1106 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1106 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //
 | |
| // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
 | |
| //
 | |
| // This software is provided 'as-is', without any express or implied
 | |
| // warranty.  In no event will the authors be held liable for any damages
 | |
| // arising from the use of this software.
 | |
| // Permission is granted to anyone to use this software for any purpose,
 | |
| // including commercial applications, and to alter it and redistribute it
 | |
| // freely, subject to the following restrictions:
 | |
| // 1. The origin of this software must not be misrepresented; you must not
 | |
| //    claim that you wrote the original software. If you use this software
 | |
| //    in a product, an acknowledgment in the product documentation would be
 | |
| //    appreciated but is not required.
 | |
| // 2. Altered source versions must be plainly marked as such, and must not be
 | |
| //    misrepresented as being the original software.
 | |
| // 3. This notice may not be removed or altered from any source distribution.
 | |
| //
 | |
| 
 | |
| #define _USE_MATH_DEFINES
 | |
| #include <math.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include "Recast.h"
 | |
| #include "RecastAlloc.h"
 | |
| #include "RecastAssert.h"
 | |
| 
 | |
| 
 | |
| static int getCornerHeight(int x, int y, int i, int dir,
 | |
| 						   const rcCompactHeightfield& chf,
 | |
| 						   bool& isBorderVertex)
 | |
| {
 | |
| 	const rcCompactSpan& s = chf.spans[i];
 | |
| 	int ch = (int)s.y;
 | |
| 	int dirp = (dir+1) & 0x3;
 | |
| 	
 | |
| 	unsigned int regs[4] = {0,0,0,0};
 | |
| 	
 | |
| 	// Combine region and area codes in order to prevent
 | |
| 	// border vertices which are in between two areas to be removed.
 | |
| 	regs[0] = chf.spans[i].reg | (chf.areas[i] << 16);
 | |
| 	
 | |
| 	if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
 | |
| 	{
 | |
| 		const int ax = x + rcGetDirOffsetX(dir);
 | |
| 		const int ay = y + rcGetDirOffsetY(dir);
 | |
| 		const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
 | |
| 		const rcCompactSpan& as = chf.spans[ai];
 | |
| 		ch = rcMax(ch, (int)as.y);
 | |
| 		regs[1] = chf.spans[ai].reg | (chf.areas[ai] << 16);
 | |
| 		if (rcGetCon(as, dirp) != RC_NOT_CONNECTED)
 | |
| 		{
 | |
| 			const int ax2 = ax + rcGetDirOffsetX(dirp);
 | |
| 			const int ay2 = ay + rcGetDirOffsetY(dirp);
 | |
| 			const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dirp);
 | |
| 			const rcCompactSpan& as2 = chf.spans[ai2];
 | |
| 			ch = rcMax(ch, (int)as2.y);
 | |
| 			regs[2] = chf.spans[ai2].reg | (chf.areas[ai2] << 16);
 | |
| 		}
 | |
| 	}
 | |
| 	if (rcGetCon(s, dirp) != RC_NOT_CONNECTED)
 | |
| 	{
 | |
| 		const int ax = x + rcGetDirOffsetX(dirp);
 | |
| 		const int ay = y + rcGetDirOffsetY(dirp);
 | |
| 		const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dirp);
 | |
| 		const rcCompactSpan& as = chf.spans[ai];
 | |
| 		ch = rcMax(ch, (int)as.y);
 | |
| 		regs[3] = chf.spans[ai].reg | (chf.areas[ai] << 16);
 | |
| 		if (rcGetCon(as, dir) != RC_NOT_CONNECTED)
 | |
| 		{
 | |
| 			const int ax2 = ax + rcGetDirOffsetX(dir);
 | |
| 			const int ay2 = ay + rcGetDirOffsetY(dir);
 | |
| 			const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dir);
 | |
| 			const rcCompactSpan& as2 = chf.spans[ai2];
 | |
| 			ch = rcMax(ch, (int)as2.y);
 | |
| 			regs[2] = chf.spans[ai2].reg | (chf.areas[ai2] << 16);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Check if the vertex is special edge vertex, these vertices will be removed later.
 | |
| 	for (int j = 0; j < 4; ++j)
 | |
| 	{
 | |
| 		const int a = j;
 | |
| 		const int b = (j+1) & 0x3;
 | |
| 		const int c = (j+2) & 0x3;
 | |
| 		const int d = (j+3) & 0x3;
 | |
| 		
 | |
| 		// The vertex is a border vertex there are two same exterior cells in a row,
 | |
| 		// followed by two interior cells and none of the regions are out of bounds.
 | |
| 		const bool twoSameExts = (regs[a] & regs[b] & RC_BORDER_REG) != 0 && regs[a] == regs[b];
 | |
| 		const bool twoInts = ((regs[c] | regs[d]) & RC_BORDER_REG) == 0;
 | |
| 		const bool intsSameArea = (regs[c]>>16) == (regs[d]>>16);
 | |
| 		const bool noZeros = regs[a] != 0 && regs[b] != 0 && regs[c] != 0 && regs[d] != 0;
 | |
| 		if (twoSameExts && twoInts && intsSameArea && noZeros)
 | |
| 		{
 | |
| 			isBorderVertex = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	return ch;
 | |
| }
 | |
| 
 | |
| static void walkContour(int x, int y, int i,
 | |
| 						rcCompactHeightfield& chf,
 | |
| 						unsigned char* flags, rcIntArray& points)
 | |
| {
 | |
| 	// Choose the first non-connected edge
 | |
| 	unsigned char dir = 0;
 | |
| 	while ((flags[i] & (1 << dir)) == 0)
 | |
| 		dir++;
 | |
| 	
 | |
| 	unsigned char startDir = dir;
 | |
| 	int starti = i;
 | |
| 	
 | |
| 	const unsigned char area = chf.areas[i];
 | |
| 	
 | |
| 	int iter = 0;
 | |
| 	while (++iter < 40000)
 | |
| 	{
 | |
| 		if (flags[i] & (1 << dir))
 | |
| 		{
 | |
| 			// Choose the edge corner
 | |
| 			bool isBorderVertex = false;
 | |
| 			bool isAreaBorder = false;
 | |
| 			int px = x;
 | |
| 			int py = getCornerHeight(x, y, i, dir, chf, isBorderVertex);
 | |
| 			int pz = y;
 | |
| 			switch(dir)
 | |
| 			{
 | |
| 				case 0: pz++; break;
 | |
| 				case 1: px++; pz++; break;
 | |
| 				case 2: px++; break;
 | |
| 			}
 | |
| 			int r = 0;
 | |
| 			const rcCompactSpan& s = chf.spans[i];
 | |
| 			if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
 | |
| 			{
 | |
| 				const int ax = x + rcGetDirOffsetX(dir);
 | |
| 				const int ay = y + rcGetDirOffsetY(dir);
 | |
| 				const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
 | |
| 				r = (int)chf.spans[ai].reg;
 | |
| 				if (area != chf.areas[ai])
 | |
| 					isAreaBorder = true;
 | |
| 			}
 | |
| 			if (isBorderVertex)
 | |
| 				r |= RC_BORDER_VERTEX;
 | |
| 			if (isAreaBorder)
 | |
| 				r |= RC_AREA_BORDER;
 | |
| 			points.push(px);
 | |
| 			points.push(py);
 | |
| 			points.push(pz);
 | |
| 			points.push(r);
 | |
| 			
 | |
| 			flags[i] &= ~(1 << dir); // Remove visited edges
 | |
| 			dir = (dir+1) & 0x3;  // Rotate CW
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			int ni = -1;
 | |
| 			const int nx = x + rcGetDirOffsetX(dir);
 | |
| 			const int ny = y + rcGetDirOffsetY(dir);
 | |
| 			const rcCompactSpan& s = chf.spans[i];
 | |
| 			if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
 | |
| 			{
 | |
| 				const rcCompactCell& nc = chf.cells[nx+ny*chf.width];
 | |
| 				ni = (int)nc.index + rcGetCon(s, dir);
 | |
| 			}
 | |
| 			if (ni == -1)
 | |
| 			{
 | |
| 				// Should not happen.
 | |
| 				return;
 | |
| 			}
 | |
| 			x = nx;
 | |
| 			y = ny;
 | |
| 			i = ni;
 | |
| 			dir = (dir+3) & 0x3;	// Rotate CCW
 | |
| 		}
 | |
| 		
 | |
| 		if (starti == i && startDir == dir)
 | |
| 		{
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static float distancePtSeg(const int x, const int z,
 | |
| 						   const int px, const int pz,
 | |
| 						   const int qx, const int qz)
 | |
| {
 | |
| 	float pqx = (float)(qx - px);
 | |
| 	float pqz = (float)(qz - pz);
 | |
| 	float dx = (float)(x - px);
 | |
| 	float dz = (float)(z - pz);
 | |
| 	float d = pqx*pqx + pqz*pqz;
 | |
| 	float t = pqx*dx + pqz*dz;
 | |
| 	if (d > 0)
 | |
| 		t /= d;
 | |
| 	if (t < 0)
 | |
| 		t = 0;
 | |
| 	else if (t > 1)
 | |
| 		t = 1;
 | |
| 	
 | |
| 	dx = px + t*pqx - x;
 | |
| 	dz = pz + t*pqz - z;
 | |
| 	
 | |
| 	return dx*dx + dz*dz;
 | |
| }
 | |
| 
 | |
| static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
 | |
| 							const float maxError, const int maxEdgeLen, const int buildFlags)
 | |
| {
 | |
| 	// Add initial points.
 | |
| 	bool hasConnections = false;
 | |
| 	for (int i = 0; i < points.size(); i += 4)
 | |
| 	{
 | |
| 		if ((points[i+3] & RC_CONTOUR_REG_MASK) != 0)
 | |
| 		{
 | |
| 			hasConnections = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	if (hasConnections)
 | |
| 	{
 | |
| 		// The contour has some portals to other regions.
 | |
| 		// Add a new point to every location where the region changes.
 | |
| 		for (int i = 0, ni = points.size()/4; i < ni; ++i)
 | |
| 		{
 | |
| 			int ii = (i+1) % ni;
 | |
| 			const bool differentRegs = (points[i*4+3] & RC_CONTOUR_REG_MASK) != (points[ii*4+3] & RC_CONTOUR_REG_MASK);
 | |
| 			const bool areaBorders = (points[i*4+3] & RC_AREA_BORDER) != (points[ii*4+3] & RC_AREA_BORDER);
 | |
| 			if (differentRegs || areaBorders)
 | |
| 			{
 | |
| 				simplified.push(points[i*4+0]);
 | |
| 				simplified.push(points[i*4+1]);
 | |
| 				simplified.push(points[i*4+2]);
 | |
| 				simplified.push(i);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	if (simplified.size() == 0)
 | |
| 	{
 | |
| 		// If there is no connections at all,
 | |
| 		// create some initial points for the simplification process.
 | |
| 		// Find lower-left and upper-right vertices of the contour.
 | |
| 		int llx = points[0];
 | |
| 		int lly = points[1];
 | |
| 		int llz = points[2];
 | |
| 		int lli = 0;
 | |
| 		int urx = points[0];
 | |
| 		int ury = points[1];
 | |
| 		int urz = points[2];
 | |
| 		int uri = 0;
 | |
| 		for (int i = 0; i < points.size(); i += 4)
 | |
| 		{
 | |
| 			int x = points[i+0];
 | |
| 			int y = points[i+1];
 | |
| 			int z = points[i+2];
 | |
| 			if (x < llx || (x == llx && z < llz))
 | |
| 			{
 | |
| 				llx = x;
 | |
| 				lly = y;
 | |
| 				llz = z;
 | |
| 				lli = i/4;
 | |
| 			}
 | |
| 			if (x > urx || (x == urx && z > urz))
 | |
| 			{
 | |
| 				urx = x;
 | |
| 				ury = y;
 | |
| 				urz = z;
 | |
| 				uri = i/4;
 | |
| 			}
 | |
| 		}
 | |
| 		simplified.push(llx);
 | |
| 		simplified.push(lly);
 | |
| 		simplified.push(llz);
 | |
| 		simplified.push(lli);
 | |
| 		
 | |
| 		simplified.push(urx);
 | |
| 		simplified.push(ury);
 | |
| 		simplified.push(urz);
 | |
| 		simplified.push(uri);
 | |
| 	}
 | |
| 	
 | |
| 	// Add points until all raw points are within
 | |
| 	// error tolerance to the simplified shape.
 | |
| 	const int pn = points.size()/4;
 | |
| 	for (int i = 0; i < simplified.size()/4; )
 | |
| 	{
 | |
| 		int ii = (i+1) % (simplified.size()/4);
 | |
| 		
 | |
| 		int ax = simplified[i*4+0];
 | |
| 		int az = simplified[i*4+2];
 | |
| 		int ai = simplified[i*4+3];
 | |
| 
 | |
| 		int bx = simplified[ii*4+0];
 | |
| 		int bz = simplified[ii*4+2];
 | |
| 		int bi = simplified[ii*4+3];
 | |
| 
 | |
| 		// Find maximum deviation from the segment.
 | |
| 		float maxd = 0;
 | |
| 		int maxi = -1;
 | |
| 		int ci, cinc, endi;
 | |
| 
 | |
| 		// Traverse the segment in lexilogical order so that the
 | |
| 		// max deviation is calculated similarly when traversing
 | |
| 		// opposite segments.
 | |
| 		if (bx > ax || (bx == ax && bz > az))
 | |
| 		{
 | |
| 			cinc = 1;
 | |
| 			ci = (ai+cinc) % pn;
 | |
| 			endi = bi;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			cinc = pn-1;
 | |
| 			ci = (bi+cinc) % pn;
 | |
| 			endi = ai;
 | |
| 			rcSwap(ax, bx);
 | |
| 			rcSwap(az, bz);
 | |
| 		}
 | |
| 		
 | |
| 		// Tessellate only outer edges or edges between areas.
 | |
| 		if ((points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0 ||
 | |
| 			(points[ci*4+3] & RC_AREA_BORDER))
 | |
| 		{
 | |
| 			while (ci != endi)
 | |
| 			{
 | |
| 				float d = distancePtSeg(points[ci*4+0], points[ci*4+2], ax, az, bx, bz);
 | |
| 				if (d > maxd)
 | |
| 				{
 | |
| 					maxd = d;
 | |
| 					maxi = ci;
 | |
| 				}
 | |
| 				ci = (ci+cinc) % pn;
 | |
| 			}
 | |
| 		}
 | |
| 		
 | |
| 		
 | |
| 		// If the max deviation is larger than accepted error,
 | |
| 		// add new point, else continue to next segment.
 | |
| 		if (maxi != -1 && maxd > (maxError*maxError))
 | |
| 		{
 | |
| 			// Add space for the new point.
 | |
| 			simplified.resize(simplified.size()+4);
 | |
| 			const int n = simplified.size()/4;
 | |
| 			for (int j = n-1; j > i; --j)
 | |
| 			{
 | |
| 				simplified[j*4+0] = simplified[(j-1)*4+0];
 | |
| 				simplified[j*4+1] = simplified[(j-1)*4+1];
 | |
| 				simplified[j*4+2] = simplified[(j-1)*4+2];
 | |
| 				simplified[j*4+3] = simplified[(j-1)*4+3];
 | |
| 			}
 | |
| 			// Add the point.
 | |
| 			simplified[(i+1)*4+0] = points[maxi*4+0];
 | |
| 			simplified[(i+1)*4+1] = points[maxi*4+1];
 | |
| 			simplified[(i+1)*4+2] = points[maxi*4+2];
 | |
| 			simplified[(i+1)*4+3] = maxi;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			++i;
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	// Split too long edges.
 | |
| 	if (maxEdgeLen > 0 && (buildFlags & (RC_CONTOUR_TESS_WALL_EDGES|RC_CONTOUR_TESS_AREA_EDGES)) != 0)
 | |
| 	{
 | |
| 		for (int i = 0; i < simplified.size()/4; )
 | |
| 		{
 | |
| 			const int ii = (i+1) % (simplified.size()/4);
 | |
| 			
 | |
| 			const int ax = simplified[i*4+0];
 | |
| 			const int az = simplified[i*4+2];
 | |
| 			const int ai = simplified[i*4+3];
 | |
| 			
 | |
| 			const int bx = simplified[ii*4+0];
 | |
| 			const int bz = simplified[ii*4+2];
 | |
| 			const int bi = simplified[ii*4+3];
 | |
| 			
 | |
| 			// Find maximum deviation from the segment.
 | |
| 			int maxi = -1;
 | |
| 			int ci = (ai+1) % pn;
 | |
| 			
 | |
| 			// Tessellate only outer edges or edges between areas.
 | |
| 			bool tess = false;
 | |
| 			// Wall edges.
 | |
| 			if ((buildFlags & RC_CONTOUR_TESS_WALL_EDGES) && (points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0)
 | |
| 				tess = true;
 | |
| 			// Edges between areas.
 | |
| 			if ((buildFlags & RC_CONTOUR_TESS_AREA_EDGES) && (points[ci*4+3] & RC_AREA_BORDER))
 | |
| 				tess = true;
 | |
| 			
 | |
| 			if (tess)
 | |
| 			{
 | |
| 				int dx = bx - ax;
 | |
| 				int dz = bz - az;
 | |
| 				if (dx*dx + dz*dz > maxEdgeLen*maxEdgeLen)
 | |
| 				{
 | |
| 					// Round based on the segments in lexilogical order so that the
 | |
| 					// max tesselation is consistent regardles in which direction
 | |
| 					// segments are traversed.
 | |
| 					const int n = bi < ai ? (bi+pn - ai) : (bi - ai);
 | |
| 					if (n > 1)
 | |
| 					{
 | |
| 						if (bx > ax || (bx == ax && bz > az))
 | |
| 							maxi = (ai + n/2) % pn;
 | |
| 						else
 | |
| 							maxi = (ai + (n+1)/2) % pn;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			
 | |
| 			// If the max deviation is larger than accepted error,
 | |
| 			// add new point, else continue to next segment.
 | |
| 			if (maxi != -1)
 | |
| 			{
 | |
| 				// Add space for the new point.
 | |
| 				simplified.resize(simplified.size()+4);
 | |
| 				const int n = simplified.size()/4;
 | |
| 				for (int j = n-1; j > i; --j)
 | |
| 				{
 | |
| 					simplified[j*4+0] = simplified[(j-1)*4+0];
 | |
| 					simplified[j*4+1] = simplified[(j-1)*4+1];
 | |
| 					simplified[j*4+2] = simplified[(j-1)*4+2];
 | |
| 					simplified[j*4+3] = simplified[(j-1)*4+3];
 | |
| 				}
 | |
| 				// Add the point.
 | |
| 				simplified[(i+1)*4+0] = points[maxi*4+0];
 | |
| 				simplified[(i+1)*4+1] = points[maxi*4+1];
 | |
| 				simplified[(i+1)*4+2] = points[maxi*4+2];
 | |
| 				simplified[(i+1)*4+3] = maxi;
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				++i;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	for (int i = 0; i < simplified.size()/4; ++i)
 | |
| 	{
 | |
| 		// The edge vertex flag is take from the current raw point,
 | |
| 		// and the neighbour region is take from the next raw point.
 | |
| 		const int ai = (simplified[i*4+3]+1) % pn;
 | |
| 		const int bi = simplified[i*4+3];
 | |
| 		simplified[i*4+3] = (points[ai*4+3] & (RC_CONTOUR_REG_MASK|RC_AREA_BORDER)) | (points[bi*4+3] & RC_BORDER_VERTEX);
 | |
| 	}
 | |
| 	
 | |
| }
 | |
| 
 | |
| static int calcAreaOfPolygon2D(const int* verts, const int nverts)
 | |
| {
 | |
| 	int area = 0;
 | |
| 	for (int i = 0, j = nverts-1; i < nverts; j=i++)
 | |
| 	{
 | |
| 		const int* vi = &verts[i*4];
 | |
| 		const int* vj = &verts[j*4];
 | |
| 		area += vi[0] * vj[2] - vj[0] * vi[2];
 | |
| 	}
 | |
| 	return (area+1) / 2;
 | |
| }
 | |
| 
 | |
| // TODO: these are the same as in RecastMesh.cpp, consider using the same.
 | |
| // Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv).
 | |
| inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
 | |
| inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
 | |
| 
 | |
| inline int area2(const int* a, const int* b, const int* c)
 | |
| {
 | |
| 	return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]);
 | |
| }
 | |
| 
 | |
| //	Exclusive or: true iff exactly one argument is true.
 | |
| //	The arguments are negated to ensure that they are 0/1
 | |
| //	values.  Then the bitwise Xor operator may apply.
 | |
| //	(This idea is due to Michael Baldwin.)
 | |
| inline bool xorb(bool x, bool y)
 | |
| {
 | |
| 	return !x ^ !y;
 | |
| }
 | |
| 
 | |
| // Returns true iff c is strictly to the left of the directed
 | |
| // line through a to b.
 | |
| inline bool left(const int* a, const int* b, const int* c)
 | |
| {
 | |
| 	return area2(a, b, c) < 0;
 | |
| }
 | |
| 
 | |
| inline bool leftOn(const int* a, const int* b, const int* c)
 | |
| {
 | |
| 	return area2(a, b, c) <= 0;
 | |
| }
 | |
| 
 | |
| inline bool collinear(const int* a, const int* b, const int* c)
 | |
| {
 | |
| 	return area2(a, b, c) == 0;
 | |
| }
 | |
| 
 | |
| //	Returns true iff ab properly intersects cd: they share
 | |
| //	a point interior to both segments.  The properness of the
 | |
| //	intersection is ensured by using strict leftness.
 | |
| static bool intersectProp(const int* a, const int* b, const int* c, const int* d)
 | |
| {
 | |
| 	// Eliminate improper cases.
 | |
| 	if (collinear(a,b,c) || collinear(a,b,d) ||
 | |
| 		collinear(c,d,a) || collinear(c,d,b))
 | |
| 		return false;
 | |
| 	
 | |
| 	return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b));
 | |
| }
 | |
| 
 | |
| // Returns T iff (a,b,c) are collinear and point c lies
 | |
| // on the closed segement ab.
 | |
| static bool between(const int* a, const int* b, const int* c)
 | |
| {
 | |
| 	if (!collinear(a, b, c))
 | |
| 		return false;
 | |
| 	// If ab not vertical, check betweenness on x; else on y.
 | |
| 	if (a[0] != b[0])
 | |
| 		return	((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0]));
 | |
| 	else
 | |
| 		return	((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2]));
 | |
| }
 | |
| 
 | |
| // Returns true iff segments ab and cd intersect, properly or improperly.
 | |
| static bool intersect(const int* a, const int* b, const int* c, const int* d)
 | |
| {
 | |
| 	if (intersectProp(a, b, c, d))
 | |
| 		return true;
 | |
| 	else if (between(a, b, c) || between(a, b, d) ||
 | |
| 			 between(c, d, a) || between(c, d, b))
 | |
| 		return true;
 | |
| 	else
 | |
| 		return false;
 | |
| }
 | |
| 
 | |
| static bool vequal(const int* a, const int* b)
 | |
| {
 | |
| 	return a[0] == b[0] && a[2] == b[2];
 | |
| }
 | |
| 
 | |
| static bool intersectSegCountour(const int* d0, const int* d1, int i, int n, const int* verts)
 | |
| {
 | |
| 	// For each edge (k,k+1) of P
 | |
| 	for (int k = 0; k < n; k++)
 | |
| 	{
 | |
| 		int k1 = next(k, n);
 | |
| 		// Skip edges incident to i.
 | |
| 		if (i == k || i == k1)
 | |
| 			continue;
 | |
| 		const int* p0 = &verts[k * 4];
 | |
| 		const int* p1 = &verts[k1 * 4];
 | |
| 		if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1))
 | |
| 			continue;
 | |
| 		
 | |
| 		if (intersect(d0, d1, p0, p1))
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool	inCone(int i, int n, const int* verts, const int* pj)
 | |
| {
 | |
| 	const int* pi = &verts[i * 4];
 | |
| 	const int* pi1 = &verts[next(i, n) * 4];
 | |
| 	const int* pin1 = &verts[prev(i, n) * 4];
 | |
| 	
 | |
| 	// If P[i] is a convex vertex [ i+1 left or on (i-1,i) ].
 | |
| 	if (leftOn(pin1, pi, pi1))
 | |
| 		return left(pi, pj, pin1) && left(pj, pi, pi1);
 | |
| 	// Assume (i-1,i,i+1) not collinear.
 | |
| 	// else P[i] is reflex.
 | |
| 	return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1));
 | |
| }
 | |
| 
 | |
| 
 | |
| static void removeDegenerateSegments(rcIntArray& simplified)
 | |
| {
 | |
| 	// Remove adjacent vertices which are equal on xz-plane,
 | |
| 	// or else the triangulator will get confused.
 | |
| 	int npts = simplified.size()/4;
 | |
| 	for (int i = 0; i < npts; ++i)
 | |
| 	{
 | |
| 		int ni = next(i, npts);
 | |
| 		
 | |
| 		if (vequal(&simplified[i*4], &simplified[ni*4]))
 | |
| 		{
 | |
| 			// Degenerate segment, remove.
 | |
| 			for (int j = i; j < simplified.size()/4-1; ++j)
 | |
| 			{
 | |
| 				simplified[j*4+0] = simplified[(j+1)*4+0];
 | |
| 				simplified[j*4+1] = simplified[(j+1)*4+1];
 | |
| 				simplified[j*4+2] = simplified[(j+1)*4+2];
 | |
| 				simplified[j*4+3] = simplified[(j+1)*4+3];
 | |
| 			}
 | |
| 			simplified.resize(simplified.size()-4);
 | |
| 			npts--;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib)
 | |
| {
 | |
| 	const int maxVerts = ca.nverts + cb.nverts + 2;
 | |
| 	int* verts = (int*)rcAlloc(sizeof(int)*maxVerts*4, RC_ALLOC_PERM);
 | |
| 	if (!verts)
 | |
| 		return false;
 | |
| 	
 | |
| 	int nv = 0;
 | |
| 	
 | |
| 	// Copy contour A.
 | |
| 	for (int i = 0; i <= ca.nverts; ++i)
 | |
| 	{
 | |
| 		int* dst = &verts[nv*4];
 | |
| 		const int* src = &ca.verts[((ia+i)%ca.nverts)*4];
 | |
| 		dst[0] = src[0];
 | |
| 		dst[1] = src[1];
 | |
| 		dst[2] = src[2];
 | |
| 		dst[3] = src[3];
 | |
| 		nv++;
 | |
| 	}
 | |
| 
 | |
| 	// Copy contour B
 | |
| 	for (int i = 0; i <= cb.nverts; ++i)
 | |
| 	{
 | |
| 		int* dst = &verts[nv*4];
 | |
| 		const int* src = &cb.verts[((ib+i)%cb.nverts)*4];
 | |
| 		dst[0] = src[0];
 | |
| 		dst[1] = src[1];
 | |
| 		dst[2] = src[2];
 | |
| 		dst[3] = src[3];
 | |
| 		nv++;
 | |
| 	}
 | |
| 	
 | |
| 	rcFree(ca.verts);
 | |
| 	ca.verts = verts;
 | |
| 	ca.nverts = nv;
 | |
| 	
 | |
| 	rcFree(cb.verts);
 | |
| 	cb.verts = 0;
 | |
| 	cb.nverts = 0;
 | |
| 	
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| struct rcContourHole
 | |
| {
 | |
| 	rcContour* contour;
 | |
| 	int minx, minz, leftmost;
 | |
| };
 | |
| 
 | |
| struct rcContourRegion
 | |
| {
 | |
| 	rcContour* outline;
 | |
| 	rcContourHole* holes;
 | |
| 	int nholes;
 | |
| };
 | |
| 
 | |
| struct rcPotentialDiagonal
 | |
| {
 | |
| 	int vert;
 | |
| 	int dist;
 | |
| };
 | |
| 
 | |
| // Finds the lowest leftmost vertex of a contour.
 | |
| static void findLeftMostVertex(rcContour* contour, int* minx, int* minz, int* leftmost)
 | |
| {
 | |
| 	*minx = contour->verts[0];
 | |
| 	*minz = contour->verts[2];
 | |
| 	*leftmost = 0;
 | |
| 	for (int i = 1; i < contour->nverts; i++)
 | |
| 	{
 | |
| 		const int x = contour->verts[i*4+0];
 | |
| 		const int z = contour->verts[i*4+2];
 | |
| 		if (x < *minx || (x == *minx && z < *minz))
 | |
| 		{
 | |
| 			*minx = x;
 | |
| 			*minz = z;
 | |
| 			*leftmost = i;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int compareHoles(const void* va, const void* vb)
 | |
| {
 | |
| 	const rcContourHole* a = (const rcContourHole*)va;
 | |
| 	const rcContourHole* b = (const rcContourHole*)vb;
 | |
| 	if (a->minx == b->minx)
 | |
| 	{
 | |
| 		if (a->minz < b->minz)
 | |
| 			return -1;
 | |
| 		if (a->minz > b->minz)
 | |
| 			return 1;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		if (a->minx < b->minx)
 | |
| 			return -1;
 | |
| 		if (a->minx > b->minx)
 | |
| 			return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int compareDiagDist(const void* va, const void* vb)
 | |
| {
 | |
| 	const rcPotentialDiagonal* a = (const rcPotentialDiagonal*)va;
 | |
| 	const rcPotentialDiagonal* b = (const rcPotentialDiagonal*)vb;
 | |
| 	if (a->dist < b->dist)
 | |
| 		return -1;
 | |
| 	if (a->dist > b->dist)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void mergeRegionHoles(rcContext* ctx, rcContourRegion& region)
 | |
| {
 | |
| 	// Sort holes from left to right.
 | |
| 	for (int i = 0; i < region.nholes; i++)
 | |
| 		findLeftMostVertex(region.holes[i].contour, ®ion.holes[i].minx, ®ion.holes[i].minz, ®ion.holes[i].leftmost);
 | |
| 	
 | |
| 	qsort(region.holes, region.nholes, sizeof(rcContourHole), compareHoles);
 | |
| 	
 | |
| 	int maxVerts = region.outline->nverts;
 | |
| 	for (int i = 0; i < region.nholes; i++)
 | |
| 		maxVerts += region.holes[i].contour->nverts;
 | |
| 	
 | |
| 	rcScopedDelete<rcPotentialDiagonal> diags((rcPotentialDiagonal*)rcAlloc(sizeof(rcPotentialDiagonal)*maxVerts, RC_ALLOC_TEMP));
 | |
| 	if (!diags)
 | |
| 	{
 | |
| 		ctx->log(RC_LOG_WARNING, "mergeRegionHoles: Failed to allocated diags %d.", maxVerts);
 | |
| 		return;
 | |
| 	}
 | |
| 	
 | |
| 	rcContour* outline = region.outline;
 | |
| 	
 | |
| 	// Merge holes into the outline one by one.
 | |
| 	for (int i = 0; i < region.nholes; i++)
 | |
| 	{
 | |
| 		rcContour* hole = region.holes[i].contour;
 | |
| 		
 | |
| 		int index = -1;
 | |
| 		int bestVertex = region.holes[i].leftmost;
 | |
| 		for (int iter = 0; iter < hole->nverts; iter++)
 | |
| 		{
 | |
| 			// Find potential diagonals.
 | |
| 			// The 'best' vertex must be in the cone described by 3 cosequtive vertices of the outline.
 | |
| 			// ..o j-1
 | |
| 			//   |
 | |
| 			//   |   * best
 | |
| 			//   |
 | |
| 			// j o-----o j+1
 | |
| 			//         :
 | |
| 			int ndiags = 0;
 | |
| 			const int* corner = &hole->verts[bestVertex*4];
 | |
| 			for (int j = 0; j < outline->nverts; j++)
 | |
| 			{
 | |
| 				if (inCone(j, outline->nverts, outline->verts, corner))
 | |
| 				{
 | |
| 					int dx = outline->verts[j*4+0] - corner[0];
 | |
| 					int dz = outline->verts[j*4+2] - corner[2];
 | |
| 					diags[ndiags].vert = j;
 | |
| 					diags[ndiags].dist = dx*dx + dz*dz;
 | |
| 					ndiags++;
 | |
| 				}
 | |
| 			}
 | |
| 			// Sort potential diagonals by distance, we want to make the connection as short as possible.
 | |
| 			qsort(diags, ndiags, sizeof(rcPotentialDiagonal), compareDiagDist);
 | |
| 			
 | |
| 			// Find a diagonal that is not intersecting the outline not the remaining holes.
 | |
| 			index = -1;
 | |
| 			for (int j = 0; j < ndiags; j++)
 | |
| 			{
 | |
| 				const int* pt = &outline->verts[diags[j].vert*4];
 | |
| 				bool intersect = intersectSegCountour(pt, corner, diags[i].vert, outline->nverts, outline->verts);
 | |
| 				for (int k = i; k < region.nholes && !intersect; k++)
 | |
| 					intersect |= intersectSegCountour(pt, corner, -1, region.holes[k].contour->nverts, region.holes[k].contour->verts);
 | |
| 				if (!intersect)
 | |
| 				{
 | |
| 					index = diags[j].vert;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 			// If found non-intersecting diagonal, stop looking.
 | |
| 			if (index != -1)
 | |
| 				break;
 | |
| 			// All the potential diagonals for the current vertex were intersecting, try next vertex.
 | |
| 			bestVertex = (bestVertex + 1) % hole->nverts;
 | |
| 		}
 | |
| 		
 | |
| 		if (index == -1)
 | |
| 		{
 | |
| 			ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to find merge points for %p and %p.", region.outline, hole);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!mergeContours(*region.outline, *hole, index, bestVertex))
 | |
| 		{
 | |
| 			ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to merge contours %p and %p.", region.outline, hole);
 | |
| 			continue;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// The raw contours will match the region outlines exactly. The @p maxError and @p maxEdgeLen
 | |
| /// parameters control how closely the simplified contours will match the raw contours.
 | |
| ///
 | |
| /// Simplified contours are generated such that the vertices for portals between areas match up.
 | |
| /// (They are considered mandatory vertices.)
 | |
| ///
 | |
| /// Setting @p maxEdgeLength to zero will disabled the edge length feature.
 | |
| ///
 | |
| /// See the #rcConfig documentation for more information on the configuration parameters.
 | |
| ///
 | |
| /// @see rcAllocContourSet, rcCompactHeightfield, rcContourSet, rcConfig
 | |
| bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
 | |
| 					 const float maxError, const int maxEdgeLen,
 | |
| 					 rcContourSet& cset, const int buildFlags)
 | |
| {
 | |
| 	rcAssert(ctx);
 | |
| 	
 | |
| 	const int w = chf.width;
 | |
| 	const int h = chf.height;
 | |
| 	const int borderSize = chf.borderSize;
 | |
| 	
 | |
| 	rcScopedTimer timer(ctx, RC_TIMER_BUILD_CONTOURS);
 | |
| 	
 | |
| 	rcVcopy(cset.bmin, chf.bmin);
 | |
| 	rcVcopy(cset.bmax, chf.bmax);
 | |
| 	if (borderSize > 0)
 | |
| 	{
 | |
| 		// If the heightfield was build with bordersize, remove the offset.
 | |
| 		const float pad = borderSize*chf.cs;
 | |
| 		cset.bmin[0] += pad;
 | |
| 		cset.bmin[2] += pad;
 | |
| 		cset.bmax[0] -= pad;
 | |
| 		cset.bmax[2] -= pad;
 | |
| 	}
 | |
| 	cset.cs = chf.cs;
 | |
| 	cset.ch = chf.ch;
 | |
| 	cset.width = chf.width - chf.borderSize*2;
 | |
| 	cset.height = chf.height - chf.borderSize*2;
 | |
| 	cset.borderSize = chf.borderSize;
 | |
| 	cset.maxError = maxError;
 | |
| 	
 | |
| 	int maxContours = rcMax((int)chf.maxRegions, 8);
 | |
| 	cset.conts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM);
 | |
| 	if (!cset.conts)
 | |
| 		return false;
 | |
| 	cset.nconts = 0;
 | |
| 	
 | |
| 	rcScopedDelete<unsigned char> flags((unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP));
 | |
| 	if (!flags)
 | |
| 	{
 | |
| 		ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'flags' (%d).", chf.spanCount);
 | |
| 		return false;
 | |
| 	}
 | |
| 	
 | |
| 	ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
 | |
| 	
 | |
| 	// Mark boundaries.
 | |
| 	for (int y = 0; y < h; ++y)
 | |
| 	{
 | |
| 		for (int x = 0; x < w; ++x)
 | |
| 		{
 | |
| 			const rcCompactCell& c = chf.cells[x+y*w];
 | |
| 			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
 | |
| 			{
 | |
| 				unsigned char res = 0;
 | |
| 				const rcCompactSpan& s = chf.spans[i];
 | |
| 				if (!chf.spans[i].reg || (chf.spans[i].reg & RC_BORDER_REG))
 | |
| 				{
 | |
| 					flags[i] = 0;
 | |
| 					continue;
 | |
| 				}
 | |
| 				for (int dir = 0; dir < 4; ++dir)
 | |
| 				{
 | |
| 					unsigned short r = 0;
 | |
| 					if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
 | |
| 					{
 | |
| 						const int ax = x + rcGetDirOffsetX(dir);
 | |
| 						const int ay = y + rcGetDirOffsetY(dir);
 | |
| 						const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
 | |
| 						r = chf.spans[ai].reg;
 | |
| 					}
 | |
| 					if (r == chf.spans[i].reg)
 | |
| 						res |= (1 << dir);
 | |
| 				}
 | |
| 				flags[i] = res ^ 0xf; // Inverse, mark non connected edges.
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
 | |
| 	
 | |
| 	rcIntArray verts(256);
 | |
| 	rcIntArray simplified(64);
 | |
| 	
 | |
| 	for (int y = 0; y < h; ++y)
 | |
| 	{
 | |
| 		for (int x = 0; x < w; ++x)
 | |
| 		{
 | |
| 			const rcCompactCell& c = chf.cells[x+y*w];
 | |
| 			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
 | |
| 			{
 | |
| 				if (flags[i] == 0 || flags[i] == 0xf)
 | |
| 				{
 | |
| 					flags[i] = 0;
 | |
| 					continue;
 | |
| 				}
 | |
| 				const unsigned short reg = chf.spans[i].reg;
 | |
| 				if (!reg || (reg & RC_BORDER_REG))
 | |
| 					continue;
 | |
| 				const unsigned char area = chf.areas[i];
 | |
| 				
 | |
| 				verts.clear();
 | |
| 				simplified.clear();
 | |
| 				
 | |
| 				ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
 | |
| 				walkContour(x, y, i, chf, flags, verts);
 | |
| 				ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
 | |
| 				
 | |
| 				ctx->startTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
 | |
| 				simplifyContour(verts, simplified, maxError, maxEdgeLen, buildFlags);
 | |
| 				removeDegenerateSegments(simplified);
 | |
| 				ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
 | |
| 				
 | |
| 				
 | |
| 				// Store region->contour remap info.
 | |
| 				// Create contour.
 | |
| 				if (simplified.size()/4 >= 3)
 | |
| 				{
 | |
| 					if (cset.nconts >= maxContours)
 | |
| 					{
 | |
| 						// Allocate more contours.
 | |
| 						// This happens when a region has holes.
 | |
| 						const int oldMax = maxContours;
 | |
| 						maxContours *= 2;
 | |
| 						rcContour* newConts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM);
 | |
| 						for (int j = 0; j < cset.nconts; ++j)
 | |
| 						{
 | |
| 							newConts[j] = cset.conts[j];
 | |
| 							// Reset source pointers to prevent data deletion.
 | |
| 							cset.conts[j].verts = 0;
 | |
| 							cset.conts[j].rverts = 0;
 | |
| 						}
 | |
| 						rcFree(cset.conts);
 | |
| 						cset.conts = newConts;
 | |
| 						
 | |
| 						ctx->log(RC_LOG_WARNING, "rcBuildContours: Expanding max contours from %d to %d.", oldMax, maxContours);
 | |
| 					}
 | |
| 					
 | |
| 					rcContour* cont = &cset.conts[cset.nconts++];
 | |
| 					
 | |
| 					cont->nverts = simplified.size()/4;
 | |
| 					cont->verts = (int*)rcAlloc(sizeof(int)*cont->nverts*4, RC_ALLOC_PERM);
 | |
| 					if (!cont->verts)
 | |
| 					{
 | |
| 						ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'verts' (%d).", cont->nverts);
 | |
| 						return false;
 | |
| 					}
 | |
| 					memcpy(cont->verts, &simplified[0], sizeof(int)*cont->nverts*4);
 | |
| 					if (borderSize > 0)
 | |
| 					{
 | |
| 						// If the heightfield was build with bordersize, remove the offset.
 | |
| 						for (int j = 0; j < cont->nverts; ++j)
 | |
| 						{
 | |
| 							int* v = &cont->verts[j*4];
 | |
| 							v[0] -= borderSize;
 | |
| 							v[2] -= borderSize;
 | |
| 						}
 | |
| 					}
 | |
| 					
 | |
| 					cont->nrverts = verts.size()/4;
 | |
| 					cont->rverts = (int*)rcAlloc(sizeof(int)*cont->nrverts*4, RC_ALLOC_PERM);
 | |
| 					if (!cont->rverts)
 | |
| 					{
 | |
| 						ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'rverts' (%d).", cont->nrverts);
 | |
| 						return false;
 | |
| 					}
 | |
| 					memcpy(cont->rverts, &verts[0], sizeof(int)*cont->nrverts*4);
 | |
| 					if (borderSize > 0)
 | |
| 					{
 | |
| 						// If the heightfield was build with bordersize, remove the offset.
 | |
| 						for (int j = 0; j < cont->nrverts; ++j)
 | |
| 						{
 | |
| 							int* v = &cont->rverts[j*4];
 | |
| 							v[0] -= borderSize;
 | |
| 							v[2] -= borderSize;
 | |
| 						}
 | |
| 					}
 | |
| 					
 | |
| 					cont->reg = reg;
 | |
| 					cont->area = area;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	// Merge holes if needed.
 | |
| 	if (cset.nconts > 0)
 | |
| 	{
 | |
| 		// Calculate winding of all polygons.
 | |
| 		rcScopedDelete<signed char> winding((signed char*)rcAlloc(sizeof(signed char)*cset.nconts, RC_ALLOC_TEMP));
 | |
| 		if (!winding)
 | |
| 		{
 | |
| 			ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'hole' (%d).", cset.nconts);
 | |
| 			return false;
 | |
| 		}
 | |
| 		int nholes = 0;
 | |
| 		for (int i = 0; i < cset.nconts; ++i)
 | |
| 		{
 | |
| 			rcContour& cont = cset.conts[i];
 | |
| 			// If the contour is wound backwards, it is a hole.
 | |
| 			winding[i] = calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0 ? -1 : 1;
 | |
| 			if (winding[i] < 0)
 | |
| 				nholes++;
 | |
| 		}
 | |
| 		
 | |
| 		if (nholes > 0)
 | |
| 		{
 | |
| 			// Collect outline contour and holes contours per region.
 | |
| 			// We assume that there is one outline and multiple holes.
 | |
| 			const int nregions = chf.maxRegions+1;
 | |
| 			rcScopedDelete<rcContourRegion> regions((rcContourRegion*)rcAlloc(sizeof(rcContourRegion)*nregions, RC_ALLOC_TEMP));
 | |
| 			if (!regions)
 | |
| 			{
 | |
| 				ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'regions' (%d).", nregions);
 | |
| 				return false;
 | |
| 			}
 | |
| 			memset(regions, 0, sizeof(rcContourRegion)*nregions);
 | |
| 			
 | |
| 			rcScopedDelete<rcContourHole> holes((rcContourHole*)rcAlloc(sizeof(rcContourHole)*cset.nconts, RC_ALLOC_TEMP));
 | |
| 			if (!holes)
 | |
| 			{
 | |
| 				ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'holes' (%d).", cset.nconts);
 | |
| 				return false;
 | |
| 			}
 | |
| 			memset(holes, 0, sizeof(rcContourHole)*cset.nconts);
 | |
| 			
 | |
| 			for (int i = 0; i < cset.nconts; ++i)
 | |
| 			{
 | |
| 				rcContour& cont = cset.conts[i];
 | |
| 				// Positively would contours are outlines, negative holes.
 | |
| 				if (winding[i] > 0)
 | |
| 				{
 | |
| 					if (regions[cont.reg].outline)
 | |
| 						ctx->log(RC_LOG_ERROR, "rcBuildContours: Multiple outlines for region %d.", cont.reg);
 | |
| 					regions[cont.reg].outline = &cont;
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					regions[cont.reg].nholes++;
 | |
| 				}
 | |
| 			}
 | |
| 			int index = 0;
 | |
| 			for (int i = 0; i < nregions; i++)
 | |
| 			{
 | |
| 				if (regions[i].nholes > 0)
 | |
| 				{
 | |
| 					regions[i].holes = &holes[index];
 | |
| 					index += regions[i].nholes;
 | |
| 					regions[i].nholes = 0;
 | |
| 				}
 | |
| 			}
 | |
| 			for (int i = 0; i < cset.nconts; ++i)
 | |
| 			{
 | |
| 				rcContour& cont = cset.conts[i];
 | |
| 				rcContourRegion& reg = regions[cont.reg];
 | |
| 				if (winding[i] < 0)
 | |
| 					reg.holes[reg.nholes++].contour = &cont;
 | |
| 			}
 | |
| 			
 | |
| 			// Finally merge each regions holes into the outline.
 | |
| 			for (int i = 0; i < nregions; i++)
 | |
| 			{
 | |
| 				rcContourRegion& reg = regions[i];
 | |
| 				if (!reg.nholes) continue;
 | |
| 				
 | |
| 				if (reg.outline)
 | |
| 				{
 | |
| 					mergeRegionHoles(ctx, reg);
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					// The region does not have an outline.
 | |
| 					// This can happen if the contour becaomes selfoverlapping because of
 | |
| 					// too aggressive simplification settings.
 | |
| 					ctx->log(RC_LOG_ERROR, "rcBuildContours: Bad outline for region %d, contour simplification is likely too aggressive.", i);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		
 | |
| 	}
 | |
| 	
 | |
| 	return true;
 | |
| }
 |