370 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			370 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
Bullet Continuous Collision Detection and Physics Library
 | 
						|
Copyright (c) 2003-2014 Erwin Coumans http://bulletphysics.org
 | 
						|
 | 
						|
This software is provided 'as-is', without any express or implied warranty.
 | 
						|
In no event will the authors be held liable for any damages arising from the use of this software.
 | 
						|
Permission is granted to anyone to use this software for any purpose, 
 | 
						|
including commercial applications, and to alter it and redistribute it freely, 
 | 
						|
subject to the following restrictions:
 | 
						|
 | 
						|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | 
						|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | 
						|
3. This notice may not be removed or altered from any source distribution.
 | 
						|
*/
 | 
						|
 | 
						|
#ifndef BT_GJK_EPA_PENETATION_CONVEX_COLLISION_H
 | 
						|
#define BT_GJK_EPA_PENETATION_CONVEX_COLLISION_H
 | 
						|
 | 
						|
#include "LinearMath/btTransform.h" // Note that btVector3 might be double precision...
 | 
						|
#include "btGjkEpa3.h"
 | 
						|
#include "btGjkCollisionDescription.h"
 | 
						|
#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
template <typename btConvexTemplate>
 | 
						|
bool btGjkEpaCalcPenDepth(const btConvexTemplate& a, const btConvexTemplate& b,
 | 
						|
                          const btGjkCollisionDescription& colDesc,
 | 
						|
                          btVector3& v, btVector3& wWitnessOnA, btVector3& wWitnessOnB)
 | 
						|
{
 | 
						|
    (void)v;
 | 
						|
    
 | 
						|
    //	const btScalar				radialmargin(btScalar(0.));
 | 
						|
    
 | 
						|
    btVector3	guessVector(b.getWorldTransform().getOrigin()-a.getWorldTransform().getOrigin());//?? why not use the GJK input?
 | 
						|
    
 | 
						|
    btGjkEpaSolver3::sResults	results;
 | 
						|
 | 
						|
    
 | 
						|
    if(btGjkEpaSolver3_Penetration(a,b,guessVector,results))
 | 
						|
        
 | 
						|
    {
 | 
						|
        //	debugDraw->drawLine(results.witnesses[1],results.witnesses[1]+results.normal,btVector3(255,0,0));
 | 
						|
        //resultOut->addContactPoint(results.normal,results.witnesses[1],-results.depth);
 | 
						|
        wWitnessOnA = results.witnesses[0];
 | 
						|
        wWitnessOnB = results.witnesses[1];
 | 
						|
        v = results.normal;
 | 
						|
        return true;
 | 
						|
    } else
 | 
						|
    {
 | 
						|
        if(btGjkEpaSolver3_Distance(a,b,guessVector,results))
 | 
						|
        {
 | 
						|
            wWitnessOnA = results.witnesses[0];
 | 
						|
            wWitnessOnB = results.witnesses[1];
 | 
						|
            v = results.normal;
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
template <typename btConvexTemplate, typename btGjkDistanceTemplate>
 | 
						|
int	btComputeGjkEpaPenetration(const btConvexTemplate& a, const btConvexTemplate& b, const btGjkCollisionDescription& colDesc, btVoronoiSimplexSolver& simplexSolver, btGjkDistanceTemplate* distInfo)
 | 
						|
{
 | 
						|
    
 | 
						|
    bool m_catchDegeneracies  = true;
 | 
						|
    btScalar m_cachedSeparatingDistance = 0.f;
 | 
						|
    
 | 
						|
    btScalar distance=btScalar(0.);
 | 
						|
    btVector3	normalInB(btScalar(0.),btScalar(0.),btScalar(0.));
 | 
						|
    
 | 
						|
    btVector3 pointOnA,pointOnB;
 | 
						|
    btTransform	localTransA = a.getWorldTransform();
 | 
						|
    btTransform localTransB = b.getWorldTransform();
 | 
						|
    
 | 
						|
    btScalar marginA = a.getMargin();
 | 
						|
    btScalar marginB = b.getMargin();
 | 
						|
    
 | 
						|
    int m_curIter = 0;
 | 
						|
    int gGjkMaxIter = colDesc.m_maxGjkIterations;//this is to catch invalid input, perhaps check for #NaN?
 | 
						|
    btVector3 m_cachedSeparatingAxis = colDesc.m_firstDir;
 | 
						|
    
 | 
						|
    bool isValid = false;
 | 
						|
    bool checkSimplex = false;
 | 
						|
    bool checkPenetration = true;
 | 
						|
    int m_degenerateSimplex = 0;
 | 
						|
    
 | 
						|
    int m_lastUsedMethod = -1;
 | 
						|
    
 | 
						|
    {
 | 
						|
        btScalar squaredDistance = BT_LARGE_FLOAT;
 | 
						|
        btScalar delta = btScalar(0.);
 | 
						|
        
 | 
						|
        btScalar margin = marginA + marginB;
 | 
						|
        
 | 
						|
        
 | 
						|
        
 | 
						|
        simplexSolver.reset();
 | 
						|
        
 | 
						|
        for ( ; ; )
 | 
						|
            //while (true)
 | 
						|
        {
 | 
						|
            
 | 
						|
            btVector3 seperatingAxisInA = (-m_cachedSeparatingAxis)* localTransA.getBasis();
 | 
						|
            btVector3 seperatingAxisInB = m_cachedSeparatingAxis* localTransB.getBasis();
 | 
						|
            
 | 
						|
            btVector3 pInA = a.getLocalSupportWithoutMargin(seperatingAxisInA);
 | 
						|
            btVector3 qInB = b.getLocalSupportWithoutMargin(seperatingAxisInB);
 | 
						|
            
 | 
						|
            btVector3  pWorld = localTransA(pInA);
 | 
						|
            btVector3  qWorld = localTransB(qInB);
 | 
						|
            
 | 
						|
            
 | 
						|
            
 | 
						|
            btVector3 w	= pWorld - qWorld;
 | 
						|
            delta = m_cachedSeparatingAxis.dot(w);
 | 
						|
            
 | 
						|
            // potential exit, they don't overlap
 | 
						|
            if ((delta > btScalar(0.0)) && (delta * delta > squaredDistance * colDesc.m_maximumDistanceSquared))
 | 
						|
            {
 | 
						|
                m_degenerateSimplex = 10;
 | 
						|
                checkSimplex=true;
 | 
						|
                //checkPenetration = false;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            
 | 
						|
            //exit 0: the new point is already in the simplex, or we didn't come any closer
 | 
						|
            if (simplexSolver.inSimplex(w))
 | 
						|
            {
 | 
						|
                m_degenerateSimplex = 1;
 | 
						|
                checkSimplex = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            // are we getting any closer ?
 | 
						|
            btScalar f0 = squaredDistance - delta;
 | 
						|
            btScalar f1 = squaredDistance * colDesc.m_gjkRelError2;
 | 
						|
            
 | 
						|
            if (f0 <= f1)
 | 
						|
            {
 | 
						|
                if (f0 <= btScalar(0.))
 | 
						|
                {
 | 
						|
                    m_degenerateSimplex = 2;
 | 
						|
                } else
 | 
						|
                {
 | 
						|
                    m_degenerateSimplex = 11;
 | 
						|
                }
 | 
						|
                checkSimplex = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            
 | 
						|
            //add current vertex to simplex
 | 
						|
            simplexSolver.addVertex(w, pWorld, qWorld);
 | 
						|
            btVector3 newCachedSeparatingAxis;
 | 
						|
            
 | 
						|
            //calculate the closest point to the origin (update vector v)
 | 
						|
            if (!simplexSolver.closest(newCachedSeparatingAxis))
 | 
						|
            {
 | 
						|
                m_degenerateSimplex = 3;
 | 
						|
                checkSimplex = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            
 | 
						|
            if(newCachedSeparatingAxis.length2()<colDesc.m_gjkRelError2)
 | 
						|
            {
 | 
						|
                m_cachedSeparatingAxis = newCachedSeparatingAxis;
 | 
						|
                m_degenerateSimplex = 6;
 | 
						|
                checkSimplex = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            
 | 
						|
            btScalar previousSquaredDistance = squaredDistance;
 | 
						|
            squaredDistance = newCachedSeparatingAxis.length2();
 | 
						|
#if 0
 | 
						|
            ///warning: this termination condition leads to some problems in 2d test case see Bullet/Demos/Box2dDemo
 | 
						|
            if (squaredDistance>previousSquaredDistance)
 | 
						|
            {
 | 
						|
                m_degenerateSimplex = 7;
 | 
						|
                squaredDistance = previousSquaredDistance;
 | 
						|
                checkSimplex = false;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
#endif //
 | 
						|
            
 | 
						|
            
 | 
						|
            //redundant m_simplexSolver->compute_points(pointOnA, pointOnB);
 | 
						|
            
 | 
						|
            //are we getting any closer ?
 | 
						|
            if (previousSquaredDistance - squaredDistance <= SIMD_EPSILON * previousSquaredDistance)
 | 
						|
            {
 | 
						|
                //				m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
 | 
						|
                checkSimplex = true;
 | 
						|
                m_degenerateSimplex = 12;
 | 
						|
                
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            
 | 
						|
            m_cachedSeparatingAxis = newCachedSeparatingAxis;
 | 
						|
            
 | 
						|
            //degeneracy, this is typically due to invalid/uninitialized worldtransforms for a btCollisionObject
 | 
						|
            if (m_curIter++ > gGjkMaxIter)
 | 
						|
            {
 | 
						|
#if defined(DEBUG) || defined (_DEBUG)
 | 
						|
                
 | 
						|
                printf("btGjkPairDetector maxIter exceeded:%i\n",m_curIter);
 | 
						|
                printf("sepAxis=(%f,%f,%f), squaredDistance = %f\n",
 | 
						|
                       m_cachedSeparatingAxis.getX(),
 | 
						|
                       m_cachedSeparatingAxis.getY(),
 | 
						|
                       m_cachedSeparatingAxis.getZ(),
 | 
						|
                       squaredDistance);
 | 
						|
#endif
 | 
						|
                
 | 
						|
                break;
 | 
						|
                
 | 
						|
            }
 | 
						|
            
 | 
						|
            
 | 
						|
            bool check = (!simplexSolver.fullSimplex());
 | 
						|
            //bool check = (!m_simplexSolver->fullSimplex() && squaredDistance > SIMD_EPSILON * m_simplexSolver->maxVertex());
 | 
						|
            
 | 
						|
            if (!check)
 | 
						|
            {
 | 
						|
                //do we need this backup_closest here ?
 | 
						|
                //				m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
 | 
						|
                m_degenerateSimplex = 13;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        
 | 
						|
        if (checkSimplex)
 | 
						|
        {
 | 
						|
            simplexSolver.compute_points(pointOnA, pointOnB);
 | 
						|
            normalInB = m_cachedSeparatingAxis;
 | 
						|
            
 | 
						|
            btScalar lenSqr =m_cachedSeparatingAxis.length2();
 | 
						|
            
 | 
						|
            //valid normal
 | 
						|
            if (lenSqr < 0.0001)
 | 
						|
            {
 | 
						|
                m_degenerateSimplex = 5;
 | 
						|
            }
 | 
						|
            if (lenSqr > SIMD_EPSILON*SIMD_EPSILON)
 | 
						|
            {
 | 
						|
                btScalar rlen = btScalar(1.) / btSqrt(lenSqr );
 | 
						|
                normalInB *= rlen; //normalize
 | 
						|
                
 | 
						|
                btScalar s = btSqrt(squaredDistance);
 | 
						|
                
 | 
						|
                btAssert(s > btScalar(0.0));
 | 
						|
                pointOnA -= m_cachedSeparatingAxis * (marginA / s);
 | 
						|
                pointOnB += m_cachedSeparatingAxis * (marginB / s);
 | 
						|
                distance = ((btScalar(1.)/rlen) - margin);
 | 
						|
                isValid = true;
 | 
						|
                
 | 
						|
                m_lastUsedMethod = 1;
 | 
						|
            } else
 | 
						|
            {
 | 
						|
                m_lastUsedMethod = 2;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        
 | 
						|
        bool catchDegeneratePenetrationCase =
 | 
						|
        (m_catchDegeneracies &&  m_degenerateSimplex && ((distance+margin) < 0.01));
 | 
						|
        
 | 
						|
        //if (checkPenetration && !isValid)
 | 
						|
        if (checkPenetration && (!isValid || catchDegeneratePenetrationCase ))
 | 
						|
        {
 | 
						|
            //penetration case
 | 
						|
            
 | 
						|
            //if there is no way to handle penetrations, bail out
 | 
						|
            
 | 
						|
            // Penetration depth case.
 | 
						|
            btVector3 tmpPointOnA,tmpPointOnB;
 | 
						|
            
 | 
						|
            m_cachedSeparatingAxis.setZero();
 | 
						|
            
 | 
						|
            bool isValid2 = btGjkEpaCalcPenDepth(a,b,
 | 
						|
                                                 colDesc,
 | 
						|
                                                 m_cachedSeparatingAxis, tmpPointOnA, tmpPointOnB);
 | 
						|
            
 | 
						|
            if (isValid2)
 | 
						|
            {
 | 
						|
                btVector3 tmpNormalInB = tmpPointOnB-tmpPointOnA;
 | 
						|
                btScalar lenSqr = tmpNormalInB.length2();
 | 
						|
                if (lenSqr <= (SIMD_EPSILON*SIMD_EPSILON))
 | 
						|
                {
 | 
						|
                    tmpNormalInB = m_cachedSeparatingAxis;
 | 
						|
                    lenSqr = m_cachedSeparatingAxis.length2();
 | 
						|
                }
 | 
						|
                
 | 
						|
                if (lenSqr > (SIMD_EPSILON*SIMD_EPSILON))
 | 
						|
                {
 | 
						|
                    tmpNormalInB /= btSqrt(lenSqr);
 | 
						|
                    btScalar distance2 = -(tmpPointOnA-tmpPointOnB).length();
 | 
						|
                    //only replace valid penetrations when the result is deeper (check)
 | 
						|
                    if (!isValid || (distance2 < distance))
 | 
						|
                    {
 | 
						|
                        distance = distance2;
 | 
						|
                        pointOnA = tmpPointOnA;
 | 
						|
                        pointOnB = tmpPointOnB;
 | 
						|
                        normalInB = tmpNormalInB;
 | 
						|
                        
 | 
						|
                        isValid = true;
 | 
						|
                        m_lastUsedMethod = 3;
 | 
						|
                    } else
 | 
						|
                    {
 | 
						|
                        m_lastUsedMethod = 8;
 | 
						|
                    }
 | 
						|
                } else
 | 
						|
                {
 | 
						|
                    m_lastUsedMethod = 9;
 | 
						|
                }
 | 
						|
            } else
 | 
						|
                
 | 
						|
            {
 | 
						|
                ///this is another degenerate case, where the initial GJK calculation reports a degenerate case
 | 
						|
                ///EPA reports no penetration, and the second GJK (using the supporting vector without margin)
 | 
						|
                ///reports a valid positive distance. Use the results of the second GJK instead of failing.
 | 
						|
                ///thanks to Jacob.Langford for the reproduction case
 | 
						|
                ///http://code.google.com/p/bullet/issues/detail?id=250
 | 
						|
                
 | 
						|
                
 | 
						|
                if (m_cachedSeparatingAxis.length2() > btScalar(0.))
 | 
						|
                {
 | 
						|
                    btScalar distance2 = (tmpPointOnA-tmpPointOnB).length()-margin;
 | 
						|
                    //only replace valid distances when the distance is less
 | 
						|
                    if (!isValid || (distance2 < distance))
 | 
						|
                    {
 | 
						|
                        distance = distance2;
 | 
						|
                        pointOnA = tmpPointOnA;
 | 
						|
                        pointOnB = tmpPointOnB;
 | 
						|
                        pointOnA -= m_cachedSeparatingAxis * marginA ;
 | 
						|
                        pointOnB += m_cachedSeparatingAxis * marginB ;
 | 
						|
                        normalInB = m_cachedSeparatingAxis;
 | 
						|
                        normalInB.normalize();
 | 
						|
                        
 | 
						|
                        isValid = true;
 | 
						|
                        m_lastUsedMethod = 6;
 | 
						|
                    } else
 | 
						|
                    {
 | 
						|
                        m_lastUsedMethod = 5;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    
 | 
						|
    
 | 
						|
    if (isValid && ((distance < 0) || (distance*distance < colDesc.m_maximumDistanceSquared)))
 | 
						|
    {
 | 
						|
        
 | 
						|
        m_cachedSeparatingAxis = normalInB;
 | 
						|
        m_cachedSeparatingDistance = distance;
 | 
						|
        distInfo->m_distance = distance;
 | 
						|
        distInfo->m_normalBtoA = normalInB;
 | 
						|
        distInfo->m_pointOnB = pointOnB;
 | 
						|
        distInfo->m_pointOnA = pointOnB+normalInB*distance;
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    return -m_lastUsedMethod;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
#endif //BT_GJK_EPA_PENETATION_CONVEX_COLLISION_H
 |