582 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			582 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
Bullet Continuous Collision Detection and Physics Library
 | 
						|
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | 
						|
 | 
						|
This software is provided 'as-is', without any express or implied warranty.
 | 
						|
In no event will the authors be held liable for any damages arising from the use of this software.
 | 
						|
Permission is granted to anyone to use this software for any purpose, 
 | 
						|
including commercial applications, and to alter it and redistribute it freely, 
 | 
						|
subject to the following restrictions:
 | 
						|
 | 
						|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | 
						|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | 
						|
3. This notice may not be removed or altered from any source distribution.
 | 
						|
*/
 | 
						|
 | 
						|
#ifndef BT_QUANTIZED_BVH_H
 | 
						|
#define BT_QUANTIZED_BVH_H
 | 
						|
 | 
						|
class btSerializer;
 | 
						|
 | 
						|
//#define DEBUG_CHECK_DEQUANTIZATION 1
 | 
						|
#ifdef DEBUG_CHECK_DEQUANTIZATION
 | 
						|
#ifdef __SPU__
 | 
						|
#define printf spu_printf
 | 
						|
#endif //__SPU__
 | 
						|
 | 
						|
#include <stdio.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#endif //DEBUG_CHECK_DEQUANTIZATION
 | 
						|
 | 
						|
#include "LinearMath/btVector3.h"
 | 
						|
#include "LinearMath/btAlignedAllocator.h"
 | 
						|
 | 
						|
#ifdef BT_USE_DOUBLE_PRECISION
 | 
						|
#define btQuantizedBvhData btQuantizedBvhDoubleData
 | 
						|
#define btOptimizedBvhNodeData btOptimizedBvhNodeDoubleData
 | 
						|
#define btQuantizedBvhDataName "btQuantizedBvhDoubleData"
 | 
						|
#else
 | 
						|
#define btQuantizedBvhData btQuantizedBvhFloatData
 | 
						|
#define btOptimizedBvhNodeData btOptimizedBvhNodeFloatData
 | 
						|
#define btQuantizedBvhDataName "btQuantizedBvhFloatData"
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclang/html/vclrf__m128.asp
 | 
						|
 | 
						|
 | 
						|
//Note: currently we have 16 bytes per quantized node
 | 
						|
#define MAX_SUBTREE_SIZE_IN_BYTES  2048
 | 
						|
 | 
						|
// 10 gives the potential for 1024 parts, with at most 2^21 (2097152) (minus one
 | 
						|
// actually) triangles each (since the sign bit is reserved
 | 
						|
#define MAX_NUM_PARTS_IN_BITS 10
 | 
						|
 | 
						|
///btQuantizedBvhNode is a compressed aabb node, 16 bytes.
 | 
						|
///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range).
 | 
						|
ATTRIBUTE_ALIGNED16	(struct) btQuantizedBvhNode
 | 
						|
{
 | 
						|
	BT_DECLARE_ALIGNED_ALLOCATOR();
 | 
						|
 | 
						|
	//12 bytes
 | 
						|
	unsigned short int	m_quantizedAabbMin[3];
 | 
						|
	unsigned short int	m_quantizedAabbMax[3];
 | 
						|
	//4 bytes
 | 
						|
	int	m_escapeIndexOrTriangleIndex;
 | 
						|
 | 
						|
	bool isLeafNode() const
 | 
						|
	{
 | 
						|
		//skipindex is negative (internal node), triangleindex >=0 (leafnode)
 | 
						|
		return (m_escapeIndexOrTriangleIndex >= 0);
 | 
						|
	}
 | 
						|
	int getEscapeIndex() const
 | 
						|
	{
 | 
						|
		btAssert(!isLeafNode());
 | 
						|
		return -m_escapeIndexOrTriangleIndex;
 | 
						|
	}
 | 
						|
	int	getTriangleIndex() const
 | 
						|
	{
 | 
						|
		btAssert(isLeafNode());
 | 
						|
		unsigned int x=0;
 | 
						|
		unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS);
 | 
						|
		// Get only the lower bits where the triangle index is stored
 | 
						|
		return (m_escapeIndexOrTriangleIndex&~(y));
 | 
						|
	}
 | 
						|
	int	getPartId() const
 | 
						|
	{
 | 
						|
		btAssert(isLeafNode());
 | 
						|
		// Get only the highest bits where the part index is stored
 | 
						|
		return (m_escapeIndexOrTriangleIndex>>(31-MAX_NUM_PARTS_IN_BITS));
 | 
						|
	}
 | 
						|
}
 | 
						|
;
 | 
						|
 | 
						|
/// btOptimizedBvhNode contains both internal and leaf node information.
 | 
						|
/// Total node size is 44 bytes / node. You can use the compressed version of 16 bytes.
 | 
						|
ATTRIBUTE_ALIGNED16 (struct) btOptimizedBvhNode
 | 
						|
{
 | 
						|
	BT_DECLARE_ALIGNED_ALLOCATOR();
 | 
						|
 | 
						|
	//32 bytes
 | 
						|
	btVector3	m_aabbMinOrg;
 | 
						|
	btVector3	m_aabbMaxOrg;
 | 
						|
 | 
						|
	//4
 | 
						|
	int	m_escapeIndex;
 | 
						|
 | 
						|
	//8
 | 
						|
	//for child nodes
 | 
						|
	int	m_subPart;
 | 
						|
	int	m_triangleIndex;
 | 
						|
 | 
						|
//pad the size to 64 bytes
 | 
						|
	char	m_padding[20];
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
///btBvhSubtreeInfo provides info to gather a subtree of limited size
 | 
						|
ATTRIBUTE_ALIGNED16(class) btBvhSubtreeInfo
 | 
						|
{
 | 
						|
public:
 | 
						|
	BT_DECLARE_ALIGNED_ALLOCATOR();
 | 
						|
 | 
						|
	//12 bytes
 | 
						|
	unsigned short int	m_quantizedAabbMin[3];
 | 
						|
	unsigned short int	m_quantizedAabbMax[3];
 | 
						|
	//4 bytes, points to the root of the subtree
 | 
						|
	int			m_rootNodeIndex;
 | 
						|
	//4 bytes
 | 
						|
	int			m_subtreeSize;
 | 
						|
	int			m_padding[3];
 | 
						|
 | 
						|
	btBvhSubtreeInfo()
 | 
						|
	{
 | 
						|
		//memset(&m_padding[0], 0, sizeof(m_padding));
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	void	setAabbFromQuantizeNode(const btQuantizedBvhNode& quantizedNode)
 | 
						|
	{
 | 
						|
		m_quantizedAabbMin[0] = quantizedNode.m_quantizedAabbMin[0];
 | 
						|
		m_quantizedAabbMin[1] = quantizedNode.m_quantizedAabbMin[1];
 | 
						|
		m_quantizedAabbMin[2] = quantizedNode.m_quantizedAabbMin[2];
 | 
						|
		m_quantizedAabbMax[0] = quantizedNode.m_quantizedAabbMax[0];
 | 
						|
		m_quantizedAabbMax[1] = quantizedNode.m_quantizedAabbMax[1];
 | 
						|
		m_quantizedAabbMax[2] = quantizedNode.m_quantizedAabbMax[2];
 | 
						|
	}
 | 
						|
}
 | 
						|
;
 | 
						|
 | 
						|
 | 
						|
class btNodeOverlapCallback
 | 
						|
{
 | 
						|
public:
 | 
						|
	virtual ~btNodeOverlapCallback() {};
 | 
						|
 | 
						|
	virtual void processNode(int subPart, int triangleIndex) = 0;
 | 
						|
};
 | 
						|
 | 
						|
#include "LinearMath/btAlignedAllocator.h"
 | 
						|
#include "LinearMath/btAlignedObjectArray.h"
 | 
						|
 | 
						|
 | 
						|
 | 
						|
///for code readability:
 | 
						|
typedef btAlignedObjectArray<btOptimizedBvhNode>	NodeArray;
 | 
						|
typedef btAlignedObjectArray<btQuantizedBvhNode>	QuantizedNodeArray;
 | 
						|
typedef btAlignedObjectArray<btBvhSubtreeInfo>		BvhSubtreeInfoArray;
 | 
						|
 | 
						|
 | 
						|
///The btQuantizedBvh class stores an AABB tree that can be quickly traversed on CPU and Cell SPU.
 | 
						|
///It is used by the btBvhTriangleMeshShape as midphase.
 | 
						|
///It is recommended to use quantization for better performance and lower memory requirements.
 | 
						|
ATTRIBUTE_ALIGNED16(class) btQuantizedBvh
 | 
						|
{
 | 
						|
public:
 | 
						|
	enum btTraversalMode
 | 
						|
	{
 | 
						|
		TRAVERSAL_STACKLESS = 0,
 | 
						|
		TRAVERSAL_STACKLESS_CACHE_FRIENDLY,
 | 
						|
		TRAVERSAL_RECURSIVE
 | 
						|
	};
 | 
						|
 | 
						|
protected:
 | 
						|
 | 
						|
 | 
						|
	btVector3			m_bvhAabbMin;
 | 
						|
	btVector3			m_bvhAabbMax;
 | 
						|
	btVector3			m_bvhQuantization;
 | 
						|
 | 
						|
	int					m_bulletVersion;	//for serialization versioning. It could also be used to detect endianess.
 | 
						|
 | 
						|
	int					m_curNodeIndex;
 | 
						|
	//quantization data
 | 
						|
	bool				m_useQuantization;
 | 
						|
 | 
						|
 | 
						|
 | 
						|
	NodeArray			m_leafNodes;
 | 
						|
	NodeArray			m_contiguousNodes;
 | 
						|
	QuantizedNodeArray	m_quantizedLeafNodes;
 | 
						|
	QuantizedNodeArray	m_quantizedContiguousNodes;
 | 
						|
	
 | 
						|
	btTraversalMode	m_traversalMode;
 | 
						|
	BvhSubtreeInfoArray		m_SubtreeHeaders;
 | 
						|
 | 
						|
	//This is only used for serialization so we don't have to add serialization directly to btAlignedObjectArray
 | 
						|
	mutable int m_subtreeHeaderCount;
 | 
						|
 | 
						|
	
 | 
						|
 | 
						|
 | 
						|
 | 
						|
	///two versions, one for quantized and normal nodes. This allows code-reuse while maintaining readability (no template/macro!)
 | 
						|
	///this might be refactored into a virtual, it is usually not calculated at run-time
 | 
						|
	void	setInternalNodeAabbMin(int nodeIndex, const btVector3& aabbMin)
 | 
						|
	{
 | 
						|
		if (m_useQuantization)
 | 
						|
		{
 | 
						|
			quantize(&m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] ,aabbMin,0);
 | 
						|
		} else
 | 
						|
		{
 | 
						|
			m_contiguousNodes[nodeIndex].m_aabbMinOrg = aabbMin;
 | 
						|
 | 
						|
		}
 | 
						|
	}
 | 
						|
	void	setInternalNodeAabbMax(int nodeIndex,const btVector3& aabbMax)
 | 
						|
	{
 | 
						|
		if (m_useQuantization)
 | 
						|
		{
 | 
						|
			quantize(&m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0],aabbMax,1);
 | 
						|
		} else
 | 
						|
		{
 | 
						|
			m_contiguousNodes[nodeIndex].m_aabbMaxOrg = aabbMax;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	btVector3 getAabbMin(int nodeIndex) const
 | 
						|
	{
 | 
						|
		if (m_useQuantization)
 | 
						|
		{
 | 
						|
			return unQuantize(&m_quantizedLeafNodes[nodeIndex].m_quantizedAabbMin[0]);
 | 
						|
		}
 | 
						|
		//non-quantized
 | 
						|
		return m_leafNodes[nodeIndex].m_aabbMinOrg;
 | 
						|
 | 
						|
	}
 | 
						|
	btVector3 getAabbMax(int nodeIndex) const
 | 
						|
	{
 | 
						|
		if (m_useQuantization)
 | 
						|
		{
 | 
						|
			return unQuantize(&m_quantizedLeafNodes[nodeIndex].m_quantizedAabbMax[0]);
 | 
						|
		} 
 | 
						|
		//non-quantized
 | 
						|
		return m_leafNodes[nodeIndex].m_aabbMaxOrg;
 | 
						|
		
 | 
						|
	}
 | 
						|
 | 
						|
	
 | 
						|
	void	setInternalNodeEscapeIndex(int nodeIndex, int escapeIndex)
 | 
						|
	{
 | 
						|
		if (m_useQuantization)
 | 
						|
		{
 | 
						|
			m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = -escapeIndex;
 | 
						|
		} 
 | 
						|
		else
 | 
						|
		{
 | 
						|
			m_contiguousNodes[nodeIndex].m_escapeIndex = escapeIndex;
 | 
						|
		}
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	void mergeInternalNodeAabb(int nodeIndex,const btVector3& newAabbMin,const btVector3& newAabbMax) 
 | 
						|
	{
 | 
						|
		if (m_useQuantization)
 | 
						|
		{
 | 
						|
			unsigned short int quantizedAabbMin[3];
 | 
						|
			unsigned short int quantizedAabbMax[3];
 | 
						|
			quantize(quantizedAabbMin,newAabbMin,0);
 | 
						|
			quantize(quantizedAabbMax,newAabbMax,1);
 | 
						|
			for (int i=0;i<3;i++)
 | 
						|
			{
 | 
						|
				if (m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[i] > quantizedAabbMin[i])
 | 
						|
					m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[i] = quantizedAabbMin[i];
 | 
						|
 | 
						|
				if (m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[i] < quantizedAabbMax[i])
 | 
						|
					m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[i] = quantizedAabbMax[i];
 | 
						|
 | 
						|
			}
 | 
						|
		} else
 | 
						|
		{
 | 
						|
			//non-quantized
 | 
						|
			m_contiguousNodes[nodeIndex].m_aabbMinOrg.setMin(newAabbMin);
 | 
						|
			m_contiguousNodes[nodeIndex].m_aabbMaxOrg.setMax(newAabbMax);		
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	void	swapLeafNodes(int firstIndex,int secondIndex);
 | 
						|
 | 
						|
	void	assignInternalNodeFromLeafNode(int internalNode,int leafNodeIndex);
 | 
						|
 | 
						|
protected:
 | 
						|
 | 
						|
	
 | 
						|
 | 
						|
	void	buildTree	(int startIndex,int endIndex);
 | 
						|
 | 
						|
	int	calcSplittingAxis(int startIndex,int endIndex);
 | 
						|
 | 
						|
	int	sortAndCalcSplittingIndex(int startIndex,int endIndex,int splitAxis);
 | 
						|
	
 | 
						|
	void	walkStacklessTree(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const;
 | 
						|
 | 
						|
	void	walkStacklessQuantizedTreeAgainstRay(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax, int startNodeIndex,int endNodeIndex) const;
 | 
						|
	void	walkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,int startNodeIndex,int endNodeIndex) const;
 | 
						|
	void	walkStacklessTreeAgainstRay(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax, int startNodeIndex,int endNodeIndex) const;
 | 
						|
 | 
						|
	///tree traversal designed for small-memory processors like PS3 SPU
 | 
						|
	void	walkStacklessQuantizedTreeCacheFriendly(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const;
 | 
						|
 | 
						|
	///use the 16-byte stackless 'skipindex' node tree to do a recursive traversal
 | 
						|
	void	walkRecursiveQuantizedTreeAgainstQueryAabb(const btQuantizedBvhNode* currentNode,btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const;
 | 
						|
 | 
						|
	///use the 16-byte stackless 'skipindex' node tree to do a recursive traversal
 | 
						|
	void	walkRecursiveQuantizedTreeAgainstQuantizedTree(const btQuantizedBvhNode* treeNodeA,const btQuantizedBvhNode* treeNodeB,btNodeOverlapCallback* nodeCallback) const;
 | 
						|
	
 | 
						|
 | 
						|
 | 
						|
 | 
						|
	void	updateSubtreeHeaders(int leftChildNodexIndex,int rightChildNodexIndex);
 | 
						|
 | 
						|
public:
 | 
						|
	
 | 
						|
	BT_DECLARE_ALIGNED_ALLOCATOR();
 | 
						|
 | 
						|
	btQuantizedBvh();
 | 
						|
 | 
						|
	virtual ~btQuantizedBvh();
 | 
						|
 | 
						|
	
 | 
						|
	///***************************************** expert/internal use only *************************
 | 
						|
	void	setQuantizationValues(const btVector3& bvhAabbMin,const btVector3& bvhAabbMax,btScalar quantizationMargin=btScalar(1.0));
 | 
						|
	QuantizedNodeArray&	getLeafNodeArray() {			return	m_quantizedLeafNodes;	}
 | 
						|
	///buildInternal is expert use only: assumes that setQuantizationValues and LeafNodeArray are initialized
 | 
						|
	void	buildInternal();
 | 
						|
	///***************************************** expert/internal use only *************************
 | 
						|
 | 
						|
	void	reportAabbOverlappingNodex(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const;
 | 
						|
	void	reportRayOverlappingNodex (btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget) const;
 | 
						|
	void	reportBoxCastOverlappingNodex(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin,const btVector3& aabbMax) const;
 | 
						|
 | 
						|
		SIMD_FORCE_INLINE void quantize(unsigned short* out, const btVector3& point,int isMax) const
 | 
						|
	{
 | 
						|
 | 
						|
		btAssert(m_useQuantization);
 | 
						|
 | 
						|
		btAssert(point.getX() <= m_bvhAabbMax.getX());
 | 
						|
		btAssert(point.getY() <= m_bvhAabbMax.getY());
 | 
						|
		btAssert(point.getZ() <= m_bvhAabbMax.getZ());
 | 
						|
 | 
						|
		btAssert(point.getX() >= m_bvhAabbMin.getX());
 | 
						|
		btAssert(point.getY() >= m_bvhAabbMin.getY());
 | 
						|
		btAssert(point.getZ() >= m_bvhAabbMin.getZ());
 | 
						|
 | 
						|
		btVector3 v = (point - m_bvhAabbMin) * m_bvhQuantization;
 | 
						|
		///Make sure rounding is done in a way that unQuantize(quantizeWithClamp(...)) is conservative
 | 
						|
		///end-points always set the first bit, so that they are sorted properly (so that neighbouring AABBs overlap properly)
 | 
						|
		///@todo: double-check this
 | 
						|
		if (isMax)
 | 
						|
		{
 | 
						|
			out[0] = (unsigned short) (((unsigned short)(v.getX()+btScalar(1.)) | 1));
 | 
						|
			out[1] = (unsigned short) (((unsigned short)(v.getY()+btScalar(1.)) | 1));
 | 
						|
			out[2] = (unsigned short) (((unsigned short)(v.getZ()+btScalar(1.)) | 1));
 | 
						|
		} else
 | 
						|
		{
 | 
						|
			out[0] = (unsigned short) (((unsigned short)(v.getX()) & 0xfffe));
 | 
						|
			out[1] = (unsigned short) (((unsigned short)(v.getY()) & 0xfffe));
 | 
						|
			out[2] = (unsigned short) (((unsigned short)(v.getZ()) & 0xfffe));
 | 
						|
		}
 | 
						|
 | 
						|
 | 
						|
#ifdef DEBUG_CHECK_DEQUANTIZATION
 | 
						|
		btVector3 newPoint = unQuantize(out);
 | 
						|
		if (isMax)
 | 
						|
		{
 | 
						|
			if (newPoint.getX() < point.getX())
 | 
						|
			{
 | 
						|
				printf("unconservative X, diffX = %f, oldX=%f,newX=%f\n",newPoint.getX()-point.getX(), newPoint.getX(),point.getX());
 | 
						|
			}
 | 
						|
			if (newPoint.getY() < point.getY())
 | 
						|
			{
 | 
						|
				printf("unconservative Y, diffY = %f, oldY=%f,newY=%f\n",newPoint.getY()-point.getY(), newPoint.getY(),point.getY());
 | 
						|
			}
 | 
						|
			if (newPoint.getZ() < point.getZ())
 | 
						|
			{
 | 
						|
 | 
						|
				printf("unconservative Z, diffZ = %f, oldZ=%f,newZ=%f\n",newPoint.getZ()-point.getZ(), newPoint.getZ(),point.getZ());
 | 
						|
			}
 | 
						|
		} else
 | 
						|
		{
 | 
						|
			if (newPoint.getX() > point.getX())
 | 
						|
			{
 | 
						|
				printf("unconservative X, diffX = %f, oldX=%f,newX=%f\n",newPoint.getX()-point.getX(), newPoint.getX(),point.getX());
 | 
						|
			}
 | 
						|
			if (newPoint.getY() > point.getY())
 | 
						|
			{
 | 
						|
				printf("unconservative Y, diffY = %f, oldY=%f,newY=%f\n",newPoint.getY()-point.getY(), newPoint.getY(),point.getY());
 | 
						|
			}
 | 
						|
			if (newPoint.getZ() > point.getZ())
 | 
						|
			{
 | 
						|
				printf("unconservative Z, diffZ = %f, oldZ=%f,newZ=%f\n",newPoint.getZ()-point.getZ(), newPoint.getZ(),point.getZ());
 | 
						|
			}
 | 
						|
		}
 | 
						|
#endif //DEBUG_CHECK_DEQUANTIZATION
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	SIMD_FORCE_INLINE void quantizeWithClamp(unsigned short* out, const btVector3& point2,int isMax) const
 | 
						|
	{
 | 
						|
 | 
						|
		btAssert(m_useQuantization);
 | 
						|
 | 
						|
		btVector3 clampedPoint(point2);
 | 
						|
		clampedPoint.setMax(m_bvhAabbMin);
 | 
						|
		clampedPoint.setMin(m_bvhAabbMax);
 | 
						|
 | 
						|
		quantize(out,clampedPoint,isMax);
 | 
						|
 | 
						|
	}
 | 
						|
	
 | 
						|
	SIMD_FORCE_INLINE btVector3	unQuantize(const unsigned short* vecIn) const
 | 
						|
	{
 | 
						|
			btVector3	vecOut;
 | 
						|
			vecOut.setValue(
 | 
						|
			(btScalar)(vecIn[0]) / (m_bvhQuantization.getX()),
 | 
						|
			(btScalar)(vecIn[1]) / (m_bvhQuantization.getY()),
 | 
						|
			(btScalar)(vecIn[2]) / (m_bvhQuantization.getZ()));
 | 
						|
			vecOut += m_bvhAabbMin;
 | 
						|
			return vecOut;
 | 
						|
	}
 | 
						|
 | 
						|
	///setTraversalMode let's you choose between stackless, recursive or stackless cache friendly tree traversal. Note this is only implemented for quantized trees.
 | 
						|
	void	setTraversalMode(btTraversalMode	traversalMode)
 | 
						|
	{
 | 
						|
		m_traversalMode = traversalMode;
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	SIMD_FORCE_INLINE QuantizedNodeArray&	getQuantizedNodeArray()
 | 
						|
	{	
 | 
						|
		return	m_quantizedContiguousNodes;
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	SIMD_FORCE_INLINE BvhSubtreeInfoArray&	getSubtreeInfoArray()
 | 
						|
	{
 | 
						|
		return m_SubtreeHeaders;
 | 
						|
	}
 | 
						|
 | 
						|
////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
	/////Calculate space needed to store BVH for serialization
 | 
						|
	unsigned calculateSerializeBufferSize() const;
 | 
						|
 | 
						|
	/// Data buffer MUST be 16 byte aligned
 | 
						|
	virtual bool serialize(void *o_alignedDataBuffer, unsigned i_dataBufferSize, bool i_swapEndian) const;
 | 
						|
 | 
						|
	///deSerializeInPlace loads and initializes a BVH from a buffer in memory 'in place'
 | 
						|
	static btQuantizedBvh *deSerializeInPlace(void *i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian);
 | 
						|
 | 
						|
	static unsigned int getAlignmentSerializationPadding();
 | 
						|
//////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
	
 | 
						|
	virtual	int	calculateSerializeBufferSizeNew() const;
 | 
						|
 | 
						|
	///fills the dataBuffer and returns the struct name (and 0 on failure)
 | 
						|
	virtual	const char*	serialize(void* dataBuffer, btSerializer* serializer) const;
 | 
						|
 | 
						|
	virtual	void deSerializeFloat(struct btQuantizedBvhFloatData& quantizedBvhFloatData);
 | 
						|
 | 
						|
	virtual	void deSerializeDouble(struct btQuantizedBvhDoubleData& quantizedBvhDoubleData);
 | 
						|
 | 
						|
 | 
						|
////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
	SIMD_FORCE_INLINE bool isQuantized()
 | 
						|
	{
 | 
						|
		return m_useQuantization;
 | 
						|
	}
 | 
						|
 | 
						|
private:
 | 
						|
	// Special "copy" constructor that allows for in-place deserialization
 | 
						|
	// Prevents btVector3's default constructor from being called, but doesn't inialize much else
 | 
						|
	// ownsMemory should most likely be false if deserializing, and if you are not, don't call this (it also changes the function signature, which we need)
 | 
						|
	btQuantizedBvh(btQuantizedBvh &other, bool ownsMemory);
 | 
						|
 | 
						|
}
 | 
						|
;
 | 
						|
 | 
						|
 | 
						|
struct	btBvhSubtreeInfoData
 | 
						|
{
 | 
						|
	int			m_rootNodeIndex;
 | 
						|
	int			m_subtreeSize;
 | 
						|
	unsigned short m_quantizedAabbMin[3];
 | 
						|
	unsigned short m_quantizedAabbMax[3];
 | 
						|
};
 | 
						|
 | 
						|
struct btOptimizedBvhNodeFloatData
 | 
						|
{
 | 
						|
	btVector3FloatData	m_aabbMinOrg;
 | 
						|
	btVector3FloatData	m_aabbMaxOrg;
 | 
						|
	int	m_escapeIndex;
 | 
						|
	int	m_subPart;
 | 
						|
	int	m_triangleIndex;
 | 
						|
	char m_pad[4];
 | 
						|
};
 | 
						|
 | 
						|
struct btOptimizedBvhNodeDoubleData
 | 
						|
{
 | 
						|
	btVector3DoubleData	m_aabbMinOrg;
 | 
						|
	btVector3DoubleData	m_aabbMaxOrg;
 | 
						|
	int	m_escapeIndex;
 | 
						|
	int	m_subPart;
 | 
						|
	int	m_triangleIndex;
 | 
						|
	char	m_pad[4];
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
struct btQuantizedBvhNodeData
 | 
						|
{
 | 
						|
	unsigned short m_quantizedAabbMin[3];
 | 
						|
	unsigned short m_quantizedAabbMax[3];
 | 
						|
	int	m_escapeIndexOrTriangleIndex;
 | 
						|
};
 | 
						|
 | 
						|
struct	btQuantizedBvhFloatData
 | 
						|
{
 | 
						|
	btVector3FloatData			m_bvhAabbMin;
 | 
						|
	btVector3FloatData			m_bvhAabbMax;
 | 
						|
	btVector3FloatData			m_bvhQuantization;
 | 
						|
	int					m_curNodeIndex;
 | 
						|
	int					m_useQuantization;
 | 
						|
	int					m_numContiguousLeafNodes;
 | 
						|
	int					m_numQuantizedContiguousNodes;
 | 
						|
	btOptimizedBvhNodeFloatData	*m_contiguousNodesPtr;
 | 
						|
	btQuantizedBvhNodeData		*m_quantizedContiguousNodesPtr;
 | 
						|
	btBvhSubtreeInfoData	*m_subTreeInfoPtr;
 | 
						|
	int					m_traversalMode;
 | 
						|
	int					m_numSubtreeHeaders;
 | 
						|
	
 | 
						|
};
 | 
						|
 | 
						|
struct	btQuantizedBvhDoubleData
 | 
						|
{
 | 
						|
	btVector3DoubleData			m_bvhAabbMin;
 | 
						|
	btVector3DoubleData			m_bvhAabbMax;
 | 
						|
	btVector3DoubleData			m_bvhQuantization;
 | 
						|
	int							m_curNodeIndex;
 | 
						|
	int							m_useQuantization;
 | 
						|
	int							m_numContiguousLeafNodes;
 | 
						|
	int							m_numQuantizedContiguousNodes;
 | 
						|
	btOptimizedBvhNodeDoubleData	*m_contiguousNodesPtr;
 | 
						|
	btQuantizedBvhNodeData			*m_quantizedContiguousNodesPtr;
 | 
						|
 | 
						|
	int							m_traversalMode;
 | 
						|
	int							m_numSubtreeHeaders;
 | 
						|
	btBvhSubtreeInfoData		*m_subTreeInfoPtr;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
SIMD_FORCE_INLINE	int	btQuantizedBvh::calculateSerializeBufferSizeNew() const
 | 
						|
{
 | 
						|
	return sizeof(btQuantizedBvhData);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
#endif //BT_QUANTIZED_BVH_H
 |