186 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			186 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
Bullet Continuous Collision Detection and Physics Library
 | 
						|
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | 
						|
 | 
						|
This software is provided 'as-is', without any express or implied warranty.
 | 
						|
In no event will the authors be held liable for any damages arising from the use of this software.
 | 
						|
Permission is granted to anyone to use this software for any purpose, 
 | 
						|
including commercial applications, and to alter it and redistribute it freely, 
 | 
						|
subject to the following restrictions:
 | 
						|
 | 
						|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | 
						|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | 
						|
3. This notice may not be removed or altered from any source distribution.
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
#ifndef BT_VORONOI_SIMPLEX_SOLVER_H
 | 
						|
#define BT_VORONOI_SIMPLEX_SOLVER_H
 | 
						|
 | 
						|
#include "btSimplexSolverInterface.h"
 | 
						|
 | 
						|
 | 
						|
 | 
						|
#define VORONOI_SIMPLEX_MAX_VERTS 5
 | 
						|
 | 
						|
///disable next define, or use defaultCollisionConfiguration->getSimplexSolver()->setEqualVertexThreshold(0.f) to disable/configure
 | 
						|
#define BT_USE_EQUAL_VERTEX_THRESHOLD
 | 
						|
 | 
						|
#ifdef BT_USE_DOUBLE_PRECISION
 | 
						|
#define VORONOI_DEFAULT_EQUAL_VERTEX_THRESHOLD 1e-12f
 | 
						|
#else
 | 
						|
#define VORONOI_DEFAULT_EQUAL_VERTEX_THRESHOLD 0.0001f
 | 
						|
#endif//BT_USE_DOUBLE_PRECISION
 | 
						|
 | 
						|
struct btUsageBitfield{
 | 
						|
	btUsageBitfield()
 | 
						|
	{
 | 
						|
		reset();
 | 
						|
	}
 | 
						|
 | 
						|
	void reset()
 | 
						|
	{
 | 
						|
		usedVertexA = false;
 | 
						|
		usedVertexB = false;
 | 
						|
		usedVertexC = false;
 | 
						|
		usedVertexD = false;
 | 
						|
	}
 | 
						|
	unsigned short usedVertexA	: 1;
 | 
						|
	unsigned short usedVertexB	: 1;
 | 
						|
	unsigned short usedVertexC	: 1;
 | 
						|
	unsigned short usedVertexD	: 1;
 | 
						|
	unsigned short unused1		: 1;
 | 
						|
	unsigned short unused2		: 1;
 | 
						|
	unsigned short unused3		: 1;
 | 
						|
	unsigned short unused4		: 1;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
struct	btSubSimplexClosestResult
 | 
						|
{
 | 
						|
	btVector3	m_closestPointOnSimplex;
 | 
						|
	//MASK for m_usedVertices
 | 
						|
	//stores the simplex vertex-usage, using the MASK, 
 | 
						|
	// if m_usedVertices & MASK then the related vertex is used
 | 
						|
	btUsageBitfield	m_usedVertices;
 | 
						|
	btScalar	m_barycentricCoords[4];
 | 
						|
	bool m_degenerate;
 | 
						|
 | 
						|
	void	reset()
 | 
						|
	{
 | 
						|
		m_degenerate = false;
 | 
						|
		setBarycentricCoordinates();
 | 
						|
		m_usedVertices.reset();
 | 
						|
	}
 | 
						|
	bool	isValid()
 | 
						|
	{
 | 
						|
		bool valid = (m_barycentricCoords[0] >= btScalar(0.)) &&
 | 
						|
			(m_barycentricCoords[1] >= btScalar(0.)) &&
 | 
						|
			(m_barycentricCoords[2] >= btScalar(0.)) &&
 | 
						|
			(m_barycentricCoords[3] >= btScalar(0.));
 | 
						|
 | 
						|
 | 
						|
		return valid;
 | 
						|
	}
 | 
						|
	void	setBarycentricCoordinates(btScalar a=btScalar(0.),btScalar b=btScalar(0.),btScalar c=btScalar(0.),btScalar d=btScalar(0.))
 | 
						|
	{
 | 
						|
		m_barycentricCoords[0] = a;
 | 
						|
		m_barycentricCoords[1] = b;
 | 
						|
		m_barycentricCoords[2] = c;
 | 
						|
		m_barycentricCoords[3] = d;
 | 
						|
	}
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
/// btVoronoiSimplexSolver is an implementation of the closest point distance algorithm from a 1-4 points simplex to the origin.
 | 
						|
/// Can be used with GJK, as an alternative to Johnson distance algorithm.
 | 
						|
#ifdef NO_VIRTUAL_INTERFACE
 | 
						|
ATTRIBUTE_ALIGNED16(class) btVoronoiSimplexSolver
 | 
						|
#else
 | 
						|
ATTRIBUTE_ALIGNED16(class) btVoronoiSimplexSolver : public btSimplexSolverInterface
 | 
						|
#endif
 | 
						|
{
 | 
						|
public:
 | 
						|
 | 
						|
	BT_DECLARE_ALIGNED_ALLOCATOR();
 | 
						|
 | 
						|
	int	m_numVertices;
 | 
						|
 | 
						|
	btVector3	m_simplexVectorW[VORONOI_SIMPLEX_MAX_VERTS];
 | 
						|
	btVector3	m_simplexPointsP[VORONOI_SIMPLEX_MAX_VERTS];
 | 
						|
	btVector3	m_simplexPointsQ[VORONOI_SIMPLEX_MAX_VERTS];
 | 
						|
 | 
						|
	
 | 
						|
 | 
						|
	btVector3	m_cachedP1;
 | 
						|
	btVector3	m_cachedP2;
 | 
						|
	btVector3	m_cachedV;
 | 
						|
	btVector3	m_lastW;
 | 
						|
	
 | 
						|
	btScalar	m_equalVertexThreshold;
 | 
						|
	bool		m_cachedValidClosest;
 | 
						|
 | 
						|
 | 
						|
	btSubSimplexClosestResult m_cachedBC;
 | 
						|
 | 
						|
	bool	m_needsUpdate;
 | 
						|
	
 | 
						|
	void	removeVertex(int index);
 | 
						|
	void	reduceVertices (const btUsageBitfield& usedVerts);
 | 
						|
	bool	updateClosestVectorAndPoints();
 | 
						|
 | 
						|
	bool	closestPtPointTetrahedron(const btVector3& p, const btVector3& a, const btVector3& b, const btVector3& c, const btVector3& d, btSubSimplexClosestResult& finalResult);
 | 
						|
	int		pointOutsideOfPlane(const btVector3& p, const btVector3& a, const btVector3& b, const btVector3& c, const btVector3& d);
 | 
						|
	bool	closestPtPointTriangle(const btVector3& p, const btVector3& a, const btVector3& b, const btVector3& c,btSubSimplexClosestResult& result);
 | 
						|
 | 
						|
public:
 | 
						|
 | 
						|
	btVoronoiSimplexSolver()
 | 
						|
		:  m_equalVertexThreshold(VORONOI_DEFAULT_EQUAL_VERTEX_THRESHOLD)
 | 
						|
	{
 | 
						|
	}
 | 
						|
	 void reset();
 | 
						|
 | 
						|
	 void addVertex(const btVector3& w, const btVector3& p, const btVector3& q);
 | 
						|
 | 
						|
	 void	setEqualVertexThreshold(btScalar threshold)
 | 
						|
	 {
 | 
						|
		 m_equalVertexThreshold = threshold;
 | 
						|
	 }
 | 
						|
 | 
						|
	 btScalar	getEqualVertexThreshold() const
 | 
						|
	 {
 | 
						|
		 return m_equalVertexThreshold;
 | 
						|
	 }
 | 
						|
 | 
						|
	 bool closest(btVector3& v);
 | 
						|
 | 
						|
	 btScalar maxVertex();
 | 
						|
 | 
						|
	 bool fullSimplex() const
 | 
						|
	 {
 | 
						|
		 return (m_numVertices == 4);
 | 
						|
	 }
 | 
						|
 | 
						|
	 int getSimplex(btVector3 *pBuf, btVector3 *qBuf, btVector3 *yBuf) const;
 | 
						|
 | 
						|
	 bool inSimplex(const btVector3& w);
 | 
						|
	
 | 
						|
	 void backup_closest(btVector3& v) ;
 | 
						|
 | 
						|
	 bool emptySimplex() const ;
 | 
						|
 | 
						|
	 void compute_points(btVector3& p1, btVector3& p2) ;
 | 
						|
 | 
						|
	 int numVertices() const 
 | 
						|
	 {
 | 
						|
		 return m_numVertices;
 | 
						|
	 }
 | 
						|
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
#endif //BT_VORONOI_SIMPLEX_SOLVER_H
 | 
						|
 |