1671 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1671 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  Copyright (c) 2011 Apple Inc.
 | |
|  http://continuousphysics.com/Bullet/
 | |
|  
 | |
|  This software is provided 'as-is', without any express or implied warranty.
 | |
|  In no event will the authors be held liable for any damages arising from the use of this software.
 | |
|  Permission is granted to anyone to use this software for any purpose, 
 | |
|  including commercial applications, and to alter it and redistribute it freely, 
 | |
|  subject to the following restrictions:
 | |
|  
 | |
|  1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
|  2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
|  3. This notice may not be removed or altered from any source distribution.
 | |
|  
 | |
|  This source version has been altered.
 | |
|  */
 | |
| 
 | |
| #if defined (_WIN32) || defined (__i386__)
 | |
| #define BT_USE_SSE_IN_API
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #include "btVector3.h"
 | |
| 
 | |
| 
 | |
| 
 | |
| #if defined BT_USE_SIMD_VECTOR3
 | |
| 
 | |
| #if DEBUG
 | |
| #include <string.h>//for memset
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #ifdef __APPLE__
 | |
| #include <stdint.h>
 | |
| typedef  float float4 __attribute__ ((vector_size(16)));
 | |
| #else
 | |
| #define float4 __m128
 | |
| #endif
 | |
| //typedef  uint32_t uint4 __attribute__ ((vector_size(16)));
 | |
| 
 | |
| 
 | |
| #if defined BT_USE_SSE || defined _WIN32
 | |
| 
 | |
| #define LOG2_ARRAY_SIZE     6
 | |
| #define STACK_ARRAY_COUNT   (1UL << LOG2_ARRAY_SIZE)
 | |
| 
 | |
| #include <emmintrin.h>
 | |
| 
 | |
| long _maxdot_large( const float *vv, const float *vec, unsigned long count, float *dotResult );
 | |
| long _maxdot_large( const float *vv, const float *vec, unsigned long count, float *dotResult )
 | |
| {
 | |
|     const float4 *vertices = (const float4*) vv;
 | |
|     static const unsigned char indexTable[16] = {(unsigned char)-1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 };
 | |
|     float4 dotMax = btAssign128( -BT_INFINITY,  -BT_INFINITY,  -BT_INFINITY,  -BT_INFINITY );
 | |
|     float4 vvec = _mm_loadu_ps( vec );
 | |
|     float4 vHi = btCastiTo128f(_mm_shuffle_epi32( btCastfTo128i( vvec), 0xaa ));          /// zzzz
 | |
|     float4 vLo = _mm_movelh_ps( vvec, vvec );                               /// xyxy
 | |
|     
 | |
|     long maxIndex = -1L;
 | |
|     
 | |
|     size_t segment = 0;
 | |
|     float4 stack_array[ STACK_ARRAY_COUNT ];
 | |
|     
 | |
| #if DEBUG
 | |
|     //memset( stack_array, -1, STACK_ARRAY_COUNT * sizeof(stack_array[0]) );
 | |
| #endif
 | |
|     
 | |
|     size_t index;
 | |
|     float4 max;
 | |
|     // Faster loop without cleanup code for full tiles
 | |
|     for ( segment = 0; segment + STACK_ARRAY_COUNT*4 <= count; segment += STACK_ARRAY_COUNT*4 ) 
 | |
|     {
 | |
|         max = dotMax;
 | |
|         
 | |
|         for( index = 0; index < STACK_ARRAY_COUNT; index+= 4 )   
 | |
|         { // do four dot products at a time. Carefully avoid touching the w element.
 | |
|             float4 v0 = vertices[0];
 | |
|             float4 v1 = vertices[1];
 | |
|             float4 v2 = vertices[2];
 | |
|             float4 v3 = vertices[3];            vertices += 4;
 | |
|             
 | |
|             float4 lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | |
|             float4 hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | |
|             float4 lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | |
|             float4 hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | |
|             
 | |
|             lo0 = lo0*vLo;
 | |
|             lo1 = lo1*vLo;
 | |
|             float4 z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | |
|             float4 x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | |
|             float4 y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | |
|             z = z*vHi;
 | |
|             x = x+y;
 | |
|             x = x+z;
 | |
|             stack_array[index] = x;
 | |
|             max = _mm_max_ps( x, max );         // control the order here so that max is never NaN even if x is nan
 | |
|             
 | |
|             v0 = vertices[0];
 | |
|             v1 = vertices[1];
 | |
|             v2 = vertices[2];
 | |
|             v3 = vertices[3];            vertices += 4;
 | |
|             
 | |
|             lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | |
|             hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | |
|             lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | |
|             hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | |
|             
 | |
|             lo0 = lo0*vLo;
 | |
|             lo1 = lo1*vLo;
 | |
|             z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | |
|             x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | |
|             y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | |
|             z = z*vHi;
 | |
|             x = x+y;
 | |
|             x = x+z;
 | |
|             stack_array[index+1] = x;
 | |
|             max = _mm_max_ps( x, max );         // control the order here so that max is never NaN even if x is nan
 | |
|             
 | |
|             v0 = vertices[0];
 | |
|             v1 = vertices[1];
 | |
|             v2 = vertices[2];
 | |
|             v3 = vertices[3];            vertices += 4;
 | |
|             
 | |
|             lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | |
|             hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | |
|             lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | |
|             hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | |
|             
 | |
|             lo0 = lo0*vLo;
 | |
|             lo1 = lo1*vLo;
 | |
|             z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | |
|             x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | |
|             y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | |
|             z = z*vHi;
 | |
|             x = x+y;
 | |
|             x = x+z;
 | |
|             stack_array[index+2] = x;
 | |
|             max = _mm_max_ps( x, max );         // control the order here so that max is never NaN even if x is nan
 | |
|             
 | |
|             v0 = vertices[0];
 | |
|             v1 = vertices[1];
 | |
|             v2 = vertices[2];
 | |
|             v3 = vertices[3];            vertices += 4;
 | |
|             
 | |
|             lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | |
|             hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | |
|             lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | |
|             hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | |
|             
 | |
|             lo0 = lo0*vLo;
 | |
|             lo1 = lo1*vLo;
 | |
|             z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | |
|             x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | |
|             y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | |
|             z = z*vHi;
 | |
|             x = x+y;
 | |
|             x = x+z;
 | |
|             stack_array[index+3] = x;
 | |
|             max = _mm_max_ps( x, max );         // control the order here so that max is never NaN even if x is nan
 | |
|             
 | |
|             // It is too costly to keep the index of the max here. We will look for it again later.  We save a lot of work this way.
 | |
|         }
 | |
|         
 | |
|         // If we found a new max
 | |
|         if( 0xf != _mm_movemask_ps( (float4) _mm_cmpeq_ps(max, dotMax)))
 | |
|         { 
 | |
|             // copy the new max across all lanes of our max accumulator
 | |
|             max = _mm_max_ps(max, (float4) _mm_shuffle_ps( max, max, 0x4e));
 | |
|             max = _mm_max_ps(max, (float4) _mm_shuffle_ps( max, max, 0xb1));
 | |
|             
 | |
|             dotMax = max;
 | |
|             
 | |
|             // find first occurrence of that max  
 | |
|             size_t test;
 | |
|             for( index = 0; 0 == (test=_mm_movemask_ps( _mm_cmpeq_ps( stack_array[index], max))); index++ )   // local_count must be a multiple of 4
 | |
|             {}
 | |
|             // record where it is.
 | |
|             maxIndex = 4*index + segment + indexTable[test];
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     // account for work we've already done
 | |
|     count -= segment;
 | |
|     
 | |
|     // Deal with the last < STACK_ARRAY_COUNT vectors
 | |
|     max = dotMax;
 | |
|     index = 0;
 | |
|     
 | |
|     
 | |
|     if( btUnlikely( count > 16) )
 | |
|     {
 | |
|         for( ; index + 4 <= count / 4; index+=4 )   
 | |
|         { // do four dot products at a time. Carefully avoid touching the w element.
 | |
|             float4 v0 = vertices[0];
 | |
|             float4 v1 = vertices[1];
 | |
|             float4 v2 = vertices[2];
 | |
|             float4 v3 = vertices[3];            vertices += 4;
 | |
|             
 | |
|             float4 lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | |
|             float4 hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | |
|             float4 lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | |
|             float4 hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | |
|             
 | |
|             lo0 = lo0*vLo;
 | |
|             lo1 = lo1*vLo;
 | |
|             float4 z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | |
|             float4 x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | |
|             float4 y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | |
|             z = z*vHi;
 | |
|             x = x+y;
 | |
|             x = x+z;
 | |
|             stack_array[index] = x;
 | |
|             max = _mm_max_ps( x, max );         // control the order here so that max is never NaN even if x is nan
 | |
|             
 | |
|             v0 = vertices[0];
 | |
|             v1 = vertices[1];
 | |
|             v2 = vertices[2];
 | |
|             v3 = vertices[3];            vertices += 4;
 | |
|             
 | |
|             lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | |
|             hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | |
|             lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | |
|             hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | |
|             
 | |
|             lo0 = lo0*vLo;
 | |
|             lo1 = lo1*vLo;
 | |
|             z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | |
|             x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | |
|             y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | |
|             z = z*vHi;
 | |
|             x = x+y;
 | |
|             x = x+z;
 | |
|             stack_array[index+1] = x;
 | |
|             max = _mm_max_ps( x, max );         // control the order here so that max is never NaN even if x is nan
 | |
|             
 | |
|             v0 = vertices[0];
 | |
|             v1 = vertices[1];
 | |
|             v2 = vertices[2];
 | |
|             v3 = vertices[3];            vertices += 4;
 | |
|             
 | |
|             lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | |
|             hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | |
|             lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | |
|             hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | |
|             
 | |
|             lo0 = lo0*vLo;
 | |
|             lo1 = lo1*vLo;
 | |
|             z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | |
|             x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | |
|             y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | |
|             z = z*vHi;
 | |
|             x = x+y;
 | |
|             x = x+z;
 | |
|             stack_array[index+2] = x;
 | |
|             max = _mm_max_ps( x, max );         // control the order here so that max is never NaN even if x is nan
 | |
|             
 | |
|             v0 = vertices[0];
 | |
|             v1 = vertices[1];
 | |
|             v2 = vertices[2];
 | |
|             v3 = vertices[3];            vertices += 4;
 | |
|             
 | |
|             lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | |
|             hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | |
|             lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | |
|             hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | |
|             
 | |
|             lo0 = lo0*vLo;
 | |
|             lo1 = lo1*vLo;
 | |
|             z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | |
|             x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | |
|             y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | |
|             z = z*vHi;
 | |
|             x = x+y;
 | |
|             x = x+z;
 | |
|             stack_array[index+3] = x;
 | |
|             max = _mm_max_ps( x, max );         // control the order here so that max is never NaN even if x is nan
 | |
|             
 | |
|             // It is too costly to keep the index of the max here. We will look for it again later.  We save a lot of work this way.
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     size_t localCount = (count & -4L) - 4*index;
 | |
|     if( localCount )
 | |
|     {
 | |
| #ifdef __APPLE__
 | |
|         float4 t0, t1, t2, t3, t4;
 | |
|         float4 * sap = &stack_array[index + localCount / 4];
 | |
|           vertices += localCount;      // counter the offset
 | |
|          size_t byteIndex = -(localCount) * sizeof(float);
 | |
|         //AT&T Code style assembly
 | |
|         asm volatile
 | |
|         (   ".align 4                                                                   \n\
 | |
|              0: movaps  %[max], %[t2]                            // move max out of the way to avoid propagating NaNs in max \n\
 | |
|           movaps  (%[vertices], %[byteIndex], 4),    %[t0]    // vertices[0]      \n\
 | |
|           movaps  16(%[vertices], %[byteIndex], 4),  %[t1]    // vertices[1]      \n\
 | |
|           movaps  %[t0], %[max]                               // vertices[0]      \n\
 | |
|           movlhps %[t1], %[max]                               // x0y0x1y1         \n\
 | |
|          movaps  32(%[vertices], %[byteIndex], 4),  %[t3]    // vertices[2]      \n\
 | |
|          movaps  48(%[vertices], %[byteIndex], 4),  %[t4]    // vertices[3]      \n\
 | |
|           mulps   %[vLo], %[max]                              // x0y0x1y1 * vLo   \n\
 | |
|          movhlps %[t0], %[t1]                                // z0w0z1w1         \n\
 | |
|          movaps  %[t3], %[t0]                                // vertices[2]      \n\
 | |
|          movlhps %[t4], %[t0]                                // x2y2x3y3         \n\
 | |
|          mulps   %[vLo], %[t0]                               // x2y2x3y3 * vLo   \n\
 | |
|           movhlps %[t3], %[t4]                                // z2w2z3w3         \n\
 | |
|           shufps  $0x88, %[t4], %[t1]                         // z0z1z2z3         \n\
 | |
|           mulps   %[vHi], %[t1]                               // z0z1z2z3 * vHi   \n\
 | |
|          movaps  %[max], %[t3]                               // x0y0x1y1 * vLo   \n\
 | |
|          shufps  $0x88, %[t0], %[max]                        // x0x1x2x3 * vLo.x \n\
 | |
|          shufps  $0xdd, %[t0], %[t3]                         // y0y1y2y3 * vLo.y \n\
 | |
|          addps   %[t3], %[max]                               // x + y            \n\
 | |
|          addps   %[t1], %[max]                               // x + y + z        \n\
 | |
|          movaps  %[max], (%[sap], %[byteIndex])              // record result for later scrutiny \n\
 | |
|          maxps   %[t2], %[max]                               // record max, restore max   \n\
 | |
|          add     $16, %[byteIndex]                           // advance loop counter\n\
 | |
|          jnz     0b                                          \n\
 | |
|      "
 | |
|          : [max] "+x" (max), [t0] "=&x" (t0), [t1] "=&x" (t1), [t2] "=&x" (t2), [t3] "=&x" (t3), [t4] "=&x" (t4), [byteIndex] "+r" (byteIndex)
 | |
|          : [vLo] "x" (vLo), [vHi] "x" (vHi), [vertices] "r" (vertices), [sap] "r" (sap)
 | |
|          : "memory", "cc"
 | |
|          );
 | |
|         index += localCount/4;
 | |
| #else
 | |
|         {
 | |
|             for( unsigned int i=0; i<localCount/4; i++,index++)   
 | |
|             { // do four dot products at a time. Carefully avoid touching the w element.
 | |
|                 float4 v0 = vertices[0];
 | |
|                 float4 v1 = vertices[1];
 | |
|                 float4 v2 = vertices[2];
 | |
|                 float4 v3 = vertices[3];            
 | |
|                 vertices += 4;
 | |
|                 
 | |
|                 float4 lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | |
|                 float4 hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | |
|                 float4 lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | |
|                 float4 hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | |
|                 
 | |
|                 lo0 = lo0*vLo;
 | |
|                 lo1 = lo1*vLo;
 | |
|                 float4 z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | |
|                 float4 x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | |
|                 float4 y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | |
|                 z = z*vHi;
 | |
|                 x = x+y;
 | |
|                 x = x+z;
 | |
|                 stack_array[index] = x;
 | |
|                 max = _mm_max_ps( x, max );         // control the order here so that max is never NaN even if x is nan
 | |
|             }
 | |
|         }
 | |
| #endif //__APPLE__
 | |
|     }
 | |
| 
 | |
|     // process the last few points
 | |
|     if( count & 3 )
 | |
|     {
 | |
|         float4 v0, v1, v2, x, y, z;
 | |
|         switch( count & 3 )
 | |
|         {
 | |
|             case 3:
 | |
|             {
 | |
|                 v0 = vertices[0];
 | |
|                 v1 = vertices[1];
 | |
|                 v2 = vertices[2];
 | |
|                 
 | |
|                 // Calculate 3 dot products, transpose, duplicate v2
 | |
|                 float4 lo0 = _mm_movelh_ps( v0, v1);        // xyxy.lo
 | |
|                 float4 hi0 = _mm_movehl_ps( v1, v0);        // z?z?.lo
 | |
|                 lo0 = lo0*vLo;
 | |
|                 z = _mm_shuffle_ps(hi0, v2,  0xa8 );           // z0z1z2z2
 | |
|                 z = z*vHi;
 | |
|                 float4 lo1 = _mm_movelh_ps(v2, v2);          // xyxy
 | |
|                 lo1 = lo1*vLo;
 | |
|                 x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | |
|                 y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | |
|             }
 | |
|                 break;
 | |
|             case 2:
 | |
|             {
 | |
|                 v0 = vertices[0];
 | |
|                 v1 = vertices[1];
 | |
|                 float4 xy = _mm_movelh_ps(v0, v1);
 | |
|                 z = _mm_movehl_ps(v1, v0);
 | |
|                 xy = xy*vLo;
 | |
|                 z = _mm_shuffle_ps( z, z,  0xa8);
 | |
|                 x = _mm_shuffle_ps( xy, xy, 0xa8);
 | |
|                 y = _mm_shuffle_ps( xy, xy, 0xfd);
 | |
|                 z = z*vHi;
 | |
|             }
 | |
|                 break;
 | |
|             case 1:
 | |
|             {
 | |
|                 float4 xy = vertices[0];
 | |
|                 z =  _mm_shuffle_ps( xy, xy, 0xaa);
 | |
|                 xy = xy*vLo;
 | |
|                 z = z*vHi;
 | |
|                 x = _mm_shuffle_ps(xy, xy, 0);
 | |
|                 y = _mm_shuffle_ps(xy, xy, 0x55);
 | |
|             }
 | |
|                 break;
 | |
|         }
 | |
|         x = x+y;
 | |
|         x = x+z;
 | |
|         stack_array[index] = x;
 | |
|         max = _mm_max_ps( x, max );         // control the order here so that max is never NaN even if x is nan
 | |
|         index++;
 | |
|     }
 | |
|     
 | |
|     // if we found a new max. 
 | |
|     if( 0 == segment || 0xf != _mm_movemask_ps( (float4) _mm_cmpeq_ps(max, dotMax)))
 | |
|     { // we found a new max. Search for it
 | |
|       // find max across the max vector, place in all elements of max -- big latency hit here
 | |
|         max = _mm_max_ps(max, (float4) _mm_shuffle_ps( max, max, 0x4e));
 | |
|         max = _mm_max_ps(max, (float4) _mm_shuffle_ps( max, max, 0xb1));
 | |
|         
 | |
|         // It is slightly faster to do this part in scalar code when count < 8. However, the common case for
 | |
|         // this where it actually makes a difference is handled in the early out at the top of the function, 
 | |
|         // so it is less than a 1% difference here. I opted for improved code size, fewer branches and reduced 
 | |
|         // complexity, and removed it.
 | |
|         
 | |
|         dotMax = max;
 | |
|         
 | |
|         // scan for the first occurence of max in the array  
 | |
|         size_t test;
 | |
|         for( index = 0; 0 == (test=_mm_movemask_ps( _mm_cmpeq_ps( stack_array[index], max))); index++ )   // local_count must be a multiple of 4
 | |
|         {}
 | |
|         maxIndex = 4*index + segment + indexTable[test];
 | |
|     }
 | |
|     
 | |
|     _mm_store_ss( dotResult, dotMax);
 | |
|     return maxIndex;
 | |
| }
 | |
| 
 | |
| long _mindot_large( const float *vv, const float *vec, unsigned long count, float *dotResult );
 | |
| 
 | |
| long _mindot_large( const float *vv, const float *vec, unsigned long count, float *dotResult )
 | |
| {
 | |
|     const float4 *vertices = (const float4*) vv;
 | |
|     static const unsigned char indexTable[16] = {(unsigned char)-1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 };
 | |
|     float4 dotmin = btAssign128( BT_INFINITY,  BT_INFINITY,  BT_INFINITY,  BT_INFINITY );
 | |
|     float4 vvec = _mm_loadu_ps( vec );
 | |
|     float4 vHi = btCastiTo128f(_mm_shuffle_epi32( btCastfTo128i( vvec), 0xaa ));          /// zzzz
 | |
|     float4 vLo = _mm_movelh_ps( vvec, vvec );                               /// xyxy
 | |
|     
 | |
|     long minIndex = -1L;
 | |
| 
 | |
|     size_t segment = 0;
 | |
|     float4 stack_array[ STACK_ARRAY_COUNT ];
 | |
|     
 | |
| #if DEBUG
 | |
|     //memset( stack_array, -1, STACK_ARRAY_COUNT * sizeof(stack_array[0]) );
 | |
| #endif
 | |
|     
 | |
|     size_t index;
 | |
|     float4 min;
 | |
|     // Faster loop without cleanup code for full tiles
 | |
|     for ( segment = 0; segment + STACK_ARRAY_COUNT*4 <= count; segment += STACK_ARRAY_COUNT*4 ) 
 | |
|     {
 | |
|         min = dotmin;
 | |
|         
 | |
|         for( index = 0; index < STACK_ARRAY_COUNT; index+= 4 )   
 | |
|         { // do four dot products at a time. Carefully avoid touching the w element.
 | |
|             float4 v0 = vertices[0];
 | |
|             float4 v1 = vertices[1];
 | |
|             float4 v2 = vertices[2];
 | |
|             float4 v3 = vertices[3];            vertices += 4;
 | |
|             
 | |
|             float4 lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | |
|             float4 hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | |
|             float4 lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | |
|             float4 hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | |
|             
 | |
|             lo0 = lo0*vLo;
 | |
|             lo1 = lo1*vLo;
 | |
|             float4 z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | |
|             float4 x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | |
|             float4 y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | |
|             z = z*vHi;
 | |
|             x = x+y;
 | |
|             x = x+z;
 | |
|             stack_array[index] = x;
 | |
|             min = _mm_min_ps( x, min );         // control the order here so that min is never NaN even if x is nan
 | |
|             
 | |
|             v0 = vertices[0];
 | |
|             v1 = vertices[1];
 | |
|             v2 = vertices[2];
 | |
|             v3 = vertices[3];            vertices += 4;
 | |
|             
 | |
|             lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | |
|             hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | |
|             lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | |
|             hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | |
|             
 | |
|             lo0 = lo0*vLo;
 | |
|             lo1 = lo1*vLo;
 | |
|             z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | |
|             x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | |
|             y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | |
|             z = z*vHi;
 | |
|             x = x+y;
 | |
|             x = x+z;
 | |
|             stack_array[index+1] = x;
 | |
|             min = _mm_min_ps( x, min );         // control the order here so that min is never NaN even if x is nan
 | |
|             
 | |
|             v0 = vertices[0];
 | |
|             v1 = vertices[1];
 | |
|             v2 = vertices[2];
 | |
|             v3 = vertices[3];            vertices += 4;
 | |
|             
 | |
|             lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | |
|             hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | |
|             lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | |
|             hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | |
|             
 | |
|             lo0 = lo0*vLo;
 | |
|             lo1 = lo1*vLo;
 | |
|             z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | |
|             x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | |
|             y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | |
|             z = z*vHi;
 | |
|             x = x+y;
 | |
|             x = x+z;
 | |
|             stack_array[index+2] = x;
 | |
|             min = _mm_min_ps( x, min );         // control the order here so that min is never NaN even if x is nan
 | |
|             
 | |
|             v0 = vertices[0];
 | |
|             v1 = vertices[1];
 | |
|             v2 = vertices[2];
 | |
|             v3 = vertices[3];            vertices += 4;
 | |
|             
 | |
|             lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | |
|             hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | |
|             lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | |
|             hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | |
|             
 | |
|             lo0 = lo0*vLo;
 | |
|             lo1 = lo1*vLo;
 | |
|             z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | |
|             x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | |
|             y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | |
|             z = z*vHi;
 | |
|             x = x+y;
 | |
|             x = x+z;
 | |
|             stack_array[index+3] = x;
 | |
|             min = _mm_min_ps( x, min );         // control the order here so that min is never NaN even if x is nan
 | |
|             
 | |
|             // It is too costly to keep the index of the min here. We will look for it again later.  We save a lot of work this way.
 | |
|         }
 | |
|         
 | |
|         // If we found a new min
 | |
|         if( 0xf != _mm_movemask_ps( (float4) _mm_cmpeq_ps(min, dotmin)))
 | |
|         { 
 | |
|             // copy the new min across all lanes of our min accumulator
 | |
|             min = _mm_min_ps(min, (float4) _mm_shuffle_ps( min, min, 0x4e));
 | |
|             min = _mm_min_ps(min, (float4) _mm_shuffle_ps( min, min, 0xb1));
 | |
|             
 | |
|             dotmin = min;
 | |
|             
 | |
|             // find first occurrence of that min  
 | |
|             size_t test;
 | |
|             for( index = 0; 0 == (test=_mm_movemask_ps( _mm_cmpeq_ps( stack_array[index], min))); index++ )   // local_count must be a multiple of 4
 | |
|             {}
 | |
|             // record where it is.
 | |
|             minIndex = 4*index + segment + indexTable[test];
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     // account for work we've already done
 | |
|     count -= segment;
 | |
|     
 | |
|     // Deal with the last < STACK_ARRAY_COUNT vectors
 | |
|     min = dotmin;
 | |
|     index = 0;
 | |
|     
 | |
|     
 | |
|     if(btUnlikely( count > 16) )
 | |
|     {
 | |
|         for( ; index + 4 <= count / 4; index+=4 )   
 | |
|         { // do four dot products at a time. Carefully avoid touching the w element.
 | |
|             float4 v0 = vertices[0];
 | |
|             float4 v1 = vertices[1];
 | |
|             float4 v2 = vertices[2];
 | |
|             float4 v3 = vertices[3];            vertices += 4;
 | |
|             
 | |
|             float4 lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | |
|             float4 hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | |
|             float4 lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | |
|             float4 hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | |
|             
 | |
|             lo0 = lo0*vLo;
 | |
|             lo1 = lo1*vLo;
 | |
|             float4 z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | |
|             float4 x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | |
|             float4 y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | |
|             z = z*vHi;
 | |
|             x = x+y;
 | |
|             x = x+z;
 | |
|             stack_array[index] = x;
 | |
|             min = _mm_min_ps( x, min );         // control the order here so that min is never NaN even if x is nan
 | |
|             
 | |
|             v0 = vertices[0];
 | |
|             v1 = vertices[1];
 | |
|             v2 = vertices[2];
 | |
|             v3 = vertices[3];            vertices += 4;
 | |
|             
 | |
|             lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | |
|             hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | |
|             lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | |
|             hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | |
|             
 | |
|             lo0 = lo0*vLo;
 | |
|             lo1 = lo1*vLo;
 | |
|             z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | |
|             x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | |
|             y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | |
|             z = z*vHi;
 | |
|             x = x+y;
 | |
|             x = x+z;
 | |
|             stack_array[index+1] = x;
 | |
|             min = _mm_min_ps( x, min );         // control the order here so that min is never NaN even if x is nan
 | |
|             
 | |
|             v0 = vertices[0];
 | |
|             v1 = vertices[1];
 | |
|             v2 = vertices[2];
 | |
|             v3 = vertices[3];            vertices += 4;
 | |
|             
 | |
|             lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | |
|             hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | |
|             lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | |
|             hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | |
|             
 | |
|             lo0 = lo0*vLo;
 | |
|             lo1 = lo1*vLo;
 | |
|             z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | |
|             x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | |
|             y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | |
|             z = z*vHi;
 | |
|             x = x+y;
 | |
|             x = x+z;
 | |
|             stack_array[index+2] = x;
 | |
|             min = _mm_min_ps( x, min );         // control the order here so that min is never NaN even if x is nan
 | |
|             
 | |
|             v0 = vertices[0];
 | |
|             v1 = vertices[1];
 | |
|             v2 = vertices[2];
 | |
|             v3 = vertices[3];            vertices += 4;
 | |
|             
 | |
|             lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | |
|             hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | |
|             lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | |
|             hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | |
|             
 | |
|             lo0 = lo0*vLo;
 | |
|             lo1 = lo1*vLo;
 | |
|             z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | |
|             x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | |
|             y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | |
|             z = z*vHi;
 | |
|             x = x+y;
 | |
|             x = x+z;
 | |
|             stack_array[index+3] = x;
 | |
|             min = _mm_min_ps( x, min );         // control the order here so that min is never NaN even if x is nan
 | |
|             
 | |
|             // It is too costly to keep the index of the min here. We will look for it again later.  We save a lot of work this way.
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     size_t localCount = (count & -4L) - 4*index;
 | |
|     if( localCount )
 | |
|     {
 | |
|         
 | |
|         
 | |
| #ifdef __APPLE__
 | |
|         vertices += localCount;      // counter the offset
 | |
|         float4 t0, t1, t2, t3, t4;
 | |
|         size_t byteIndex = -(localCount) * sizeof(float);
 | |
|         float4 * sap = &stack_array[index + localCount / 4];
 | |
|         
 | |
|         asm volatile
 | |
|         (   ".align 4                                                                   \n\
 | |
|              0: movaps  %[min], %[t2]                            // move min out of the way to avoid propagating NaNs in min \n\
 | |
|              movaps  (%[vertices], %[byteIndex], 4),    %[t0]    // vertices[0]      \n\
 | |
|              movaps  16(%[vertices], %[byteIndex], 4),  %[t1]    // vertices[1]      \n\
 | |
|              movaps  %[t0], %[min]                               // vertices[0]      \n\
 | |
|              movlhps %[t1], %[min]                               // x0y0x1y1         \n\
 | |
|              movaps  32(%[vertices], %[byteIndex], 4),  %[t3]    // vertices[2]      \n\
 | |
|              movaps  48(%[vertices], %[byteIndex], 4),  %[t4]    // vertices[3]      \n\
 | |
|              mulps   %[vLo], %[min]                              // x0y0x1y1 * vLo   \n\
 | |
|              movhlps %[t0], %[t1]                                // z0w0z1w1         \n\
 | |
|              movaps  %[t3], %[t0]                                // vertices[2]      \n\
 | |
|              movlhps %[t4], %[t0]                                // x2y2x3y3         \n\
 | |
|              movhlps %[t3], %[t4]                                // z2w2z3w3         \n\
 | |
|              mulps   %[vLo], %[t0]                               // x2y2x3y3 * vLo   \n\
 | |
|              shufps  $0x88, %[t4], %[t1]                         // z0z1z2z3         \n\
 | |
|              mulps   %[vHi], %[t1]                               // z0z1z2z3 * vHi   \n\
 | |
|              movaps  %[min], %[t3]                               // x0y0x1y1 * vLo   \n\
 | |
|              shufps  $0x88, %[t0], %[min]                        // x0x1x2x3 * vLo.x \n\
 | |
|              shufps  $0xdd, %[t0], %[t3]                         // y0y1y2y3 * vLo.y \n\
 | |
|              addps   %[t3], %[min]                               // x + y            \n\
 | |
|              addps   %[t1], %[min]                               // x + y + z        \n\
 | |
|              movaps  %[min], (%[sap], %[byteIndex])              // record result for later scrutiny \n\
 | |
|              minps   %[t2], %[min]                               // record min, restore min   \n\
 | |
|              add     $16, %[byteIndex]                           // advance loop counter\n\
 | |
|              jnz     0b                                          \n\
 | |
|              "
 | |
|          : [min] "+x" (min), [t0] "=&x" (t0), [t1] "=&x" (t1), [t2] "=&x" (t2), [t3] "=&x" (t3), [t4] "=&x" (t4), [byteIndex] "+r" (byteIndex)
 | |
|          : [vLo] "x" (vLo), [vHi] "x" (vHi), [vertices] "r" (vertices), [sap] "r" (sap)
 | |
|          : "memory", "cc"
 | |
|          );
 | |
|         index += localCount/4;
 | |
| #else
 | |
|         {
 | |
|             for( unsigned int i=0; i<localCount/4; i++,index++)   
 | |
|             { // do four dot products at a time. Carefully avoid touching the w element.
 | |
|                 float4 v0 = vertices[0];
 | |
|                 float4 v1 = vertices[1];
 | |
|                 float4 v2 = vertices[2];
 | |
|                 float4 v3 = vertices[3];            
 | |
|                 vertices += 4;
 | |
|                 
 | |
|                 float4 lo0 = _mm_movelh_ps( v0, v1);    // x0y0x1y1
 | |
|                 float4 hi0 = _mm_movehl_ps( v1, v0);    // z0?0z1?1
 | |
|                 float4 lo1 = _mm_movelh_ps( v2, v3);    // x2y2x3y3
 | |
|                 float4 hi1 = _mm_movehl_ps( v3, v2);    // z2?2z3?3
 | |
|                 
 | |
|                 lo0 = lo0*vLo;
 | |
|                 lo1 = lo1*vLo;
 | |
|                 float4 z = _mm_shuffle_ps(hi0, hi1, 0x88);
 | |
|                 float4 x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | |
|                 float4 y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | |
|                 z = z*vHi;
 | |
|                 x = x+y;
 | |
|                 x = x+z;
 | |
|                 stack_array[index] = x;
 | |
|                 min = _mm_min_ps( x, min );         // control the order here so that max is never NaN even if x is nan
 | |
|             }
 | |
|         }
 | |
| 
 | |
| #endif
 | |
|     }
 | |
|     
 | |
|     // process the last few points
 | |
|     if( count & 3 )
 | |
|     {
 | |
|         float4 v0, v1, v2, x, y, z;
 | |
|         switch( count & 3 )
 | |
|         {
 | |
|             case 3:
 | |
|             {
 | |
|                 v0 = vertices[0];
 | |
|                 v1 = vertices[1];
 | |
|                 v2 = vertices[2];
 | |
|                 
 | |
|                 // Calculate 3 dot products, transpose, duplicate v2
 | |
|                 float4 lo0 = _mm_movelh_ps( v0, v1);        // xyxy.lo
 | |
|                 float4 hi0 = _mm_movehl_ps( v1, v0);        // z?z?.lo
 | |
|                 lo0 = lo0*vLo;
 | |
|                 z = _mm_shuffle_ps(hi0, v2,  0xa8 );           // z0z1z2z2
 | |
|                 z = z*vHi;
 | |
|                 float4 lo1 = _mm_movelh_ps(v2, v2);          // xyxy
 | |
|                 lo1 = lo1*vLo;
 | |
|                 x = _mm_shuffle_ps(lo0, lo1, 0x88);
 | |
|                 y = _mm_shuffle_ps(lo0, lo1, 0xdd);
 | |
|             }
 | |
|                 break;
 | |
|             case 2:
 | |
|             {
 | |
|                 v0 = vertices[0];
 | |
|                 v1 = vertices[1];
 | |
|                 float4 xy = _mm_movelh_ps(v0, v1);
 | |
|                 z = _mm_movehl_ps(v1, v0);
 | |
|                 xy = xy*vLo;
 | |
|                 z = _mm_shuffle_ps( z, z,  0xa8);
 | |
|                 x = _mm_shuffle_ps( xy, xy, 0xa8);
 | |
|                 y = _mm_shuffle_ps( xy, xy, 0xfd);
 | |
|                 z = z*vHi;
 | |
|             }
 | |
|                 break;
 | |
|             case 1:
 | |
|             {
 | |
|                 float4 xy = vertices[0];
 | |
|                 z =  _mm_shuffle_ps( xy, xy, 0xaa);
 | |
|                 xy = xy*vLo;
 | |
|                 z = z*vHi;
 | |
|                 x = _mm_shuffle_ps(xy, xy, 0);
 | |
|                 y = _mm_shuffle_ps(xy, xy, 0x55);
 | |
|             }
 | |
|                 break;
 | |
|         }
 | |
|         x = x+y;
 | |
|         x = x+z;
 | |
|         stack_array[index] = x;
 | |
|         min = _mm_min_ps( x, min );         // control the order here so that min is never NaN even if x is nan
 | |
|         index++;
 | |
|     }
 | |
|     
 | |
|     // if we found a new min. 
 | |
|     if( 0 == segment || 0xf != _mm_movemask_ps( (float4) _mm_cmpeq_ps(min, dotmin)))
 | |
|     { // we found a new min. Search for it
 | |
|       // find min across the min vector, place in all elements of min -- big latency hit here
 | |
|         min = _mm_min_ps(min, (float4) _mm_shuffle_ps( min, min, 0x4e));
 | |
|         min = _mm_min_ps(min, (float4) _mm_shuffle_ps( min, min, 0xb1));
 | |
|         
 | |
|         // It is slightly faster to do this part in scalar code when count < 8. However, the common case for
 | |
|         // this where it actually makes a difference is handled in the early out at the top of the function, 
 | |
|         // so it is less than a 1% difference here. I opted for improved code size, fewer branches and reduced 
 | |
|         // complexity, and removed it.
 | |
|         
 | |
|         dotmin = min;
 | |
|         
 | |
|         // scan for the first occurence of min in the array  
 | |
|         size_t test;
 | |
|         for( index = 0; 0 == (test=_mm_movemask_ps( _mm_cmpeq_ps( stack_array[index], min))); index++ )   // local_count must be a multiple of 4
 | |
|         {}
 | |
|         minIndex = 4*index + segment + indexTable[test];
 | |
|     }
 | |
|     
 | |
|     _mm_store_ss( dotResult, dotmin);
 | |
|     return minIndex;
 | |
| }
 | |
| 
 | |
| 
 | |
| #elif defined BT_USE_NEON
 | |
| 
 | |
| #define ARM_NEON_GCC_COMPATIBILITY  1
 | |
| #include <arm_neon.h>
 | |
| #include <sys/types.h>
 | |
| #include <sys/sysctl.h> //for sysctlbyname
 | |
| 
 | |
| static long _maxdot_large_v0( const float *vv, const float *vec, unsigned long count, float *dotResult );
 | |
| static long _maxdot_large_v1( const float *vv, const float *vec, unsigned long count, float *dotResult );
 | |
| static long _maxdot_large_sel( const float *vv, const float *vec, unsigned long count, float *dotResult );
 | |
| static long _mindot_large_v0( const float *vv, const float *vec, unsigned long count, float *dotResult );
 | |
| static long _mindot_large_v1( const float *vv, const float *vec, unsigned long count, float *dotResult );
 | |
| static long _mindot_large_sel( const float *vv, const float *vec, unsigned long count, float *dotResult );
 | |
| 
 | |
| long (*_maxdot_large)( const float *vv, const float *vec, unsigned long count, float *dotResult ) = _maxdot_large_sel;
 | |
| long (*_mindot_large)( const float *vv, const float *vec, unsigned long count, float *dotResult ) = _mindot_large_sel;
 | |
| 
 | |
| 
 | |
| static inline uint32_t btGetCpuCapabilities( void )
 | |
| {
 | |
|     static uint32_t capabilities = 0;
 | |
|     static bool testedCapabilities = false;
 | |
| 
 | |
|     if( 0 == testedCapabilities)
 | |
|     {
 | |
|         uint32_t hasFeature = 0;
 | |
|         size_t featureSize = sizeof( hasFeature );
 | |
|         int err = sysctlbyname( "hw.optional.neon_hpfp", &hasFeature, &featureSize, NULL, 0 );
 | |
| 
 | |
|         if( 0 == err && hasFeature)
 | |
|             capabilities |= 0x2000;
 | |
| 
 | |
| 		testedCapabilities = true;
 | |
|     }
 | |
|     
 | |
|     return capabilities;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| static long _maxdot_large_sel( const float *vv, const float *vec, unsigned long count, float *dotResult )
 | |
| {
 | |
| 
 | |
|     if( btGetCpuCapabilities() & 0x2000 )
 | |
|         _maxdot_large = _maxdot_large_v1;
 | |
|     else
 | |
|         _maxdot_large = _maxdot_large_v0;
 | |
|     
 | |
|     return _maxdot_large(vv, vec, count, dotResult);
 | |
| }
 | |
| 
 | |
| static long _mindot_large_sel( const float *vv, const float *vec, unsigned long count, float *dotResult )
 | |
| {
 | |
| 
 | |
|     if( btGetCpuCapabilities() & 0x2000 )
 | |
|         _mindot_large = _mindot_large_v1;
 | |
|     else
 | |
|         _mindot_large = _mindot_large_v0;
 | |
|     
 | |
|     return _mindot_large(vv, vec, count, dotResult);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| #if defined __arm__
 | |
| # define vld1q_f32_aligned_postincrement( _ptr ) ({ float32x4_t _r; asm( "vld1.f32 {%0}, [%1, :128]!\n" : "=w" (_r), "+r" (_ptr) ); /*return*/ _r; })
 | |
| #else
 | |
| //support 64bit arm
 | |
| # define vld1q_f32_aligned_postincrement( _ptr) ({ float32x4_t _r = ((float32x4_t*)(_ptr))[0]; (_ptr) = (const float*) ((const char*)(_ptr) + 16L); /*return*/ _r; })
 | |
| #endif
 | |
| 
 | |
| 
 | |
| long _maxdot_large_v0( const float *vv, const float *vec, unsigned long count, float *dotResult )
 | |
| {
 | |
|     unsigned long i = 0;
 | |
|     float32x4_t vvec = vld1q_f32_aligned_postincrement( vec );
 | |
|     float32x2_t vLo = vget_low_f32(vvec);
 | |
|     float32x2_t vHi = vdup_lane_f32(vget_high_f32(vvec), 0);
 | |
|     float32x2_t dotMaxLo = (float32x2_t) { -BT_INFINITY, -BT_INFINITY };
 | |
|     float32x2_t dotMaxHi = (float32x2_t) { -BT_INFINITY, -BT_INFINITY };
 | |
|     uint32x2_t indexLo = (uint32x2_t) {0, 1};
 | |
|     uint32x2_t indexHi = (uint32x2_t) {2, 3};
 | |
|     uint32x2_t iLo = (uint32x2_t) {static_cast<uint32_t>(-1), static_cast<uint32_t>(-1)};
 | |
|     uint32x2_t iHi = (uint32x2_t) {static_cast<uint32_t>(-1), static_cast<uint32_t>(-1)};
 | |
|     const uint32x2_t four = (uint32x2_t) {4,4};
 | |
| 
 | |
|     for( ; i+8 <= count; i+= 8 )
 | |
|     {
 | |
|         float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | |
|         float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | |
|         float32x4_t v2 = vld1q_f32_aligned_postincrement( vv );
 | |
|         float32x4_t v3 = vld1q_f32_aligned_postincrement( vv );
 | |
|         
 | |
|         float32x2_t xy0 = vmul_f32( vget_low_f32(v0), vLo);
 | |
|         float32x2_t xy1 = vmul_f32( vget_low_f32(v1), vLo);
 | |
|         float32x2_t xy2 = vmul_f32( vget_low_f32(v2), vLo);
 | |
|         float32x2_t xy3 = vmul_f32( vget_low_f32(v3), vLo);
 | |
|         
 | |
|         float32x2x2_t z0 = vtrn_f32( vget_high_f32(v0), vget_high_f32(v1));
 | |
|         float32x2x2_t z1 = vtrn_f32( vget_high_f32(v2), vget_high_f32(v3));
 | |
|         float32x2_t zLo = vmul_f32( z0.val[0], vHi);
 | |
|         float32x2_t zHi = vmul_f32( z1.val[0], vHi);
 | |
|         
 | |
|         float32x2_t rLo = vpadd_f32( xy0, xy1);
 | |
|         float32x2_t rHi = vpadd_f32( xy2, xy3);
 | |
|         rLo = vadd_f32(rLo, zLo);
 | |
|         rHi = vadd_f32(rHi, zHi);
 | |
|         
 | |
|         uint32x2_t maskLo = vcgt_f32( rLo, dotMaxLo );
 | |
|         uint32x2_t maskHi = vcgt_f32( rHi, dotMaxHi );
 | |
|         dotMaxLo = vbsl_f32( maskLo, rLo, dotMaxLo);
 | |
|         dotMaxHi = vbsl_f32( maskHi, rHi, dotMaxHi);
 | |
|         iLo = vbsl_u32(maskLo, indexLo, iLo);
 | |
|         iHi = vbsl_u32(maskHi, indexHi, iHi);
 | |
|         indexLo = vadd_u32(indexLo, four); 
 | |
|         indexHi = vadd_u32(indexHi, four);
 | |
| 
 | |
|         v0 = vld1q_f32_aligned_postincrement( vv );
 | |
|         v1 = vld1q_f32_aligned_postincrement( vv );
 | |
|         v2 = vld1q_f32_aligned_postincrement( vv );
 | |
|         v3 = vld1q_f32_aligned_postincrement( vv );
 | |
|         
 | |
|         xy0 = vmul_f32( vget_low_f32(v0), vLo);
 | |
|         xy1 = vmul_f32( vget_low_f32(v1), vLo);
 | |
|         xy2 = vmul_f32( vget_low_f32(v2), vLo);
 | |
|         xy3 = vmul_f32( vget_low_f32(v3), vLo);
 | |
|         
 | |
|         z0 = vtrn_f32( vget_high_f32(v0), vget_high_f32(v1));
 | |
|         z1 = vtrn_f32( vget_high_f32(v2), vget_high_f32(v3));
 | |
|         zLo = vmul_f32( z0.val[0], vHi);
 | |
|         zHi = vmul_f32( z1.val[0], vHi);
 | |
|         
 | |
|         rLo = vpadd_f32( xy0, xy1);
 | |
|         rHi = vpadd_f32( xy2, xy3);
 | |
|         rLo = vadd_f32(rLo, zLo);
 | |
|         rHi = vadd_f32(rHi, zHi);
 | |
|         
 | |
|         maskLo = vcgt_f32( rLo, dotMaxLo );
 | |
|         maskHi = vcgt_f32( rHi, dotMaxHi );
 | |
|         dotMaxLo = vbsl_f32( maskLo, rLo, dotMaxLo);
 | |
|         dotMaxHi = vbsl_f32( maskHi, rHi, dotMaxHi);
 | |
|         iLo = vbsl_u32(maskLo, indexLo, iLo);
 | |
|         iHi = vbsl_u32(maskHi, indexHi, iHi);
 | |
|         indexLo = vadd_u32(indexLo, four);
 | |
|         indexHi = vadd_u32(indexHi, four);
 | |
|     }
 | |
| 
 | |
|     for( ; i+4 <= count; i+= 4 )
 | |
|     {
 | |
|         float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | |
|         float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | |
|         float32x4_t v2 = vld1q_f32_aligned_postincrement( vv );
 | |
|         float32x4_t v3 = vld1q_f32_aligned_postincrement( vv );
 | |
|         
 | |
|         float32x2_t xy0 = vmul_f32( vget_low_f32(v0), vLo);
 | |
|         float32x2_t xy1 = vmul_f32( vget_low_f32(v1), vLo);
 | |
|         float32x2_t xy2 = vmul_f32( vget_low_f32(v2), vLo);
 | |
|         float32x2_t xy3 = vmul_f32( vget_low_f32(v3), vLo);
 | |
|         
 | |
|         float32x2x2_t z0 = vtrn_f32( vget_high_f32(v0), vget_high_f32(v1));
 | |
|         float32x2x2_t z1 = vtrn_f32( vget_high_f32(v2), vget_high_f32(v3));
 | |
|         float32x2_t zLo = vmul_f32( z0.val[0], vHi);
 | |
|         float32x2_t zHi = vmul_f32( z1.val[0], vHi);
 | |
|         
 | |
|         float32x2_t rLo = vpadd_f32( xy0, xy1);
 | |
|         float32x2_t rHi = vpadd_f32( xy2, xy3);
 | |
|         rLo = vadd_f32(rLo, zLo);
 | |
|         rHi = vadd_f32(rHi, zHi);
 | |
|         
 | |
|         uint32x2_t maskLo = vcgt_f32( rLo, dotMaxLo );
 | |
|         uint32x2_t maskHi = vcgt_f32( rHi, dotMaxHi );
 | |
|         dotMaxLo = vbsl_f32( maskLo, rLo, dotMaxLo);
 | |
|         dotMaxHi = vbsl_f32( maskHi, rHi, dotMaxHi);
 | |
|         iLo = vbsl_u32(maskLo, indexLo, iLo);
 | |
|         iHi = vbsl_u32(maskHi, indexHi, iHi);
 | |
|         indexLo = vadd_u32(indexLo, four);
 | |
|         indexHi = vadd_u32(indexHi, four);
 | |
|     }
 | |
|     
 | |
|     switch( count & 3 )
 | |
|     {
 | |
|         case 3:
 | |
|         {
 | |
|             float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | |
|             float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | |
|             float32x4_t v2 = vld1q_f32_aligned_postincrement( vv );
 | |
|             
 | |
|             float32x2_t xy0 = vmul_f32( vget_low_f32(v0), vLo);
 | |
|             float32x2_t xy1 = vmul_f32( vget_low_f32(v1), vLo);
 | |
|             float32x2_t xy2 = vmul_f32( vget_low_f32(v2), vLo);
 | |
|             
 | |
|             float32x2x2_t z0 = vtrn_f32( vget_high_f32(v0), vget_high_f32(v1));
 | |
|             float32x2_t zLo = vmul_f32( z0.val[0], vHi);
 | |
|             float32x2_t zHi = vmul_f32( vdup_lane_f32(vget_high_f32(v2), 0), vHi);
 | |
|             
 | |
|             float32x2_t rLo = vpadd_f32( xy0, xy1);
 | |
|             float32x2_t rHi = vpadd_f32( xy2, xy2);
 | |
|             rLo = vadd_f32(rLo, zLo);
 | |
|             rHi = vadd_f32(rHi, zHi);
 | |
|             
 | |
|             uint32x2_t maskLo = vcgt_f32( rLo, dotMaxLo );
 | |
|             uint32x2_t maskHi = vcgt_f32( rHi, dotMaxHi );
 | |
|             dotMaxLo = vbsl_f32( maskLo, rLo, dotMaxLo);
 | |
|             dotMaxHi = vbsl_f32( maskHi, rHi, dotMaxHi);
 | |
|             iLo = vbsl_u32(maskLo, indexLo, iLo);
 | |
|             iHi = vbsl_u32(maskHi, indexHi, iHi);
 | |
|         }
 | |
|             break;
 | |
|         case 2:
 | |
|         {
 | |
|             float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | |
|             float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | |
|             
 | |
|             float32x2_t xy0 = vmul_f32( vget_low_f32(v0), vLo);
 | |
|             float32x2_t xy1 = vmul_f32( vget_low_f32(v1), vLo);
 | |
|             
 | |
|             float32x2x2_t z0 = vtrn_f32( vget_high_f32(v0), vget_high_f32(v1));
 | |
|             float32x2_t zLo = vmul_f32( z0.val[0], vHi);
 | |
|             
 | |
|             float32x2_t rLo = vpadd_f32( xy0, xy1);
 | |
|             rLo = vadd_f32(rLo, zLo);
 | |
|             
 | |
|             uint32x2_t maskLo = vcgt_f32( rLo, dotMaxLo );
 | |
|             dotMaxLo = vbsl_f32( maskLo, rLo, dotMaxLo);
 | |
|             iLo = vbsl_u32(maskLo, indexLo, iLo);
 | |
|         }
 | |
|             break;
 | |
|         case 1:
 | |
|         {
 | |
|             float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | |
|             float32x2_t xy0 = vmul_f32( vget_low_f32(v0), vLo);
 | |
|             float32x2_t z0 = vdup_lane_f32(vget_high_f32(v0), 0);
 | |
|             float32x2_t zLo = vmul_f32( z0, vHi);
 | |
|             float32x2_t rLo = vpadd_f32( xy0, xy0);
 | |
|             rLo = vadd_f32(rLo, zLo);
 | |
|             uint32x2_t maskLo = vcgt_f32( rLo, dotMaxLo );
 | |
|             dotMaxLo = vbsl_f32( maskLo, rLo, dotMaxLo);
 | |
|             iLo = vbsl_u32(maskLo, indexLo, iLo);
 | |
|         }
 | |
|             break;
 | |
|         
 | |
|         default:
 | |
|             break;
 | |
|     }
 | |
|     
 | |
|     // select best answer between hi and lo results
 | |
|     uint32x2_t mask = vcgt_f32( dotMaxHi, dotMaxLo );
 | |
|     dotMaxLo = vbsl_f32(mask, dotMaxHi, dotMaxLo);
 | |
|     iLo = vbsl_u32(mask, iHi, iLo);
 | |
|     
 | |
|     // select best answer between even and odd results
 | |
|     dotMaxHi = vdup_lane_f32(dotMaxLo, 1);
 | |
|     iHi = vdup_lane_u32(iLo, 1);
 | |
|     mask = vcgt_f32( dotMaxHi, dotMaxLo );
 | |
|     dotMaxLo = vbsl_f32(mask, dotMaxHi, dotMaxLo);
 | |
|     iLo = vbsl_u32(mask, iHi, iLo);
 | |
|     
 | |
|     *dotResult = vget_lane_f32( dotMaxLo, 0);
 | |
|     return vget_lane_u32(iLo, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| long _maxdot_large_v1( const float *vv, const float *vec, unsigned long count, float *dotResult )
 | |
| {
 | |
|     float32x4_t vvec = vld1q_f32_aligned_postincrement( vec );
 | |
|     float32x4_t vLo = vcombine_f32(vget_low_f32(vvec), vget_low_f32(vvec));
 | |
|     float32x4_t vHi = vdupq_lane_f32(vget_high_f32(vvec), 0);
 | |
|     const uint32x4_t four = (uint32x4_t){ 4, 4, 4, 4 };
 | |
|     uint32x4_t local_index = (uint32x4_t) {0, 1, 2, 3};
 | |
|     uint32x4_t index = (uint32x4_t) { static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1) };
 | |
|     float32x4_t maxDot = (float32x4_t) { -BT_INFINITY, -BT_INFINITY, -BT_INFINITY, -BT_INFINITY };
 | |
|     
 | |
|     unsigned long i = 0;
 | |
|     for( ; i + 8 <= count; i += 8 )
 | |
|     {
 | |
|         float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | |
|         float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | |
|         float32x4_t v2 = vld1q_f32_aligned_postincrement( vv );
 | |
|         float32x4_t v3 = vld1q_f32_aligned_postincrement( vv );
 | |
|         
 | |
|         // the next two lines should resolve to a single vswp d, d
 | |
|         float32x4_t xy0 = vcombine_f32( vget_low_f32(v0), vget_low_f32(v1));
 | |
|         float32x4_t xy1 = vcombine_f32( vget_low_f32(v2), vget_low_f32(v3));
 | |
|         // the next two lines should resolve to a single vswp d, d
 | |
|         float32x4_t z0 = vcombine_f32( vget_high_f32(v0), vget_high_f32(v1));
 | |
|         float32x4_t z1 = vcombine_f32( vget_high_f32(v2), vget_high_f32(v3));
 | |
|         
 | |
|         xy0 = vmulq_f32(xy0, vLo);
 | |
|         xy1 = vmulq_f32(xy1, vLo);
 | |
|         
 | |
|         float32x4x2_t zb = vuzpq_f32( z0, z1);
 | |
|         float32x4_t z = vmulq_f32( zb.val[0], vHi);
 | |
|         float32x4x2_t xy = vuzpq_f32( xy0, xy1);
 | |
|         float32x4_t x = vaddq_f32(xy.val[0], xy.val[1]);
 | |
|         x = vaddq_f32(x, z);
 | |
|         
 | |
|         uint32x4_t mask = vcgtq_f32(x, maxDot);
 | |
|         maxDot = vbslq_f32( mask, x, maxDot);
 | |
|         index = vbslq_u32(mask, local_index, index);
 | |
|         local_index = vaddq_u32(local_index, four);
 | |
| 
 | |
|         v0 = vld1q_f32_aligned_postincrement( vv );
 | |
|         v1 = vld1q_f32_aligned_postincrement( vv );
 | |
|         v2 = vld1q_f32_aligned_postincrement( vv );
 | |
|         v3 = vld1q_f32_aligned_postincrement( vv );
 | |
|         
 | |
|         // the next two lines should resolve to a single vswp d, d
 | |
|         xy0 = vcombine_f32( vget_low_f32(v0), vget_low_f32(v1));
 | |
|         xy1 = vcombine_f32( vget_low_f32(v2), vget_low_f32(v3));
 | |
|         // the next two lines should resolve to a single vswp d, d
 | |
|         z0 = vcombine_f32( vget_high_f32(v0), vget_high_f32(v1));
 | |
|         z1 = vcombine_f32( vget_high_f32(v2), vget_high_f32(v3));
 | |
|         
 | |
|         xy0 = vmulq_f32(xy0, vLo);
 | |
|         xy1 = vmulq_f32(xy1, vLo);
 | |
|         
 | |
|         zb = vuzpq_f32( z0, z1);
 | |
|         z = vmulq_f32( zb.val[0], vHi);
 | |
|         xy = vuzpq_f32( xy0, xy1);
 | |
|         x = vaddq_f32(xy.val[0], xy.val[1]);
 | |
|         x = vaddq_f32(x, z);
 | |
|         
 | |
|         mask = vcgtq_f32(x, maxDot);
 | |
|         maxDot = vbslq_f32( mask, x, maxDot);
 | |
|         index = vbslq_u32(mask, local_index, index);
 | |
|         local_index = vaddq_u32(local_index, four);
 | |
|     }
 | |
| 
 | |
|     for( ; i + 4 <= count; i += 4 )
 | |
|     {
 | |
|         float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | |
|         float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | |
|         float32x4_t v2 = vld1q_f32_aligned_postincrement( vv );
 | |
|         float32x4_t v3 = vld1q_f32_aligned_postincrement( vv );
 | |
| 
 | |
|         // the next two lines should resolve to a single vswp d, d
 | |
|         float32x4_t xy0 = vcombine_f32( vget_low_f32(v0), vget_low_f32(v1));
 | |
|         float32x4_t xy1 = vcombine_f32( vget_low_f32(v2), vget_low_f32(v3));
 | |
|         // the next two lines should resolve to a single vswp d, d
 | |
|         float32x4_t z0 = vcombine_f32( vget_high_f32(v0), vget_high_f32(v1));
 | |
|         float32x4_t z1 = vcombine_f32( vget_high_f32(v2), vget_high_f32(v3));
 | |
|         
 | |
|         xy0 = vmulq_f32(xy0, vLo);
 | |
|         xy1 = vmulq_f32(xy1, vLo);
 | |
|         
 | |
|         float32x4x2_t zb = vuzpq_f32( z0, z1);
 | |
|         float32x4_t z = vmulq_f32( zb.val[0], vHi);
 | |
|         float32x4x2_t xy = vuzpq_f32( xy0, xy1);
 | |
|         float32x4_t x = vaddq_f32(xy.val[0], xy.val[1]);
 | |
|         x = vaddq_f32(x, z);
 | |
|         
 | |
|         uint32x4_t mask = vcgtq_f32(x, maxDot);
 | |
|         maxDot = vbslq_f32( mask, x, maxDot);
 | |
|         index = vbslq_u32(mask, local_index, index);
 | |
|         local_index = vaddq_u32(local_index, four);
 | |
|     }
 | |
|     
 | |
|     switch (count & 3) {
 | |
|         case 3:
 | |
|         {
 | |
|             float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | |
|             float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | |
|             float32x4_t v2 = vld1q_f32_aligned_postincrement( vv );
 | |
|             
 | |
|             // the next two lines should resolve to a single vswp d, d
 | |
|             float32x4_t xy0 = vcombine_f32( vget_low_f32(v0), vget_low_f32(v1));
 | |
|             float32x4_t xy1 = vcombine_f32( vget_low_f32(v2), vget_low_f32(v2));
 | |
|             // the next two lines should resolve to a single vswp d, d
 | |
|             float32x4_t z0 = vcombine_f32( vget_high_f32(v0), vget_high_f32(v1));
 | |
|             float32x4_t z1 = vcombine_f32( vget_high_f32(v2), vget_high_f32(v2));
 | |
|             
 | |
|             xy0 = vmulq_f32(xy0, vLo);
 | |
|             xy1 = vmulq_f32(xy1, vLo);
 | |
|             
 | |
|             float32x4x2_t zb = vuzpq_f32( z0, z1);
 | |
|             float32x4_t z = vmulq_f32( zb.val[0], vHi);
 | |
|             float32x4x2_t xy = vuzpq_f32( xy0, xy1);
 | |
|             float32x4_t x = vaddq_f32(xy.val[0], xy.val[1]);
 | |
|             x = vaddq_f32(x, z);
 | |
|             
 | |
|             uint32x4_t mask = vcgtq_f32(x, maxDot);
 | |
|             maxDot = vbslq_f32( mask, x, maxDot);
 | |
|             index = vbslq_u32(mask, local_index, index);
 | |
|             local_index = vaddq_u32(local_index, four);
 | |
|         }
 | |
|             break;
 | |
| 
 | |
|         case 2:
 | |
|         {
 | |
|             float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | |
|             float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | |
|             
 | |
|             // the next two lines should resolve to a single vswp d, d
 | |
|             float32x4_t xy0 = vcombine_f32( vget_low_f32(v0), vget_low_f32(v1));
 | |
|             // the next two lines should resolve to a single vswp d, d
 | |
|             float32x4_t z0 = vcombine_f32( vget_high_f32(v0), vget_high_f32(v1));
 | |
|             
 | |
|             xy0 = vmulq_f32(xy0, vLo);
 | |
|             
 | |
|             float32x4x2_t zb = vuzpq_f32( z0, z0);
 | |
|             float32x4_t z = vmulq_f32( zb.val[0], vHi);
 | |
|             float32x4x2_t xy = vuzpq_f32( xy0, xy0);
 | |
|             float32x4_t x = vaddq_f32(xy.val[0], xy.val[1]);
 | |
|             x = vaddq_f32(x, z);
 | |
|             
 | |
|             uint32x4_t mask = vcgtq_f32(x, maxDot);
 | |
|             maxDot = vbslq_f32( mask, x, maxDot);
 | |
|             index = vbslq_u32(mask, local_index, index);
 | |
|             local_index = vaddq_u32(local_index, four);
 | |
|         }
 | |
|             break;
 | |
| 
 | |
|         case 1:
 | |
|         {
 | |
|             float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | |
|             
 | |
|             // the next two lines should resolve to a single vswp d, d
 | |
|             float32x4_t xy0 = vcombine_f32( vget_low_f32(v0), vget_low_f32(v0));
 | |
|             // the next two lines should resolve to a single vswp d, d
 | |
|             float32x4_t z = vdupq_lane_f32(vget_high_f32(v0), 0); 
 | |
|             
 | |
|             xy0 = vmulq_f32(xy0, vLo);
 | |
|             
 | |
|             z = vmulq_f32( z, vHi);
 | |
|             float32x4x2_t xy = vuzpq_f32( xy0, xy0);
 | |
|             float32x4_t x = vaddq_f32(xy.val[0], xy.val[1]);
 | |
|             x = vaddq_f32(x, z);
 | |
|             
 | |
|             uint32x4_t mask = vcgtq_f32(x, maxDot);
 | |
|             maxDot = vbslq_f32( mask, x, maxDot);
 | |
|             index = vbslq_u32(mask, local_index, index);
 | |
|             local_index = vaddq_u32(local_index, four);
 | |
|         }
 | |
|             break;
 | |
| 
 | |
|         default:
 | |
|             break;
 | |
|     }
 | |
|     
 | |
|     
 | |
|     // select best answer between hi and lo results
 | |
|     uint32x2_t mask = vcgt_f32( vget_high_f32(maxDot), vget_low_f32(maxDot));
 | |
|     float32x2_t maxDot2 = vbsl_f32(mask, vget_high_f32(maxDot), vget_low_f32(maxDot));
 | |
|     uint32x2_t index2 = vbsl_u32(mask, vget_high_u32(index), vget_low_u32(index));
 | |
|     
 | |
|     // select best answer between even and odd results
 | |
|     float32x2_t maxDotO = vdup_lane_f32(maxDot2, 1);
 | |
|     uint32x2_t indexHi = vdup_lane_u32(index2, 1);
 | |
|     mask = vcgt_f32( maxDotO, maxDot2 );
 | |
|     maxDot2 = vbsl_f32(mask, maxDotO, maxDot2);
 | |
|     index2 = vbsl_u32(mask, indexHi, index2);
 | |
|     
 | |
|     *dotResult = vget_lane_f32( maxDot2, 0);
 | |
|     return vget_lane_u32(index2, 0);
 | |
|     
 | |
| }
 | |
| 
 | |
| long _mindot_large_v0( const float *vv, const float *vec, unsigned long count, float *dotResult )
 | |
| {
 | |
|     unsigned long i = 0;
 | |
|     float32x4_t vvec = vld1q_f32_aligned_postincrement( vec );
 | |
|     float32x2_t vLo = vget_low_f32(vvec);
 | |
|     float32x2_t vHi = vdup_lane_f32(vget_high_f32(vvec), 0);
 | |
|     float32x2_t dotMinLo = (float32x2_t) { BT_INFINITY, BT_INFINITY };
 | |
|     float32x2_t dotMinHi = (float32x2_t) { BT_INFINITY, BT_INFINITY };
 | |
|     uint32x2_t indexLo = (uint32x2_t) {0, 1};
 | |
|     uint32x2_t indexHi = (uint32x2_t) {2, 3};
 | |
|     uint32x2_t iLo = (uint32x2_t) {static_cast<uint32_t>(-1), static_cast<uint32_t>(-1)};
 | |
|     uint32x2_t iHi = (uint32x2_t) {static_cast<uint32_t>(-1), static_cast<uint32_t>(-1)};
 | |
|     const uint32x2_t four = (uint32x2_t) {4,4};
 | |
|     
 | |
|     for( ; i+8 <= count; i+= 8 )
 | |
|     {
 | |
|         float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | |
|         float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | |
|         float32x4_t v2 = vld1q_f32_aligned_postincrement( vv );
 | |
|         float32x4_t v3 = vld1q_f32_aligned_postincrement( vv );
 | |
|         
 | |
|         float32x2_t xy0 = vmul_f32( vget_low_f32(v0), vLo);
 | |
|         float32x2_t xy1 = vmul_f32( vget_low_f32(v1), vLo);
 | |
|         float32x2_t xy2 = vmul_f32( vget_low_f32(v2), vLo);
 | |
|         float32x2_t xy3 = vmul_f32( vget_low_f32(v3), vLo);
 | |
|         
 | |
|         float32x2x2_t z0 = vtrn_f32( vget_high_f32(v0), vget_high_f32(v1));
 | |
|         float32x2x2_t z1 = vtrn_f32( vget_high_f32(v2), vget_high_f32(v3));
 | |
|         float32x2_t zLo = vmul_f32( z0.val[0], vHi);
 | |
|         float32x2_t zHi = vmul_f32( z1.val[0], vHi);
 | |
|         
 | |
|         float32x2_t rLo = vpadd_f32( xy0, xy1);
 | |
|         float32x2_t rHi = vpadd_f32( xy2, xy3);
 | |
|         rLo = vadd_f32(rLo, zLo);
 | |
|         rHi = vadd_f32(rHi, zHi);
 | |
|         
 | |
|         uint32x2_t maskLo = vclt_f32( rLo, dotMinLo );
 | |
|         uint32x2_t maskHi = vclt_f32( rHi, dotMinHi );
 | |
|         dotMinLo = vbsl_f32( maskLo, rLo, dotMinLo);
 | |
|         dotMinHi = vbsl_f32( maskHi, rHi, dotMinHi);
 | |
|         iLo = vbsl_u32(maskLo, indexLo, iLo);
 | |
|         iHi = vbsl_u32(maskHi, indexHi, iHi);
 | |
|         indexLo = vadd_u32(indexLo, four);
 | |
|         indexHi = vadd_u32(indexHi, four);
 | |
|         
 | |
|         v0 = vld1q_f32_aligned_postincrement( vv );
 | |
|         v1 = vld1q_f32_aligned_postincrement( vv );
 | |
|         v2 = vld1q_f32_aligned_postincrement( vv );
 | |
|         v3 = vld1q_f32_aligned_postincrement( vv );
 | |
|         
 | |
|         xy0 = vmul_f32( vget_low_f32(v0), vLo);
 | |
|         xy1 = vmul_f32( vget_low_f32(v1), vLo);
 | |
|         xy2 = vmul_f32( vget_low_f32(v2), vLo);
 | |
|         xy3 = vmul_f32( vget_low_f32(v3), vLo);
 | |
|         
 | |
|         z0 = vtrn_f32( vget_high_f32(v0), vget_high_f32(v1));
 | |
|         z1 = vtrn_f32( vget_high_f32(v2), vget_high_f32(v3));
 | |
|         zLo = vmul_f32( z0.val[0], vHi);
 | |
|         zHi = vmul_f32( z1.val[0], vHi);
 | |
|         
 | |
|         rLo = vpadd_f32( xy0, xy1);
 | |
|         rHi = vpadd_f32( xy2, xy3);
 | |
|         rLo = vadd_f32(rLo, zLo);
 | |
|         rHi = vadd_f32(rHi, zHi);
 | |
|         
 | |
|         maskLo = vclt_f32( rLo, dotMinLo );
 | |
|         maskHi = vclt_f32( rHi, dotMinHi );
 | |
|         dotMinLo = vbsl_f32( maskLo, rLo, dotMinLo);
 | |
|         dotMinHi = vbsl_f32( maskHi, rHi, dotMinHi);
 | |
|         iLo = vbsl_u32(maskLo, indexLo, iLo);
 | |
|         iHi = vbsl_u32(maskHi, indexHi, iHi);
 | |
|         indexLo = vadd_u32(indexLo, four);
 | |
|         indexHi = vadd_u32(indexHi, four);
 | |
|     }
 | |
| 
 | |
|     for( ; i+4 <= count; i+= 4 )
 | |
|     {
 | |
|         float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | |
|         float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | |
|         float32x4_t v2 = vld1q_f32_aligned_postincrement( vv );
 | |
|         float32x4_t v3 = vld1q_f32_aligned_postincrement( vv );
 | |
|         
 | |
|         float32x2_t xy0 = vmul_f32( vget_low_f32(v0), vLo);
 | |
|         float32x2_t xy1 = vmul_f32( vget_low_f32(v1), vLo);
 | |
|         float32x2_t xy2 = vmul_f32( vget_low_f32(v2), vLo);
 | |
|         float32x2_t xy3 = vmul_f32( vget_low_f32(v3), vLo);
 | |
|         
 | |
|         float32x2x2_t z0 = vtrn_f32( vget_high_f32(v0), vget_high_f32(v1));
 | |
|         float32x2x2_t z1 = vtrn_f32( vget_high_f32(v2), vget_high_f32(v3));
 | |
|         float32x2_t zLo = vmul_f32( z0.val[0], vHi);
 | |
|         float32x2_t zHi = vmul_f32( z1.val[0], vHi);
 | |
|         
 | |
|         float32x2_t rLo = vpadd_f32( xy0, xy1);
 | |
|         float32x2_t rHi = vpadd_f32( xy2, xy3);
 | |
|         rLo = vadd_f32(rLo, zLo);
 | |
|         rHi = vadd_f32(rHi, zHi);
 | |
|         
 | |
|         uint32x2_t maskLo = vclt_f32( rLo, dotMinLo );
 | |
|         uint32x2_t maskHi = vclt_f32( rHi, dotMinHi );
 | |
|         dotMinLo = vbsl_f32( maskLo, rLo, dotMinLo);
 | |
|         dotMinHi = vbsl_f32( maskHi, rHi, dotMinHi);
 | |
|         iLo = vbsl_u32(maskLo, indexLo, iLo);
 | |
|         iHi = vbsl_u32(maskHi, indexHi, iHi);
 | |
|         indexLo = vadd_u32(indexLo, four);
 | |
|         indexHi = vadd_u32(indexHi, four);
 | |
|     }
 | |
|     switch( count & 3 )
 | |
|     {
 | |
|         case 3:
 | |
|         {
 | |
|             float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | |
|             float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | |
|             float32x4_t v2 = vld1q_f32_aligned_postincrement( vv );
 | |
|             
 | |
|             float32x2_t xy0 = vmul_f32( vget_low_f32(v0), vLo);
 | |
|             float32x2_t xy1 = vmul_f32( vget_low_f32(v1), vLo);
 | |
|             float32x2_t xy2 = vmul_f32( vget_low_f32(v2), vLo);
 | |
|             
 | |
|             float32x2x2_t z0 = vtrn_f32( vget_high_f32(v0), vget_high_f32(v1));
 | |
|             float32x2_t zLo = vmul_f32( z0.val[0], vHi);
 | |
|             float32x2_t zHi = vmul_f32( vdup_lane_f32(vget_high_f32(v2), 0), vHi);
 | |
|             
 | |
|             float32x2_t rLo = vpadd_f32( xy0, xy1);
 | |
|             float32x2_t rHi = vpadd_f32( xy2, xy2);
 | |
|             rLo = vadd_f32(rLo, zLo);
 | |
|             rHi = vadd_f32(rHi, zHi);
 | |
|             
 | |
|             uint32x2_t maskLo = vclt_f32( rLo, dotMinLo );
 | |
|             uint32x2_t maskHi = vclt_f32( rHi, dotMinHi );
 | |
|             dotMinLo = vbsl_f32( maskLo, rLo, dotMinLo);
 | |
|             dotMinHi = vbsl_f32( maskHi, rHi, dotMinHi);
 | |
|             iLo = vbsl_u32(maskLo, indexLo, iLo);
 | |
|             iHi = vbsl_u32(maskHi, indexHi, iHi);
 | |
|         }
 | |
|             break;
 | |
|         case 2:
 | |
|         {
 | |
|             float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | |
|             float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | |
|             
 | |
|             float32x2_t xy0 = vmul_f32( vget_low_f32(v0), vLo);
 | |
|             float32x2_t xy1 = vmul_f32( vget_low_f32(v1), vLo);
 | |
|             
 | |
|             float32x2x2_t z0 = vtrn_f32( vget_high_f32(v0), vget_high_f32(v1));
 | |
|             float32x2_t zLo = vmul_f32( z0.val[0], vHi);
 | |
|             
 | |
|             float32x2_t rLo = vpadd_f32( xy0, xy1);
 | |
|             rLo = vadd_f32(rLo, zLo);
 | |
|             
 | |
|             uint32x2_t maskLo = vclt_f32( rLo, dotMinLo );
 | |
|             dotMinLo = vbsl_f32( maskLo, rLo, dotMinLo);
 | |
|             iLo = vbsl_u32(maskLo, indexLo, iLo);
 | |
|         }
 | |
|             break;
 | |
|         case 1:
 | |
|         {
 | |
|             float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | |
|             float32x2_t xy0 = vmul_f32( vget_low_f32(v0), vLo);
 | |
|             float32x2_t z0 = vdup_lane_f32(vget_high_f32(v0), 0);
 | |
|             float32x2_t zLo = vmul_f32( z0, vHi);
 | |
|             float32x2_t rLo = vpadd_f32( xy0, xy0);
 | |
|             rLo = vadd_f32(rLo, zLo);
 | |
|             uint32x2_t maskLo = vclt_f32( rLo, dotMinLo );
 | |
|             dotMinLo = vbsl_f32( maskLo, rLo, dotMinLo);
 | |
|             iLo = vbsl_u32(maskLo, indexLo, iLo);
 | |
|         }
 | |
|             break;
 | |
|             
 | |
|         default:
 | |
|             break;
 | |
|     }
 | |
|     
 | |
|     // select best answer between hi and lo results
 | |
|     uint32x2_t mask = vclt_f32( dotMinHi, dotMinLo );
 | |
|     dotMinLo = vbsl_f32(mask, dotMinHi, dotMinLo);
 | |
|     iLo = vbsl_u32(mask, iHi, iLo);
 | |
|     
 | |
|     // select best answer between even and odd results
 | |
|     dotMinHi = vdup_lane_f32(dotMinLo, 1);
 | |
|     iHi = vdup_lane_u32(iLo, 1);
 | |
|     mask = vclt_f32( dotMinHi, dotMinLo );
 | |
|     dotMinLo = vbsl_f32(mask, dotMinHi, dotMinLo);
 | |
|     iLo = vbsl_u32(mask, iHi, iLo);
 | |
|     
 | |
|     *dotResult = vget_lane_f32( dotMinLo, 0);
 | |
|     return vget_lane_u32(iLo, 0);
 | |
| }
 | |
| 
 | |
| long _mindot_large_v1( const float *vv, const float *vec, unsigned long count, float *dotResult )
 | |
| {
 | |
|     float32x4_t vvec = vld1q_f32_aligned_postincrement( vec );
 | |
|     float32x4_t vLo = vcombine_f32(vget_low_f32(vvec), vget_low_f32(vvec));
 | |
|     float32x4_t vHi = vdupq_lane_f32(vget_high_f32(vvec), 0);
 | |
|     const uint32x4_t four = (uint32x4_t){ 4, 4, 4, 4 };
 | |
|     uint32x4_t local_index = (uint32x4_t) {0, 1, 2, 3};
 | |
|     uint32x4_t index = (uint32x4_t) { static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1) };
 | |
|     float32x4_t minDot = (float32x4_t) { BT_INFINITY, BT_INFINITY, BT_INFINITY, BT_INFINITY };
 | |
|     
 | |
|     unsigned long i = 0;
 | |
|     for( ; i + 8 <= count; i += 8 )
 | |
|     {
 | |
|         float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | |
|         float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | |
|         float32x4_t v2 = vld1q_f32_aligned_postincrement( vv );
 | |
|         float32x4_t v3 = vld1q_f32_aligned_postincrement( vv );
 | |
|         
 | |
|         // the next two lines should resolve to a single vswp d, d
 | |
|         float32x4_t xy0 = vcombine_f32( vget_low_f32(v0), vget_low_f32(v1));
 | |
|         float32x4_t xy1 = vcombine_f32( vget_low_f32(v2), vget_low_f32(v3));
 | |
|         // the next two lines should resolve to a single vswp d, d
 | |
|         float32x4_t z0 = vcombine_f32( vget_high_f32(v0), vget_high_f32(v1));
 | |
|         float32x4_t z1 = vcombine_f32( vget_high_f32(v2), vget_high_f32(v3));
 | |
|         
 | |
|         xy0 = vmulq_f32(xy0, vLo);
 | |
|         xy1 = vmulq_f32(xy1, vLo);
 | |
|         
 | |
|         float32x4x2_t zb = vuzpq_f32( z0, z1);
 | |
|         float32x4_t z = vmulq_f32( zb.val[0], vHi);
 | |
|         float32x4x2_t xy = vuzpq_f32( xy0, xy1);
 | |
|         float32x4_t x = vaddq_f32(xy.val[0], xy.val[1]);
 | |
|         x = vaddq_f32(x, z);
 | |
|         
 | |
|         uint32x4_t mask = vcltq_f32(x, minDot);
 | |
|         minDot = vbslq_f32( mask, x, minDot);
 | |
|         index = vbslq_u32(mask, local_index, index);
 | |
|         local_index = vaddq_u32(local_index, four);
 | |
|         
 | |
|         v0 = vld1q_f32_aligned_postincrement( vv );
 | |
|         v1 = vld1q_f32_aligned_postincrement( vv );
 | |
|         v2 = vld1q_f32_aligned_postincrement( vv );
 | |
|         v3 = vld1q_f32_aligned_postincrement( vv );
 | |
|         
 | |
|         // the next two lines should resolve to a single vswp d, d
 | |
|         xy0 = vcombine_f32( vget_low_f32(v0), vget_low_f32(v1));
 | |
|         xy1 = vcombine_f32( vget_low_f32(v2), vget_low_f32(v3));
 | |
|         // the next two lines should resolve to a single vswp d, d
 | |
|         z0 = vcombine_f32( vget_high_f32(v0), vget_high_f32(v1));
 | |
|         z1 = vcombine_f32( vget_high_f32(v2), vget_high_f32(v3));
 | |
|         
 | |
|         xy0 = vmulq_f32(xy0, vLo);
 | |
|         xy1 = vmulq_f32(xy1, vLo);
 | |
|         
 | |
|         zb = vuzpq_f32( z0, z1);
 | |
|         z = vmulq_f32( zb.val[0], vHi);
 | |
|         xy = vuzpq_f32( xy0, xy1);
 | |
|         x = vaddq_f32(xy.val[0], xy.val[1]);
 | |
|         x = vaddq_f32(x, z);
 | |
|         
 | |
|         mask = vcltq_f32(x, minDot);
 | |
|         minDot = vbslq_f32( mask, x, minDot);
 | |
|         index = vbslq_u32(mask, local_index, index);
 | |
|         local_index = vaddq_u32(local_index, four);
 | |
|     }
 | |
|     
 | |
|     for( ; i + 4 <= count; i += 4 )
 | |
|     {
 | |
|         float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | |
|         float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | |
|         float32x4_t v2 = vld1q_f32_aligned_postincrement( vv );
 | |
|         float32x4_t v3 = vld1q_f32_aligned_postincrement( vv );
 | |
|         
 | |
|         // the next two lines should resolve to a single vswp d, d
 | |
|         float32x4_t xy0 = vcombine_f32( vget_low_f32(v0), vget_low_f32(v1));
 | |
|         float32x4_t xy1 = vcombine_f32( vget_low_f32(v2), vget_low_f32(v3));
 | |
|         // the next two lines should resolve to a single vswp d, d
 | |
|         float32x4_t z0 = vcombine_f32( vget_high_f32(v0), vget_high_f32(v1));
 | |
|         float32x4_t z1 = vcombine_f32( vget_high_f32(v2), vget_high_f32(v3));
 | |
|         
 | |
|         xy0 = vmulq_f32(xy0, vLo);
 | |
|         xy1 = vmulq_f32(xy1, vLo);
 | |
|         
 | |
|         float32x4x2_t zb = vuzpq_f32( z0, z1);
 | |
|         float32x4_t z = vmulq_f32( zb.val[0], vHi);
 | |
|         float32x4x2_t xy = vuzpq_f32( xy0, xy1);
 | |
|         float32x4_t x = vaddq_f32(xy.val[0], xy.val[1]);
 | |
|         x = vaddq_f32(x, z);
 | |
|         
 | |
|         uint32x4_t mask = vcltq_f32(x, minDot);
 | |
|         minDot = vbslq_f32( mask, x, minDot);
 | |
|         index = vbslq_u32(mask, local_index, index);
 | |
|         local_index = vaddq_u32(local_index, four);
 | |
|     }
 | |
|     
 | |
|     switch (count & 3) {
 | |
|         case 3:
 | |
|         {
 | |
|             float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | |
|             float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | |
|             float32x4_t v2 = vld1q_f32_aligned_postincrement( vv );
 | |
|             
 | |
|             // the next two lines should resolve to a single vswp d, d
 | |
|             float32x4_t xy0 = vcombine_f32( vget_low_f32(v0), vget_low_f32(v1));
 | |
|             float32x4_t xy1 = vcombine_f32( vget_low_f32(v2), vget_low_f32(v2));
 | |
|             // the next two lines should resolve to a single vswp d, d
 | |
|             float32x4_t z0 = vcombine_f32( vget_high_f32(v0), vget_high_f32(v1));
 | |
|             float32x4_t z1 = vcombine_f32( vget_high_f32(v2), vget_high_f32(v2));
 | |
|             
 | |
|             xy0 = vmulq_f32(xy0, vLo);
 | |
|             xy1 = vmulq_f32(xy1, vLo);
 | |
|             
 | |
|             float32x4x2_t zb = vuzpq_f32( z0, z1);
 | |
|             float32x4_t z = vmulq_f32( zb.val[0], vHi);
 | |
|             float32x4x2_t xy = vuzpq_f32( xy0, xy1);
 | |
|             float32x4_t x = vaddq_f32(xy.val[0], xy.val[1]);
 | |
|             x = vaddq_f32(x, z);
 | |
|             
 | |
|             uint32x4_t mask = vcltq_f32(x, minDot);
 | |
|             minDot = vbslq_f32( mask, x, minDot);
 | |
|             index = vbslq_u32(mask, local_index, index);
 | |
|             local_index = vaddq_u32(local_index, four);
 | |
|         }
 | |
|             break;
 | |
|             
 | |
|         case 2:
 | |
|         {
 | |
|             float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | |
|             float32x4_t v1 = vld1q_f32_aligned_postincrement( vv );
 | |
|             
 | |
|             // the next two lines should resolve to a single vswp d, d
 | |
|             float32x4_t xy0 = vcombine_f32( vget_low_f32(v0), vget_low_f32(v1));
 | |
|             // the next two lines should resolve to a single vswp d, d
 | |
|             float32x4_t z0 = vcombine_f32( vget_high_f32(v0), vget_high_f32(v1));
 | |
|             
 | |
|             xy0 = vmulq_f32(xy0, vLo);
 | |
|             
 | |
|             float32x4x2_t zb = vuzpq_f32( z0, z0);
 | |
|             float32x4_t z = vmulq_f32( zb.val[0], vHi);
 | |
|             float32x4x2_t xy = vuzpq_f32( xy0, xy0);
 | |
|             float32x4_t x = vaddq_f32(xy.val[0], xy.val[1]);
 | |
|             x = vaddq_f32(x, z);
 | |
|             
 | |
|             uint32x4_t mask = vcltq_f32(x, minDot);
 | |
|             minDot = vbslq_f32( mask, x, minDot);
 | |
|             index = vbslq_u32(mask, local_index, index);
 | |
|             local_index = vaddq_u32(local_index, four);
 | |
|         }
 | |
|             break;
 | |
|             
 | |
|         case 1:
 | |
|         {
 | |
|             float32x4_t v0 = vld1q_f32_aligned_postincrement( vv );
 | |
|             
 | |
|             // the next two lines should resolve to a single vswp d, d
 | |
|             float32x4_t xy0 = vcombine_f32( vget_low_f32(v0), vget_low_f32(v0));
 | |
|             // the next two lines should resolve to a single vswp d, d
 | |
|             float32x4_t z = vdupq_lane_f32(vget_high_f32(v0), 0); 
 | |
|             
 | |
|             xy0 = vmulq_f32(xy0, vLo);
 | |
|             
 | |
|             z = vmulq_f32( z, vHi);
 | |
|             float32x4x2_t xy = vuzpq_f32( xy0, xy0);
 | |
|             float32x4_t x = vaddq_f32(xy.val[0], xy.val[1]);
 | |
|             x = vaddq_f32(x, z);
 | |
|             
 | |
|             uint32x4_t mask = vcltq_f32(x, minDot);
 | |
|             minDot = vbslq_f32( mask, x, minDot);
 | |
|             index = vbslq_u32(mask, local_index, index);
 | |
|             local_index = vaddq_u32(local_index, four);
 | |
|         }
 | |
|             break;
 | |
|             
 | |
|         default:
 | |
|             break;
 | |
|     }
 | |
|     
 | |
|     
 | |
|     // select best answer between hi and lo results
 | |
|     uint32x2_t mask = vclt_f32( vget_high_f32(minDot), vget_low_f32(minDot));
 | |
|     float32x2_t minDot2 = vbsl_f32(mask, vget_high_f32(minDot), vget_low_f32(minDot));
 | |
|     uint32x2_t index2 = vbsl_u32(mask, vget_high_u32(index), vget_low_u32(index));
 | |
|     
 | |
|     // select best answer between even and odd results
 | |
|     float32x2_t minDotO = vdup_lane_f32(minDot2, 1);
 | |
|     uint32x2_t indexHi = vdup_lane_u32(index2, 1);
 | |
|     mask = vclt_f32( minDotO, minDot2 );
 | |
|     minDot2 = vbsl_f32(mask, minDotO, minDot2);
 | |
|     index2 = vbsl_u32(mask, indexHi, index2);
 | |
|     
 | |
|     *dotResult = vget_lane_f32( minDot2, 0);
 | |
|     return vget_lane_u32(index2, 0);
 | |
|     
 | |
| }
 | |
| 
 | |
| #else
 | |
|     #error Unhandled __APPLE__ arch
 | |
| #endif
 | |
| 
 | |
| #endif  /* __APPLE__ */
 | |
| 
 | |
| 
 |