413 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			413 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import Union
 | |
| 
 | |
| import bpy
 | |
| 
 | |
| import lnx
 | |
| import lnx.log as log
 | |
| import lnx.material.cycles as c
 | |
| import lnx.material.cycles_functions as c_functions
 | |
| from lnx.material.parser_state import ParserPass, ParserState
 | |
| from lnx.material.shader import floatstr, vec3str
 | |
| 
 | |
| if lnx.is_reload(__name__):
 | |
|     log = lnx.reload_module(log)
 | |
|     c = lnx.reload_module(c)
 | |
|     c_functions = lnx.reload_module(c_functions)
 | |
|     lnx.material.parser_state = lnx.reload_module(lnx.material.parser_state)
 | |
|     from lnx.material.parser_state import ParserState
 | |
|     lnx.material.shader = lnx.reload_module(lnx.material.shader)
 | |
|     from lnx.material.shader import floatstr, vec3str
 | |
| else:
 | |
|     lnx.enable_reload(__name__)
 | |
| 
 | |
| 
 | |
| def parse_maprange(node: bpy.types.ShaderNodeMapRange, out_socket: bpy.types.NodeSocket, state: ParserState) -> floatstr:
 | |
| 
 | |
|     interp = node.interpolation_type
 | |
| 
 | |
|     value: str = c.parse_value_input(node.inputs[0]) if node.inputs[0].is_linked else c.to_vec1(node.inputs[0].default_value)
 | |
|     fromMin = c.parse_value_input(node.inputs[1])
 | |
|     fromMax = c.parse_value_input(node.inputs[2])
 | |
|     toMin = c.parse_value_input(node.inputs[3])
 | |
|     toMax = c.parse_value_input(node.inputs[4])
 | |
| 
 | |
|     if interp == "LINEAR":
 | |
|         state.curshader.add_function(c_functions.str_map_range_linear)
 | |
|         out = f'map_range_linear({value}, {fromMin}, {fromMax}, {toMin}, {toMax})'
 | |
| 
 | |
|     elif interp == "STEPPED":
 | |
|         steps = float(c.parse_value_input(node.inputs[5]))
 | |
|         state.curshader.add_function(c_functions.str_map_range_stepped)
 | |
|         out = f'map_range_stepped({value}, {fromMin}, {fromMax}, {toMin}, {toMax}, {steps})'
 | |
| 
 | |
|     elif interp == "SMOOTHSTEP":
 | |
|         state.curshader.add_function(c_functions.str_map_range_smoothstep)
 | |
|         out = f'map_range_smoothstep({value}, {fromMin}, {fromMax}, {toMin}, {toMax})'
 | |
| 
 | |
|     elif interp == "SMOOTHERSTEP":
 | |
|         state.curshader.add_function(c_functions.str_map_range_smootherstep)
 | |
|         out = f'map_range_smootherstep({value}, {fromMin}, {fromMax}, {toMin}, {toMax})'
 | |
| 
 | |
|     else:
 | |
|         log.warn(f'Interpolation mode {interp} not supported for Map Range node')
 | |
|         return '0.0'
 | |
| 
 | |
|     if node.clamp:
 | |
|         out = f'clamp({out}, {toMin}, {toMax})'
 | |
| 
 | |
|     return out
 | |
| 
 | |
| def parse_blackbody(node: bpy.types.ShaderNodeBlackbody, out_socket: bpy.types.NodeSocket, state: ParserState) -> vec3str:
 | |
| 
 | |
|     t = c.parse_value_input(node.inputs[0])
 | |
| 
 | |
|     state.curshader.add_function(c_functions.str_blackbody)
 | |
|     return f'blackbody({t})'
 | |
| 
 | |
| def parse_clamp(node: bpy.types.ShaderNodeClamp, out_socket: bpy.types.NodeSocket, state: ParserState) -> floatstr:
 | |
|     value = c.parse_value_input(node.inputs['Value'])
 | |
|     minVal = c.parse_value_input(node.inputs['Min'])
 | |
|     maxVal = c.parse_value_input(node.inputs['Max'])
 | |
| 
 | |
|     if node.clamp_type == 'MINMAX':
 | |
|         # Condition is minVal < maxVal, otherwise use 'RANGE' type
 | |
|         return f'clamp({value}, {minVal}, {maxVal})'
 | |
| 
 | |
|     elif node.clamp_type == 'RANGE':
 | |
|         return f'{minVal} < {maxVal} ? clamp({value}, {minVal}, {maxVal}) : clamp({value}, {maxVal}, {minVal})'
 | |
| 
 | |
|     else:
 | |
|         log.warn(f'Clamp node: unsupported clamp type {node.clamp_type}.')
 | |
|         return value
 | |
| 
 | |
| 
 | |
| def parse_valtorgb(node: bpy.types.ShaderNodeValToRGB, out_socket: bpy.types.NodeSocket, state: ParserState) -> Union[floatstr, vec3str]:
 | |
| 
 | |
|     input_fac: bpy.types.NodeSocket = node.inputs[0]
 | |
|     alpha_out = out_socket == node.outputs[1]
 | |
|     fac: str = c.parse_value_input(input_fac) if input_fac.is_linked else c.to_vec1(input_fac.default_value)
 | |
|     interp = node.color_ramp.interpolation
 | |
|     elems = node.color_ramp.elements
 | |
|     
 | |
|     if len(elems) == 1:
 | |
|         if alpha_out:
 | |
|             return c.to_vec1(elems[0].color[3])  # Return alpha from the color
 | |
|         else:
 | |
|             return c.to_vec3(elems[0].color)  # Return RGB
 | |
|     
 | |
|     name_prefix = c.node_name(node.name).upper()
 | |
|     
 | |
|     if alpha_out:
 | |
|         cols_var = name_prefix + '_ALPHAS'
 | |
|     else:
 | |
|         cols_var = name_prefix + '_COLS'
 | |
| 
 | |
|     if state.current_pass == ParserPass.REGULAR:
 | |
|         if alpha_out:
 | |
|             cols_entries = ', '.join(f'{elem.color[3]}' for elem in elems)
 | |
|             # Add last value twice to avoid out of bounds access
 | |
|             cols_entries += f', {elems[len(elems) - 1].color[3]}'
 | |
|             state.curshader.add_const("float", cols_var, cols_entries, array_size=len(elems) + 1)
 | |
|         else:
 | |
|             # Create array of RGB values for color output
 | |
|             cols_entries = ', '.join(f'vec3({elem.color[0]}, {elem.color[1]}, {elem.color[2]})' for elem in elems)
 | |
|             cols_entries += f', vec3({elems[len(elems) - 1].color[0]}, {elems[len(elems) - 1].color[1]}, {elems[len(elems) - 1].color[2]})'
 | |
|             state.curshader.add_const("vec3", cols_var, cols_entries, array_size=len(elems) + 1)
 | |
| 
 | |
|     fac_var = c.node_name(node.name) + '_fac' + state.get_parser_pass_suffix()
 | |
|     state.curshader.write(f'float {fac_var} = {fac};')
 | |
| 
 | |
|     # Get index of the nearest left element relative to the factor
 | |
|     index = '0 + '
 | |
|     index += ' + '.join([f'(({fac_var} > {elems[i].position}) ? 1 : 0)' for i in range(1, len(elems))])
 | |
| 
 | |
|     # Write index
 | |
|     index_var = c.node_name(node.name) + '_i' + state.get_parser_pass_suffix()
 | |
|     state.curshader.write(f'int {index_var} = {index};')
 | |
| 
 | |
|     if interp == 'CONSTANT':
 | |
|         return f'{cols_var}[{index_var}]'
 | |
| 
 | |
|     # Linear interpolation
 | |
|     else:
 | |
|         # Write factor array - same for both color and alpha
 | |
|         facs_var = name_prefix + '_FACS'
 | |
|         if state.current_pass == ParserPass.REGULAR:
 | |
|             facs_entries = ', '.join(str(elem.position) for elem in elems)
 | |
|             # Add one more entry at the rightmost position to avoid out of bounds access
 | |
|             facs_entries += ', 1.0'
 | |
|             state.curshader.add_const("float", facs_var, facs_entries, array_size=len(elems) + 1)
 | |
| 
 | |
|         # Calculation for interpolation position
 | |
|         prev_stop_fac = f'{facs_var}[{index_var}]'
 | |
|         next_stop_fac = f'{facs_var}[{index_var} + 1]'
 | |
|         prev_stop_col = f'{cols_var}[{index_var}]'
 | |
|         next_stop_col = f'{cols_var}[{index_var} + 1]'
 | |
|         rel_pos = f'({fac_var} - {prev_stop_fac}) * (1.0 / ({next_stop_fac} - {prev_stop_fac}))'
 | |
|         
 | |
|         # Use mix function for both alpha and color outputs (mix works on floats too)
 | |
|         return f'mix({prev_stop_col}, {next_stop_col}, max({rel_pos}, 0.0))'
 | |
| 
 | |
| if bpy.app.version > (3, 2, 0):
 | |
|     def parse_combine_color(node: bpy.types.ShaderNodeCombineColor, out_socket: bpy.types.NodeSocket, state: ParserState) -> floatstr:
 | |
|         if node.mode == 'RGB':
 | |
|             return parse_combrgb(node, out_socket, state)
 | |
|         elif node.mode == 'HSV':
 | |
|             return parse_combhsv(node, out_socket, state)
 | |
|         elif node.mode == 'HSL':
 | |
|             log.warn('Combine Color node: HSL mode is not supported, using default value')
 | |
|             return c.to_vec3((0.0, 0.0, 0.0))
 | |
| 
 | |
| 
 | |
| def parse_combhsv(node: bpy.types.ShaderNodeCombineHSV, out_socket: bpy.types.NodeSocket, state: ParserState) -> vec3str:
 | |
|     state.curshader.add_function(c_functions.str_hue_sat)
 | |
|     h = c.parse_value_input(node.inputs[0])
 | |
|     s = c.parse_value_input(node.inputs[1])
 | |
|     v = c.parse_value_input(node.inputs[2])
 | |
|     return f'hsv_to_rgb(vec3({h}, {s}, {v}))'
 | |
| 
 | |
| 
 | |
| def parse_combrgb(node: bpy.types.ShaderNodeCombineRGB, out_socket: bpy.types.NodeSocket, state: ParserState) -> vec3str:
 | |
|     r = c.parse_value_input(node.inputs[0])
 | |
|     g = c.parse_value_input(node.inputs[1])
 | |
|     b = c.parse_value_input(node.inputs[2])
 | |
|     return f'vec3({r}, {g}, {b})'
 | |
| 
 | |
| 
 | |
| def parse_combxyz(node: bpy.types.ShaderNodeCombineXYZ, out_socket: bpy.types.NodeSocket, state: ParserState) -> vec3str:
 | |
|     x = c.parse_value_input(node.inputs[0])
 | |
|     y = c.parse_value_input(node.inputs[1])
 | |
|     z = c.parse_value_input(node.inputs[2])
 | |
|     return f'vec3({x}, {y}, {z})'
 | |
| 
 | |
| 
 | |
| def parse_wavelength(node: bpy.types.ShaderNodeWavelength, out_socket: bpy.types.NodeSocket, state: ParserState) -> vec3str:
 | |
|     state.curshader.add_function(c_functions.str_wavelength_to_rgb)
 | |
|     wl = c.parse_value_input(node.inputs[0])
 | |
|     # Roughly map to cycles - 450 to 600 nanometers
 | |
|     return f'wavelength_to_rgb(({wl} - 450.0) / 150.0)'
 | |
| 
 | |
| 
 | |
| def parse_vectormath(node: bpy.types.ShaderNodeVectorMath, out_socket: bpy.types.NodeSocket, state: ParserState) -> Union[floatstr, vec3str]:
 | |
|     op = node.operation
 | |
| 
 | |
|     vec1 = c.parse_vector_input(node.inputs[0])
 | |
|     vec2 = c.parse_vector_input(node.inputs[1])
 | |
| 
 | |
|     if out_socket.type == 'VECTOR':
 | |
|         if op == 'ADD':
 | |
|             return f'({vec1} + {vec2})'
 | |
|         elif op == 'SUBTRACT':
 | |
|             return f'({vec1} - {vec2})'
 | |
|         elif op == 'MULTIPLY':
 | |
|             return f'({vec1} * {vec2})'
 | |
|         elif op == 'DIVIDE':
 | |
|             state.curshader.add_function(c_functions.str_safe_divide)
 | |
|             return f'safe_divide({vec1}, {vec2})'
 | |
| 
 | |
|         elif op == 'NORMALIZE':
 | |
|             return f'normalize({vec1})'
 | |
|         elif op == 'SCALE':
 | |
|             # Scale is input 3 despite being visually on another position (see the python tooltip in Blender)
 | |
|             scale = c.parse_value_input(node.inputs[3])
 | |
|             return f'{vec1} * {scale}'
 | |
| 
 | |
|         elif op == 'REFLECT':
 | |
|             return f'reflect({vec1}, normalize({vec2}))'
 | |
|         elif op == 'PROJECT':
 | |
|             state.curshader.add_function(c_functions.str_project)
 | |
|             return f'project({vec1}, {vec2})'
 | |
|         elif op == 'CROSS_PRODUCT':
 | |
|             return f'cross({vec1}, {vec2})'
 | |
| 
 | |
|         elif op == 'SINE':
 | |
|             return f'sin({vec1})'
 | |
|         elif op == 'COSINE':
 | |
|             return f'cos({vec1})'
 | |
|         elif op == 'TANGENT':
 | |
|             return f'tan({vec1})'
 | |
| 
 | |
|         elif op == 'MODULO':
 | |
|             return f'mod({vec1}, {vec2})'
 | |
|         elif op == 'FRACTION':
 | |
|             return f'fract({vec1})'
 | |
| 
 | |
|         elif op == 'SNAP':
 | |
|             state.curshader.add_function(c_functions.str_safe_divide)
 | |
|             return f'floor(safe_divide({vec1}, {vec2})) * {vec2}'
 | |
|         elif op == 'WRAP':
 | |
|             vec3 = c.parse_vector_input(node.inputs[2])
 | |
|             state.curshader.add_function(c_functions.str_wrap)
 | |
|             return f'wrap({vec1}, {vec2}, {vec3})'
 | |
|         elif op == 'CEIL':
 | |
|             return f'ceil({vec1})'
 | |
|         elif op == 'FLOOR':
 | |
|             return f'floor({vec1})'
 | |
|         elif op == 'MAXIMUM':
 | |
|             return f'max({vec1}, {vec2})'
 | |
|         elif op == 'MINIMUM':
 | |
|             return f'min({vec1}, {vec2})'
 | |
|         elif op == 'ABSOLUTE':
 | |
|             return f'abs({vec1})'
 | |
| 
 | |
|         log.warn(f'Vectormath node: unsupported operation {node.operation}.')
 | |
|         return vec1
 | |
| 
 | |
|     # Float output
 | |
|     if op == 'DOT_PRODUCT':
 | |
|         return f'dot({vec1}, {vec2})'
 | |
|     elif op == 'DISTANCE':
 | |
|         return f'distance({vec1}, {vec2})'
 | |
|     elif op == 'LENGTH':
 | |
|         return f'length({vec1})'
 | |
| 
 | |
|     log.warn(f'Vectormath node: unsupported operation {node.operation}.')
 | |
|     return '0.0'
 | |
| 
 | |
| 
 | |
| def parse_math(node: bpy.types.ShaderNodeMath, out_socket: bpy.types.NodeSocket, state: ParserState) -> floatstr:
 | |
|     val1 = c.parse_value_input(node.inputs[0])
 | |
|     val2 = c.parse_value_input(node.inputs[1])
 | |
|     op = node.operation
 | |
|     if op == 'ADD':
 | |
|         out_val = '({0} + {1})'.format(val1, val2)
 | |
|     elif op == 'SUBTRACT':
 | |
|         out_val = '({0} - {1})'.format(val1, val2)
 | |
|     elif op == 'MULTIPLY':
 | |
|         out_val = '({0} * {1})'.format(val1, val2)
 | |
|     elif op == 'DIVIDE':
 | |
|         out_val = '({0} / {1})'.format(val1, val2)
 | |
|     elif op == 'MULTIPLY_ADD':
 | |
|         val3 = c.parse_value_input(node.inputs[2])
 | |
|         out_val = '({0} * {1} + {2})'.format(val1, val2, val3)
 | |
|     elif op == 'POWER':
 | |
|         out_val = 'pow({0}, {1})'.format(val1, val2)
 | |
|     elif op == 'LOGARITHM':
 | |
|         out_val = 'log({0})'.format(val1)
 | |
|     elif op == 'SQRT':
 | |
|         out_val = 'sqrt({0})'.format(val1)
 | |
|     elif op == 'INVERSE_SQRT':
 | |
|         out_val = 'inversesqrt({0})'.format(val1)
 | |
|     elif op == 'ABSOLUTE':
 | |
|         out_val = 'abs({0})'.format(val1)
 | |
|     elif op == 'EXPONENT':
 | |
|         out_val = 'exp({0})'.format(val1)
 | |
|     elif op == 'MINIMUM':
 | |
|         out_val = 'min({0}, {1})'.format(val1, val2)
 | |
|     elif op == 'MAXIMUM':
 | |
|         out_val = 'max({0}, {1})'.format(val1, val2)
 | |
|     elif op == 'LESS_THAN':
 | |
|         out_val = 'float({0} < {1})'.format(val1, val2)
 | |
|     elif op == 'GREATER_THAN':
 | |
|         out_val = 'float({0} > {1})'.format(val1, val2)
 | |
|     elif op == 'SIGN':
 | |
|         out_val = 'sign({0})'.format(val1)
 | |
|     elif op == 'COMPARE':
 | |
|         val3 = c.parse_value_input(node.inputs[2])
 | |
|         out_val = 'float((abs({0} - {1}) <= max({2}, 1e-5)) ? 1.0 : 0.0)'.format(val1, val2, val3)
 | |
|     elif op == 'SMOOTH_MIN':
 | |
|         val3 = c.parse_value_input(node.inputs[2])
 | |
|         out_val = 'float(float({2} != 0.0 ? min({0},{1}) - (max({2} - abs({0} - {1}), 0.0) / {2}) * (max({2} - abs({0} - {1}), 0.0) / {2}) * (max({2} - abs({0} - {1}), 0.0) / {2}) * {2} * (1.0 / 6.0) : min({0}, {1})))'.format(val1, val2, val3)
 | |
|     elif op == 'SMOOTH_MAX':
 | |
|         val3 = c.parse_value_input(node.inputs[2])
 | |
|         out_val = 'float(0-(float({2} != 0.0 ? min(-{0},-{1}) - (max({2} - abs(-{0} - (-{1})), 0.0) / {2}) * (max({2} - abs(-{0} - (-{1})), 0.0) / {2}) * (max({2} - abs(-{0} - (-{1})), 0.0) / {2}) * {2} * (1.0 / 6.0) : min(-{0}, (-{1})))))'.format(val1, val2, val3)
 | |
|     elif op == 'ROUND':
 | |
|         # out_val = 'round({0})'.format(val1)
 | |
|         out_val = 'floor({0} + 0.5)'.format(val1)
 | |
|     elif op == 'FLOOR':
 | |
|         out_val = 'floor({0})'.format(val1)
 | |
|     elif op == 'CEIL':
 | |
|         out_val = 'ceil({0})'.format(val1)
 | |
|     elif op == 'TRUNC':
 | |
|         out_val = 'trunc({0})'.format(val1)
 | |
|     elif op == 'FRACT':
 | |
|         out_val = 'fract({0})'.format(val1)
 | |
|     elif op == 'MODULO':
 | |
|         # out_val = 'float({0} % {1})'.format(val1, val2)
 | |
|         out_val = 'mod({0}, {1})'.format(val1, val2)
 | |
|     elif op == 'WRAP':
 | |
|         val3 = c.parse_value_input(node.inputs[2])
 | |
|         out_val = 'float((({1}-{2}) != 0.0) ? {0} - (({1}-{2}) * floor(({0} - {2}) / ({1}-{2}))) : {2})'.format(val1, val2, val3)
 | |
|     elif op == 'SNAP':
 | |
|         out_val = 'floor(({1} != 0.0) ? {0} / {1} : 0.0) * {1}'.format(val1, val2)
 | |
|     elif op == 'PINGPONG':
 | |
|         out_val = 'float(({1} != 0.0) ? abs(fract(({0} - {1}) / ({1} * 2.0)) * {1} * 2.0 - {1}) : 0.0)'.format(val1, val2)
 | |
|     elif op == 'SINE':
 | |
|         out_val = 'sin({0})'.format(val1)
 | |
|     elif op == 'COSINE':
 | |
|         out_val = 'cos({0})'.format(val1)
 | |
|     elif op == 'TANGENT':
 | |
|         out_val = 'tan({0})'.format(val1)
 | |
|     elif op == 'ARCSINE':
 | |
|         out_val = 'asin({0})'.format(val1)
 | |
|     elif op == 'ARCCOSINE':
 | |
|         out_val = 'acos({0})'.format(val1)
 | |
|     elif op == 'ARCTANGENT':
 | |
|         out_val = 'atan({0})'.format(val1)
 | |
|     elif op == 'ARCTAN2':
 | |
|         out_val = 'atan({0}, {1})'.format(val1, val2)
 | |
|     elif op == 'SINH':
 | |
|         out_val = 'sinh({0})'.format(val1)
 | |
|     elif op == 'COSH':
 | |
|         out_val = 'cosh({0})'.format(val1)
 | |
|     elif op == 'TANH':
 | |
|         out_val = 'tanh({0})'.format(val1)
 | |
|     elif op == 'RADIANS':
 | |
|         out_val = 'radians({0})'.format(val1)
 | |
|     elif op == 'DEGREES':
 | |
|         out_val = 'degrees({0})'.format(val1)
 | |
| 
 | |
|     if node.use_clamp:
 | |
|         return 'clamp({0}, 0.0, 1.0)'.format(out_val)
 | |
|     else:
 | |
|         return out_val
 | |
| 
 | |
| 
 | |
| def parse_rgbtobw(node: bpy.types.ShaderNodeRGBToBW, out_socket: bpy.types.NodeSocket, state: ParserState) -> floatstr:
 | |
|     return c.rgb_to_bw(c.parse_vector_input(node.inputs[0]))
 | |
| 
 | |
| if bpy.app.version > (3, 2, 0):
 | |
|     def parse_separate_color(node: bpy.types.ShaderNodeSeparateColor, out_socket: bpy.types.NodeSocket, state: ParserState) -> floatstr:
 | |
|         if node.mode == 'RGB':
 | |
|             return parse_seprgb(node, out_socket, state)
 | |
|         elif node.mode == 'HSV':
 | |
|             return parse_sephsv(node, out_socket, state)
 | |
|         elif node.mode == 'HSL':
 | |
|             log.warn('Separate Color node: HSL mode is not supported, using default value')
 | |
|             return '0.0'
 | |
| 
 | |
| 
 | |
| def parse_sephsv(node: bpy.types.ShaderNodeSeparateHSV, out_socket: bpy.types.NodeSocket, state: ParserState) -> floatstr:
 | |
|     state.curshader.add_function(c_functions.str_hue_sat)
 | |
| 
 | |
|     hsv_var = c.node_name(node.name) + '_hsv' + state.get_parser_pass_suffix()
 | |
|     if not state.curshader.contains(hsv_var):  # Already written if a second output is parsed
 | |
|         state.curshader.write(f'const vec3 {hsv_var} = rgb_to_hsv({c.parse_vector_input(node.inputs["Color"])}.rgb);')
 | |
| 
 | |
|     if out_socket == node.outputs[0]:
 | |
|         return f'{hsv_var}.x'
 | |
|     elif out_socket == node.outputs[1]:
 | |
|         return f'{hsv_var}.y'
 | |
|     elif out_socket == node.outputs[2]:
 | |
|         return f'{hsv_var}.z'
 | |
| 
 | |
| 
 | |
| def parse_seprgb(node: bpy.types.ShaderNodeSeparateRGB, out_socket: bpy.types.NodeSocket, state: ParserState) -> floatstr:
 | |
|     col = c.parse_vector_input(node.inputs[0])
 | |
|     if out_socket == node.outputs[0]:
 | |
|         return '{0}.r'.format(col)
 | |
|     elif out_socket == node.outputs[1]:
 | |
|         return '{0}.g'.format(col)
 | |
|     elif out_socket == node.outputs[2]:
 | |
|         return '{0}.b'.format(col)
 | |
| 
 | |
| 
 | |
| def parse_sepxyz(node: bpy.types.ShaderNodeSeparateXYZ, out_socket: bpy.types.NodeSocket, state: ParserState) -> floatstr:
 | |
|     vec = c.parse_vector_input(node.inputs[0])
 | |
|     if out_socket == node.outputs[0]:
 | |
|         return '{0}.x'.format(vec)
 | |
|     elif out_socket == node.outputs[1]:
 | |
|         return '{0}.y'.format(vec)
 | |
|     elif out_socket == node.outputs[2]:
 | |
|         return '{0}.z'.format(vec)
 |