const btVector3&     getCenterOfMassPosition() const { 
 | |
| 		return m_worldTransform.getOrigin(); 
 | |
| 	}
 | |
| 	btQuaternion getOrientation() const;
 | |
| 	
 | |
| 	const btTransform&  getCenterOfMassTransform() const { 
 | |
| 		return m_worldTransform; 
 | |
| 	}
 | |
| 	const btVector3&   getLinearVelocity() const { 
 | |
| 		return m_linearVelocity; 
 | |
| 	}
 | |
| 	const btVector3&    getAngularVelocity() const { 
 | |
| 		return m_angularVelocity; 
 | |
| 	}
 | |
| 	
 | |
| 
 | |
| 	inline void setLinearVelocity(const btVector3& lin_vel)
 | |
| 	{ 
 | |
| 		m_updateRevision++;
 | |
| 		m_linearVelocity = lin_vel; 
 | |
| 	}
 | |
| 
 | |
| 	inline void setAngularVelocity(const btVector3& ang_vel) 
 | |
| 	{ 
 | |
| 		m_updateRevision++;
 | |
| 		m_angularVelocity = ang_vel; 
 | |
| 	}
 | |
| 
 | |
| 	btVector3 getVelocityInLocalPoint(const btVector3& rel_pos) const
 | |
| 	{
 | |
| 		//we also calculate lin/ang velocity for kinematic objects
 | |
| 		return m_linearVelocity + m_angularVelocity.cross(rel_pos);
 | |
| 
 | |
| 		//for kinematic objects, we could also use use:
 | |
| 		//		return 	(m_worldTransform(rel_pos) - m_interpolationWorldTransform(rel_pos)) / m_kinematicTimeStep;
 | |
| 	}
 | |
| 
 | |
| 	void translate(const btVector3& v) 
 | |
| 	{
 | |
| 		m_worldTransform.getOrigin() += v; 
 | |
| 	}
 | |
| 
 | |
| 	
 | |
| 	void	getAabb(btVector3& aabbMin,btVector3& aabbMax) const;
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 	
 | |
| 	SIMD_FORCE_INLINE btScalar computeImpulseDenominator(const btVector3& pos, const btVector3& normal) const
 | |
| 	{
 | |
| 		btVector3 r0 = pos - getCenterOfMassPosition();
 | |
| 
 | |
| 		btVector3 c0 = (r0).cross(normal);
 | |
| 
 | |
| 		btVector3 vec = (c0 * getInvInertiaTensorWorld()).cross(r0);
 | |
| 
 | |
| 		return m_inverseMass + normal.dot(vec);
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE btScalar computeAngularImpulseDenominator(const btVector3& axis) const
 | |
| 	{
 | |
| 		btVector3 vec = axis * getInvInertiaTensorWorld();
 | |
| 		return axis.dot(vec);
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE void	updateDeactivation(btScalar timeStep)
 | |
| 	{
 | |
| 		if ( (getActivationState() == ISLAND_SLEEPING) || (getActivationState() == DISABLE_DEACTIVATION))
 | |
| 			return;
 | |
| 
 | |
| 		if ((getLinearVelocity().length2() < m_linearSleepingThreshold*m_linearSleepingThreshold) &&
 | |
| 			(getAngularVelocity().length2() < m_angularSleepingThreshold*m_angularSleepingThreshold))
 | |
| 		{
 | |
| 			m_deactivationTime += timeStep;
 | |
| 		} else
 | |
| 		{
 | |
| 			m_deactivationTime=btScalar(0.);
 | |
| 			setActivationState(0);
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	SIMD_FORCE_INLINE bool	wantsSleeping()
 | |
| 	{
 | |
| 
 | |
| 		if (getActivationState() == DISABLE_DEACTIVATION)
 | |
| 			return false;
 | |
| 
 | |
| 		//disable deactivation
 | |
| 		if (gDisableDeactivation || (gDeactivationTime == btScalar(0.)))
 | |
| 			return false;
 | |
| 
 | |
| 		if ( (getActivationState() == ISLAND_SLEEPING) || (getActivationState() == WANTS_DEACTIVATION))
 | |
| 			return true;
 | |
| 
 | |
| 		if (m_deactivationTime> gDeactivationTime)
 | |
| 		{
 | |
| 			return true;
 | |
| 		}
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	
 | |
| 	const btBroadphaseProxy*	getBroadphaseProxy() const
 | |
| 	{
 | |
| 		return m_broadphaseHandle;
 | |
| 	}
 | |
| 	btBroadphaseProxy*	getBroadphaseProxy() 
 | |
| 	{
 | |
| 		return m_broadphaseHandle;
 | |
| 	}
 | |
| 	void	setNewBroadphaseProxy(btBroadphaseProxy* broadphaseProxy)
 | |
| 	{
 | |
| 		m_broadphaseHandle = broadphaseProxy;
 | |
| 	}
 | |
| 
 | |
| 	//btMotionState allows to automatic synchronize the world transform for active objects
 | |
| 	btMotionState*	getMotionState()
 | |
| 	{
 | |
| 		return m_optionalMotionState;
 | |
| 	}
 | |
| 	const btMotionState*	getMotionState() const
 | |
| 	{
 | |
| 		return m_optionalMotionState;
 | |
| 	}
 | |
| 	void	setMotionState(btMotionState* motionState)
 | |
| 	{
 | |
| 		m_optionalMotionState = motionState;
 | |
| 		if (m_optionalMotionState)
 | |
| 			motionState->getWorldTransform(m_worldTransform);
 | |
| 	}
 | |
| 
 | |
| 	//for experimental overriding of friction/contact solver func
 | |
| 	int	m_contactSolverType;
 | |
| 	int	m_frictionSolverType;
 | |
| 
 | |
| 	void	setAngularFactor(const btVector3& angFac)
 | |
| 	{
 | |
| 		m_updateRevision++;
 | |
| 		m_angularFactor = angFac;
 | |
| 	}
 | |
| 
 | |
| 	void	setAngularFactor(btScalar angFac)
 | |
| 	{
 | |
| 		m_updateRevision++;
 | |
| 		m_angularFactor.setValue(angFac,angFac,angFac);
 | |
| 	}
 | |
| 	const btVector3&	getAngularFactor() const
 | |
| 	{
 | |
| 		return m_angularFactor;
 | |
| 	}
 | |
| 
 | |
| 	//is this rigidbody added to a btCollisionWorld/btDynamicsWorld/btBroadphase?
 | |
| 	bool	isInWorld() const
 | |
| 	{
 | |
| 		return (getBroadphaseProxy() != 0);
 | |
| 	}
 | |
| 
 | |
| 	void addConstraintRef(btTypedConstraint* c);
 | |
| 	void removeConstraintRef(btTypedConstraint* c);
 | |
| 
 | |
| 	btTypedConstraint* getConstraintRef(int index)
 | |
| 	{
 | |
| 		return m_constraintRefs[index];
 | |
| 	}
 | |
| 
 | |
| 	int getNumConstraintRefs() const
 | |
| 	{
 | |
| 		return m_constraintRefs.size();
 | |
| 	}
 | |
| 
 | |
| 	void	setFlags(int flags)
 | |
| 	{
 | |
| 		m_rigidbodyFlags = flags;
 | |
| 	}
 | |
| 
 | |
| 	int getFlags() const
 | |
| 	{
 | |
| 		return m_rigidbodyFlags;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	
 | |
| 
 | |
| 	///perform implicit force computation in world space
 | |
| 	btVector3 computeGyroscopicImpulseImplicit_World(btScalar dt) const;
 | |
| 	
 | |
| 	///perform implicit force computation in body space (inertial frame)
 | |
| 	btVector3 computeGyroscopicImpulseImplicit_Body(btScalar step) const;
 | |
| 
 | |
| 	///explicit version is best avoided, it gains energy
 | |
| 	btVector3 computeGyroscopicForceExplicit(btScalar maxGyroscopicForce) const;
 | |
| 	btVector3 getLocalInertia() const;
 | |
| 
 | |
| 	///////////////////////////////////////////////
 | |
| 
 | |
| 	virtual	int	calculateSerializeBufferSize()	const;
 | |
| 
 | |
| 	///fills the dataBuffer and returns the struct name (and 0 on failure)
 | |
| 	virtual	const char*	serialize(void* dataBuffer,  class btSerializer* serializer) const;
 | |
| 
 | |
| 	virtual void serializeSingleObject(class btSerializer* serializer) const;
 | |
| 
 | |
| };
 | |
| 
 | |
| //@todo add m_optionalMotionState and m_constraintRefs to btRigidBodyData
 | |
| ///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
 | |
| struct	btRigidBodyFloatData
 | |
| {
 | |
| 	btCollisionObjectFloatData	m_collisionObjectData;
 | |
| 	btMatrix3x3FloatData		m_invInertiaTensorWorld;
 | |
| 	btVector3FloatData		m_linearVelocity;
 | |
| 	btVector3FloatData		m_angularVelocity;
 | |
| 	btVector3FloatData		m_angularFactor;
 | |
| 	btVector3FloatData		m_linearFactor;
 | |
| 	btVector3FloatData		m_gravity;	
 | |
| 	btVector3FloatData		m_gravity_acceleration;
 | |
| 	btVector3FloatData		m_invInertiaLocal;
 | |
| 	btVector3FloatData		m_totalForce;
 | |
| 	btVector3FloatData		m_totalTorque;
 | |
| 	float					m_inverseMass;
 | |
| 	float					m_linearDamping;
 | |
| 	float					m_angularDamping;
 | |
| 	float					m_additionalDampingFactor;
 | |
| 	float					m_additionalLinearDampingThresholdSqr;
 | |
| 	float					m_additionalAngularDampingThresholdSqr;
 | |
| 	float					m_additionalAngularDampingFactor;
 | |
| 	float					m_linearSleepingThreshold;
 | |
| 	float					m_angularSleepingThreshold;
 | |
| 	int						m_additionalDamping;
 | |
| };
 | |
| 
 | |
| ///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
 | |
| struct	btRigidBodyDoubleData
 | |
| {
 | |
| 	btCollisionObjectDoubleData	m_collisionObjectData;
 | |
| 	btMatrix3x3DoubleData		m_invInertiaTensorWorld;
 | |
| 	btVector3DoubleData		m_linearVelocity;
 | |
| 	btVector3DoubleData		m_angularVelocity;
 | |
| 	btVector3DoubleData		m_angularFactor;
 | |
| 	btVector3DoubleData		m_linearFactor;
 | |
| 	btVector3DoubleData		m_gravity;	
 | |
| 	btVector3DoubleData		m_gravity_acceleration;
 | |
| 	btVector3DoubleData		m_invInertiaLocal;
 | |
| 	btVector3DoubleData		m_totalForce;
 | |
| 	btVector3DoubleData		m_totalTorque;
 | |
| 	double					m_inverseMass;
 | |
| 	double					m_linearDamping;
 | |
| 	double					m_angularDamping;
 | |
| 	double					m_additionalDampingFactor;
 | |
| 	double					m_additionalLinearDampingThresholdSqr;
 | |
| 	double					m_additionalAngularDampingThresholdSqr;
 | |
| 	double					m_additionalAngularDampingFactor;
 | |
| 	double					m_linearSleepingThreshold;
 | |
| 	double					m_angularSleepingThreshold;
 | |
| 	int						m_additionalDamping;
 | |
| 	char	m_padding[4];
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| #endif //BT_RIGIDBODY_H
 | |
| 
 |