652 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			652 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
Bullet Continuous Collision Detection and Physics Library
 | 
						|
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | 
						|
 | 
						|
This software is provided 'as-is', without any express or implied warranty.
 | 
						|
In no event will the authors be held liable for any damages arising from the use of this software.
 | 
						|
Permission is granted to anyone to use this software for any purpose,
 | 
						|
including commercial applications, and to alter it and redistribute it freely,
 | 
						|
subject to the following restrictions:
 | 
						|
 | 
						|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | 
						|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | 
						|
3. This notice may not be removed or altered from any source distribution.
 | 
						|
*/
 | 
						|
 | 
						|
/// 2009 March: btGeneric6DofConstraint refactored by Roman Ponomarev
 | 
						|
/// Added support for generic constraint solver through getInfo1/getInfo2 methods
 | 
						|
 | 
						|
/*
 | 
						|
2007-09-09
 | 
						|
btGeneric6DofConstraint Refactored by Francisco Le?n
 | 
						|
email: projectileman@yahoo.com
 | 
						|
http://gimpact.sf.net
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
#ifndef BT_GENERIC_6DOF_CONSTRAINT_H
 | 
						|
#define BT_GENERIC_6DOF_CONSTRAINT_H
 | 
						|
 | 
						|
#include "LinearMath/btVector3.h"
 | 
						|
#include "btJacobianEntry.h"
 | 
						|
#include "btTypedConstraint.h"
 | 
						|
 | 
						|
class btRigidBody;
 | 
						|
 | 
						|
 | 
						|
 | 
						|
#ifdef BT_USE_DOUBLE_PRECISION
 | 
						|
#define btGeneric6DofConstraintData2		btGeneric6DofConstraintDoubleData2
 | 
						|
#define btGeneric6DofConstraintDataName	"btGeneric6DofConstraintDoubleData2"
 | 
						|
#else
 | 
						|
#define btGeneric6DofConstraintData2		btGeneric6DofConstraintData
 | 
						|
#define btGeneric6DofConstraintDataName	"btGeneric6DofConstraintData"
 | 
						|
#endif //BT_USE_DOUBLE_PRECISION
 | 
						|
 | 
						|
 | 
						|
//! Rotation Limit structure for generic joints
 | 
						|
class btRotationalLimitMotor
 | 
						|
{
 | 
						|
public:
 | 
						|
    //! limit_parameters
 | 
						|
    //!@{
 | 
						|
    btScalar m_loLimit;//!< joint limit
 | 
						|
    btScalar m_hiLimit;//!< joint limit
 | 
						|
    btScalar m_targetVelocity;//!< target motor velocity
 | 
						|
    btScalar m_maxMotorForce;//!< max force on motor
 | 
						|
    btScalar m_maxLimitForce;//!< max force on limit
 | 
						|
    btScalar m_damping;//!< Damping.
 | 
						|
    btScalar m_limitSoftness;//! Relaxation factor
 | 
						|
    btScalar m_normalCFM;//!< Constraint force mixing factor
 | 
						|
    btScalar m_stopERP;//!< Error tolerance factor when joint is at limit
 | 
						|
    btScalar m_stopCFM;//!< Constraint force mixing factor when joint is at limit
 | 
						|
    btScalar m_bounce;//!< restitution factor
 | 
						|
    bool m_enableMotor;
 | 
						|
 | 
						|
    //!@}
 | 
						|
 | 
						|
    //! temp_variables
 | 
						|
    //!@{
 | 
						|
    btScalar m_currentLimitError;//!  How much is violated this limit
 | 
						|
    btScalar m_currentPosition;     //!  current value of angle 
 | 
						|
    int m_currentLimit;//!< 0=free, 1=at lo limit, 2=at hi limit
 | 
						|
    btScalar m_accumulatedImpulse;
 | 
						|
    //!@}
 | 
						|
 | 
						|
    btRotationalLimitMotor()
 | 
						|
    {
 | 
						|
    	m_accumulatedImpulse = 0.f;
 | 
						|
        m_targetVelocity = 0;
 | 
						|
        m_maxMotorForce = 0.1f;
 | 
						|
        m_maxLimitForce = 300.0f;
 | 
						|
        m_loLimit = 1.0f;
 | 
						|
        m_hiLimit = -1.0f;
 | 
						|
		m_normalCFM = 0.f;
 | 
						|
		m_stopERP = 0.2f;
 | 
						|
		m_stopCFM = 0.f;
 | 
						|
        m_bounce = 0.0f;
 | 
						|
        m_damping = 1.0f;
 | 
						|
        m_limitSoftness = 0.5f;
 | 
						|
        m_currentLimit = 0;
 | 
						|
        m_currentLimitError = 0;
 | 
						|
        m_enableMotor = false;
 | 
						|
    }
 | 
						|
 | 
						|
    btRotationalLimitMotor(const btRotationalLimitMotor & limot)
 | 
						|
    {
 | 
						|
        m_targetVelocity = limot.m_targetVelocity;
 | 
						|
        m_maxMotorForce = limot.m_maxMotorForce;
 | 
						|
        m_limitSoftness = limot.m_limitSoftness;
 | 
						|
        m_loLimit = limot.m_loLimit;
 | 
						|
        m_hiLimit = limot.m_hiLimit;
 | 
						|
		m_normalCFM = limot.m_normalCFM;
 | 
						|
		m_stopERP = limot.m_stopERP;
 | 
						|
		m_stopCFM =	limot.m_stopCFM;
 | 
						|
        m_bounce = limot.m_bounce;
 | 
						|
        m_currentLimit = limot.m_currentLimit;
 | 
						|
        m_currentLimitError = limot.m_currentLimitError;
 | 
						|
        m_enableMotor = limot.m_enableMotor;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
 | 
						|
	//! Is limited
 | 
						|
    bool isLimited() const
 | 
						|
    {
 | 
						|
    	if(m_loLimit > m_hiLimit) return false;
 | 
						|
    	return true;
 | 
						|
    }
 | 
						|
 | 
						|
	//! Need apply correction
 | 
						|
    bool needApplyTorques() const
 | 
						|
    {
 | 
						|
    	if(m_currentLimit == 0 && m_enableMotor == false) return false;
 | 
						|
    	return true;
 | 
						|
    }
 | 
						|
 | 
						|
	//! calculates  error
 | 
						|
	/*!
 | 
						|
	calculates m_currentLimit and m_currentLimitError.
 | 
						|
	*/
 | 
						|
	int testLimitValue(btScalar test_value);
 | 
						|
 | 
						|
	//! apply the correction impulses for two bodies
 | 
						|
    btScalar solveAngularLimits(btScalar timeStep,btVector3& axis, btScalar jacDiagABInv,btRigidBody * body0, btRigidBody * body1);
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
class btTranslationalLimitMotor
 | 
						|
{
 | 
						|
public:
 | 
						|
	btVector3 m_lowerLimit;//!< the constraint lower limits
 | 
						|
    btVector3 m_upperLimit;//!< the constraint upper limits
 | 
						|
    btVector3 m_accumulatedImpulse;
 | 
						|
    //! Linear_Limit_parameters
 | 
						|
    //!@{
 | 
						|
    btScalar	m_limitSoftness;//!< Softness for linear limit
 | 
						|
    btScalar	m_damping;//!< Damping for linear limit
 | 
						|
    btScalar	m_restitution;//! Bounce parameter for linear limit
 | 
						|
	btVector3	m_normalCFM;//!< Constraint force mixing factor
 | 
						|
    btVector3	m_stopERP;//!< Error tolerance factor when joint is at limit
 | 
						|
	btVector3	m_stopCFM;//!< Constraint force mixing factor when joint is at limit
 | 
						|
    //!@}
 | 
						|
	bool		m_enableMotor[3];
 | 
						|
    btVector3	m_targetVelocity;//!< target motor velocity
 | 
						|
    btVector3	m_maxMotorForce;//!< max force on motor
 | 
						|
    btVector3	m_currentLimitError;//!  How much is violated this limit
 | 
						|
    btVector3	m_currentLinearDiff;//!  Current relative offset of constraint frames
 | 
						|
    int			m_currentLimit[3];//!< 0=free, 1=at lower limit, 2=at upper limit
 | 
						|
 | 
						|
    btTranslationalLimitMotor()
 | 
						|
    {
 | 
						|
    	m_lowerLimit.setValue(0.f,0.f,0.f);
 | 
						|
    	m_upperLimit.setValue(0.f,0.f,0.f);
 | 
						|
    	m_accumulatedImpulse.setValue(0.f,0.f,0.f);
 | 
						|
		m_normalCFM.setValue(0.f, 0.f, 0.f);
 | 
						|
		m_stopERP.setValue(0.2f, 0.2f, 0.2f);
 | 
						|
		m_stopCFM.setValue(0.f, 0.f, 0.f);
 | 
						|
 | 
						|
    	m_limitSoftness = 0.7f;
 | 
						|
    	m_damping = btScalar(1.0f);
 | 
						|
    	m_restitution = btScalar(0.5f);
 | 
						|
		for(int i=0; i < 3; i++) 
 | 
						|
		{
 | 
						|
			m_enableMotor[i] = false;
 | 
						|
			m_targetVelocity[i] = btScalar(0.f);
 | 
						|
			m_maxMotorForce[i] = btScalar(0.f);
 | 
						|
		}
 | 
						|
    }
 | 
						|
 | 
						|
    btTranslationalLimitMotor(const btTranslationalLimitMotor & other )
 | 
						|
    {
 | 
						|
    	m_lowerLimit = other.m_lowerLimit;
 | 
						|
    	m_upperLimit = other.m_upperLimit;
 | 
						|
    	m_accumulatedImpulse = other.m_accumulatedImpulse;
 | 
						|
 | 
						|
    	m_limitSoftness = other.m_limitSoftness ;
 | 
						|
    	m_damping = other.m_damping;
 | 
						|
    	m_restitution = other.m_restitution;
 | 
						|
		m_normalCFM = other.m_normalCFM;
 | 
						|
		m_stopERP = other.m_stopERP;
 | 
						|
		m_stopCFM = other.m_stopCFM;
 | 
						|
 | 
						|
		for(int i=0; i < 3; i++) 
 | 
						|
		{
 | 
						|
			m_enableMotor[i] = other.m_enableMotor[i];
 | 
						|
			m_targetVelocity[i] = other.m_targetVelocity[i];
 | 
						|
			m_maxMotorForce[i] = other.m_maxMotorForce[i];
 | 
						|
		}
 | 
						|
    }
 | 
						|
 | 
						|
    //! Test limit
 | 
						|
	/*!
 | 
						|
    - free means upper < lower,
 | 
						|
    - locked means upper == lower
 | 
						|
    - limited means upper > lower
 | 
						|
    - limitIndex: first 3 are linear, next 3 are angular
 | 
						|
    */
 | 
						|
    inline bool	isLimited(int limitIndex) const
 | 
						|
    {
 | 
						|
       return (m_upperLimit[limitIndex] >= m_lowerLimit[limitIndex]);
 | 
						|
    }
 | 
						|
    inline bool needApplyForce(int limitIndex) const
 | 
						|
    {
 | 
						|
    	if(m_currentLimit[limitIndex] == 0 && m_enableMotor[limitIndex] == false) return false;
 | 
						|
    	return true;
 | 
						|
    }
 | 
						|
	int testLimitValue(int limitIndex, btScalar test_value);
 | 
						|
 | 
						|
 | 
						|
    btScalar solveLinearAxis(
 | 
						|
    	btScalar timeStep,
 | 
						|
        btScalar jacDiagABInv,
 | 
						|
        btRigidBody& body1,const btVector3 &pointInA,
 | 
						|
        btRigidBody& body2,const btVector3 &pointInB,
 | 
						|
        int limit_index,
 | 
						|
        const btVector3 & axis_normal_on_a,
 | 
						|
		const btVector3 & anchorPos);
 | 
						|
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
enum bt6DofFlags
 | 
						|
{
 | 
						|
	BT_6DOF_FLAGS_CFM_NORM = 1,
 | 
						|
	BT_6DOF_FLAGS_CFM_STOP = 2,
 | 
						|
	BT_6DOF_FLAGS_ERP_STOP = 4
 | 
						|
};
 | 
						|
#define BT_6DOF_FLAGS_AXIS_SHIFT 3 // bits per axis
 | 
						|
 | 
						|
 | 
						|
/// btGeneric6DofConstraint between two rigidbodies each with a pivotpoint that descibes the axis location in local space
 | 
						|
/*!
 | 
						|
btGeneric6DofConstraint can leave any of the 6 degree of freedom 'free' or 'locked'.
 | 
						|
currently this limit supports rotational motors<br>
 | 
						|
<ul>
 | 
						|
<li> For Linear limits, use btGeneric6DofConstraint.setLinearUpperLimit, btGeneric6DofConstraint.setLinearLowerLimit. You can set the parameters with the btTranslationalLimitMotor structure accsesible through the btGeneric6DofConstraint.getTranslationalLimitMotor method.
 | 
						|
At this moment translational motors are not supported. May be in the future. </li>
 | 
						|
 | 
						|
<li> For Angular limits, use the btRotationalLimitMotor structure for configuring the limit.
 | 
						|
This is accessible through btGeneric6DofConstraint.getLimitMotor method,
 | 
						|
This brings support for limit parameters and motors. </li>
 | 
						|
 | 
						|
<li> Angulars limits have these possible ranges:
 | 
						|
<table border=1 >
 | 
						|
<tr>
 | 
						|
	<td><b>AXIS</b></td>
 | 
						|
	<td><b>MIN ANGLE</b></td>
 | 
						|
	<td><b>MAX ANGLE</b></td>
 | 
						|
</tr><tr>
 | 
						|
	<td>X</td>
 | 
						|
	<td>-PI</td>
 | 
						|
	<td>PI</td>
 | 
						|
</tr><tr>
 | 
						|
	<td>Y</td>
 | 
						|
	<td>-PI/2</td>
 | 
						|
	<td>PI/2</td>
 | 
						|
</tr><tr>
 | 
						|
	<td>Z</td>
 | 
						|
	<td>-PI</td>
 | 
						|
	<td>PI</td>
 | 
						|
</tr>
 | 
						|
</table>
 | 
						|
</li>
 | 
						|
</ul>
 | 
						|
 | 
						|
*/
 | 
						|
ATTRIBUTE_ALIGNED16(class) btGeneric6DofConstraint : public btTypedConstraint
 | 
						|
{
 | 
						|
protected:
 | 
						|
 | 
						|
	//! relative_frames
 | 
						|
    //!@{
 | 
						|
	btTransform	m_frameInA;//!< the constraint space w.r.t body A
 | 
						|
    btTransform	m_frameInB;//!< the constraint space w.r.t body B
 | 
						|
    //!@}
 | 
						|
 | 
						|
    //! Jacobians
 | 
						|
    //!@{
 | 
						|
    btJacobianEntry	m_jacLinear[3];//!< 3 orthogonal linear constraints
 | 
						|
    btJacobianEntry	m_jacAng[3];//!< 3 orthogonal angular constraints
 | 
						|
    //!@}
 | 
						|
 | 
						|
	//! Linear_Limit_parameters
 | 
						|
    //!@{
 | 
						|
    btTranslationalLimitMotor m_linearLimits;
 | 
						|
    //!@}
 | 
						|
 | 
						|
 | 
						|
    //! hinge_parameters
 | 
						|
    //!@{
 | 
						|
    btRotationalLimitMotor m_angularLimits[3];
 | 
						|
	//!@}
 | 
						|
 | 
						|
 | 
						|
protected:
 | 
						|
    //! temporal variables
 | 
						|
    //!@{
 | 
						|
    btScalar m_timeStep;
 | 
						|
    btTransform m_calculatedTransformA;
 | 
						|
    btTransform m_calculatedTransformB;
 | 
						|
    btVector3 m_calculatedAxisAngleDiff;
 | 
						|
    btVector3 m_calculatedAxis[3];
 | 
						|
    btVector3 m_calculatedLinearDiff;
 | 
						|
	btScalar	m_factA;
 | 
						|
	btScalar	m_factB;
 | 
						|
	bool		m_hasStaticBody;
 | 
						|
    
 | 
						|
	btVector3 m_AnchorPos; // point betwen pivots of bodies A and B to solve linear axes
 | 
						|
 | 
						|
    bool	m_useLinearReferenceFrameA;
 | 
						|
	bool	m_useOffsetForConstraintFrame;
 | 
						|
    
 | 
						|
	int		m_flags;
 | 
						|
 | 
						|
    //!@}
 | 
						|
 | 
						|
    btGeneric6DofConstraint&	operator=(btGeneric6DofConstraint&	other)
 | 
						|
    {
 | 
						|
        btAssert(0);
 | 
						|
        (void) other;
 | 
						|
        return *this;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
	int setAngularLimits(btConstraintInfo2 *info, int row_offset,const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB);
 | 
						|
 | 
						|
	int setLinearLimits(btConstraintInfo2 *info, int row, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB);
 | 
						|
 | 
						|
    void buildLinearJacobian(
 | 
						|
        btJacobianEntry & jacLinear,const btVector3 & normalWorld,
 | 
						|
        const btVector3 & pivotAInW,const btVector3 & pivotBInW);
 | 
						|
 | 
						|
    void buildAngularJacobian(btJacobianEntry & jacAngular,const btVector3 & jointAxisW);
 | 
						|
 | 
						|
	// tests linear limits
 | 
						|
	void calculateLinearInfo();
 | 
						|
 | 
						|
	//! calcs the euler angles between the two bodies.
 | 
						|
    void calculateAngleInfo();
 | 
						|
 | 
						|
 | 
						|
 | 
						|
public:
 | 
						|
 | 
						|
	BT_DECLARE_ALIGNED_ALLOCATOR();
 | 
						|
	
 | 
						|
	///for backwards compatibility during the transition to 'getInfo/getInfo2'
 | 
						|
	bool		m_useSolveConstraintObsolete;
 | 
						|
 | 
						|
    btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB ,bool useLinearReferenceFrameA);
 | 
						|
    btGeneric6DofConstraint(btRigidBody& rbB, const btTransform& frameInB, bool useLinearReferenceFrameB);
 | 
						|
    
 | 
						|
	//! Calcs global transform of the offsets
 | 
						|
	/*!
 | 
						|
	Calcs the global transform for the joint offset for body A an B, and also calcs the agle differences between the bodies.
 | 
						|
	\sa btGeneric6DofConstraint.getCalculatedTransformA , btGeneric6DofConstraint.getCalculatedTransformB, btGeneric6DofConstraint.calculateAngleInfo
 | 
						|
	*/
 | 
						|
    void calculateTransforms(const btTransform& transA,const btTransform& transB);
 | 
						|
 | 
						|
	void calculateTransforms();
 | 
						|
 | 
						|
	//! Gets the global transform of the offset for body A
 | 
						|
    /*!
 | 
						|
    \sa btGeneric6DofConstraint.getFrameOffsetA, btGeneric6DofConstraint.getFrameOffsetB, btGeneric6DofConstraint.calculateAngleInfo.
 | 
						|
    */
 | 
						|
    const btTransform & getCalculatedTransformA() const
 | 
						|
    {
 | 
						|
    	return m_calculatedTransformA;
 | 
						|
    }
 | 
						|
 | 
						|
    //! Gets the global transform of the offset for body B
 | 
						|
    /*!
 | 
						|
    \sa btGeneric6DofConstraint.getFrameOffsetA, btGeneric6DofConstraint.getFrameOffsetB, btGeneric6DofConstraint.calculateAngleInfo.
 | 
						|
    */
 | 
						|
    const btTransform & getCalculatedTransformB() const
 | 
						|
    {
 | 
						|
    	return m_calculatedTransformB;
 | 
						|
    }
 | 
						|
 | 
						|
    const btTransform & getFrameOffsetA() const
 | 
						|
    {
 | 
						|
    	return m_frameInA;
 | 
						|
    }
 | 
						|
 | 
						|
    const btTransform & getFrameOffsetB() const
 | 
						|
    {
 | 
						|
    	return m_frameInB;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    btTransform & getFrameOffsetA()
 | 
						|
    {
 | 
						|
    	return m_frameInA;
 | 
						|
    }
 | 
						|
 | 
						|
    btTransform & getFrameOffsetB()
 | 
						|
    {
 | 
						|
    	return m_frameInB;
 | 
						|
    }
 | 
						|
 | 
						|
    void setFrameOffsetAOrigin(const btVector3& v)
 | 
						|
    {
 | 
						|
        m_frameInA.setOrigin(v);
 | 
						|
    }
 | 
						|
 | 
						|
	//! performs Jacobian calculation, and also calculates angle differences and axis
 | 
						|
    virtual void	buildJacobian();
 | 
						|
 | 
						|
	virtual void getInfo1 (btConstraintInfo1* info);
 | 
						|
 | 
						|
	void getInfo1NonVirtual (btConstraintInfo1* info);
 | 
						|
 | 
						|
	virtual void getInfo2 (btConstraintInfo2* info);
 | 
						|
 | 
						|
	void getInfo2NonVirtual (btConstraintInfo2* info,const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB);
 | 
						|
 | 
						|
 | 
						|
    void	updateRHS(btScalar	timeStep);
 | 
						|
 | 
						|
	//! Get the rotation axis in global coordinates
 | 
						|
	/*!
 | 
						|
	\pre btGeneric6DofConstraint.buildJacobian must be called previously.
 | 
						|
	*/
 | 
						|
    btVector3 getAxis(int axis_index) const;
 | 
						|
 | 
						|
    //! Get the relative Euler angle
 | 
						|
    /*!
 | 
						|
	\pre btGeneric6DofConstraint::calculateTransforms() must be called previously.
 | 
						|
	*/
 | 
						|
    btScalar getAngle(int axis_index) const;
 | 
						|
 | 
						|
	//! Get the relative position of the constraint pivot
 | 
						|
    /*!
 | 
						|
	\pre btGeneric6DofConstraint::calculateTransforms() must be called previously.
 | 
						|
	*/
 | 
						|
	btScalar getRelativePivotPosition(int axis_index) const;
 | 
						|
 | 
						|
	void setFrames(const btTransform & frameA, const btTransform & frameB);
 | 
						|
 | 
						|
	//! Test angular limit.
 | 
						|
	/*!
 | 
						|
	Calculates angular correction and returns true if limit needs to be corrected.
 | 
						|
	\pre btGeneric6DofConstraint::calculateTransforms() must be called previously.
 | 
						|
	*/
 | 
						|
    bool testAngularLimitMotor(int axis_index);
 | 
						|
 | 
						|
    void	setLinearLowerLimit(const btVector3& linearLower)
 | 
						|
    {
 | 
						|
    	m_linearLimits.m_lowerLimit = linearLower;
 | 
						|
    }
 | 
						|
 | 
						|
	void	getLinearLowerLimit(btVector3& linearLower) const
 | 
						|
	{
 | 
						|
		linearLower = m_linearLimits.m_lowerLimit;
 | 
						|
	}
 | 
						|
 | 
						|
	void	setLinearUpperLimit(const btVector3& linearUpper)
 | 
						|
	{
 | 
						|
		m_linearLimits.m_upperLimit = linearUpper;
 | 
						|
	}
 | 
						|
 | 
						|
	void	getLinearUpperLimit(btVector3& linearUpper) const
 | 
						|
	{
 | 
						|
		linearUpper = m_linearLimits.m_upperLimit;
 | 
						|
	}
 | 
						|
 | 
						|
    void	setAngularLowerLimit(const btVector3& angularLower)
 | 
						|
    {
 | 
						|
		for(int i = 0; i < 3; i++) 
 | 
						|
			m_angularLimits[i].m_loLimit = btNormalizeAngle(angularLower[i]);
 | 
						|
    }
 | 
						|
 | 
						|
	void	getAngularLowerLimit(btVector3& angularLower) const
 | 
						|
	{
 | 
						|
		for(int i = 0; i < 3; i++) 
 | 
						|
			angularLower[i] = m_angularLimits[i].m_loLimit;
 | 
						|
	}
 | 
						|
 | 
						|
    void	setAngularUpperLimit(const btVector3& angularUpper)
 | 
						|
    {
 | 
						|
		for(int i = 0; i < 3; i++)
 | 
						|
			m_angularLimits[i].m_hiLimit = btNormalizeAngle(angularUpper[i]);
 | 
						|
    }
 | 
						|
 | 
						|
	void	getAngularUpperLimit(btVector3& angularUpper) const
 | 
						|
	{
 | 
						|
		for(int i = 0; i < 3; i++)
 | 
						|
			angularUpper[i] = m_angularLimits[i].m_hiLimit;
 | 
						|
	}
 | 
						|
 | 
						|
	//! Retrieves the angular limit informacion
 | 
						|
    btRotationalLimitMotor * getRotationalLimitMotor(int index)
 | 
						|
    {
 | 
						|
    	return &m_angularLimits[index];
 | 
						|
    }
 | 
						|
 | 
						|
    //! Retrieves the  limit informacion
 | 
						|
    btTranslationalLimitMotor * getTranslationalLimitMotor()
 | 
						|
    {
 | 
						|
    	return &m_linearLimits;
 | 
						|
    }
 | 
						|
 | 
						|
    //first 3 are linear, next 3 are angular
 | 
						|
    void setLimit(int axis, btScalar lo, btScalar hi)
 | 
						|
    {
 | 
						|
    	if(axis<3)
 | 
						|
    	{
 | 
						|
    		m_linearLimits.m_lowerLimit[axis] = lo;
 | 
						|
    		m_linearLimits.m_upperLimit[axis] = hi;
 | 
						|
    	}
 | 
						|
    	else
 | 
						|
    	{
 | 
						|
			lo = btNormalizeAngle(lo);
 | 
						|
			hi = btNormalizeAngle(hi);
 | 
						|
    		m_angularLimits[axis-3].m_loLimit = lo;
 | 
						|
    		m_angularLimits[axis-3].m_hiLimit = hi;
 | 
						|
    	}
 | 
						|
    }
 | 
						|
 | 
						|
	//! Test limit
 | 
						|
	/*!
 | 
						|
    - free means upper < lower,
 | 
						|
    - locked means upper == lower
 | 
						|
    - limited means upper > lower
 | 
						|
    - limitIndex: first 3 are linear, next 3 are angular
 | 
						|
    */
 | 
						|
    bool	isLimited(int limitIndex) const
 | 
						|
    {
 | 
						|
    	if(limitIndex<3)
 | 
						|
    	{
 | 
						|
			return m_linearLimits.isLimited(limitIndex);
 | 
						|
 | 
						|
    	}
 | 
						|
        return m_angularLimits[limitIndex-3].isLimited();
 | 
						|
    }
 | 
						|
 | 
						|
	virtual void calcAnchorPos(void); // overridable
 | 
						|
 | 
						|
	int get_limit_motor_info2(	btRotationalLimitMotor * limot,
 | 
						|
								const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB,
 | 
						|
								btConstraintInfo2 *info, int row, btVector3& ax1, int rotational, int rotAllowed = false);
 | 
						|
 | 
						|
	// access for UseFrameOffset
 | 
						|
	bool getUseFrameOffset() const { return m_useOffsetForConstraintFrame; }
 | 
						|
	void setUseFrameOffset(bool frameOffsetOnOff) { m_useOffsetForConstraintFrame = frameOffsetOnOff; }
 | 
						|
	
 | 
						|
	bool getUseLinearReferenceFrameA() const { return m_useLinearReferenceFrameA; }
 | 
						|
	void setUseLinearReferenceFrameA(bool linearReferenceFrameA) { m_useLinearReferenceFrameA = linearReferenceFrameA; }
 | 
						|
 | 
						|
	///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5). 
 | 
						|
	///If no axis is provided, it uses the default axis for this constraint.
 | 
						|
	virtual	void setParam(int num, btScalar value, int axis = -1);
 | 
						|
	///return the local value of parameter
 | 
						|
	virtual	btScalar getParam(int num, int axis = -1) const;
 | 
						|
 | 
						|
	void setAxis( const btVector3& axis1, const btVector3& axis2);
 | 
						|
 | 
						|
    	virtual	int getFlags() const
 | 
						|
    	{
 | 
						|
        	return m_flags;
 | 
						|
	}
 | 
						|
 | 
						|
	virtual	int	calculateSerializeBufferSize() const;
 | 
						|
 | 
						|
	///fills the dataBuffer and returns the struct name (and 0 on failure)
 | 
						|
	virtual	const char*	serialize(void* dataBuffer, btSerializer* serializer) const;
 | 
						|
 | 
						|
	
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
struct btGeneric6DofConstraintData
 | 
						|
{
 | 
						|
	btTypedConstraintData	m_typeConstraintData;
 | 
						|
	btTransformFloatData m_rbAFrame; // constraint axii. Assumes z is hinge axis.
 | 
						|
	btTransformFloatData m_rbBFrame;
 | 
						|
	
 | 
						|
	btVector3FloatData	m_linearUpperLimit;
 | 
						|
	btVector3FloatData	m_linearLowerLimit;
 | 
						|
 | 
						|
	btVector3FloatData	m_angularUpperLimit;
 | 
						|
	btVector3FloatData	m_angularLowerLimit;
 | 
						|
	
 | 
						|
	int	m_useLinearReferenceFrameA;
 | 
						|
	int m_useOffsetForConstraintFrame;
 | 
						|
};
 | 
						|
 | 
						|
struct btGeneric6DofConstraintDoubleData2
 | 
						|
{
 | 
						|
	btTypedConstraintDoubleData	m_typeConstraintData;
 | 
						|
	btTransformDoubleData m_rbAFrame; // constraint axii. Assumes z is hinge axis.
 | 
						|
	btTransformDoubleData m_rbBFrame;
 | 
						|
	
 | 
						|
	btVector3DoubleData	m_linearUpperLimit;
 | 
						|
	btVector3DoubleData	m_linearLowerLimit;
 | 
						|
 | 
						|
	btVector3DoubleData	m_angularUpperLimit;
 | 
						|
	btVector3DoubleData	m_angularLowerLimit;
 | 
						|
	
 | 
						|
	int	m_useLinearReferenceFrameA;
 | 
						|
	int m_useOffsetForConstraintFrame;
 | 
						|
};
 | 
						|
 | 
						|
SIMD_FORCE_INLINE	int	btGeneric6DofConstraint::calculateSerializeBufferSize() const
 | 
						|
{
 | 
						|
	return sizeof(btGeneric6DofConstraintData2);
 | 
						|
}
 | 
						|
 | 
						|
	///fills the dataBuffer and returns the struct name (and 0 on failure)
 | 
						|
SIMD_FORCE_INLINE	const char*	btGeneric6DofConstraint::serialize(void* dataBuffer, btSerializer* serializer) const
 | 
						|
{
 | 
						|
 | 
						|
	btGeneric6DofConstraintData2* dof = (btGeneric6DofConstraintData2*)dataBuffer;
 | 
						|
	btTypedConstraint::serialize(&dof->m_typeConstraintData,serializer);
 | 
						|
 | 
						|
	m_frameInA.serialize(dof->m_rbAFrame);
 | 
						|
	m_frameInB.serialize(dof->m_rbBFrame);
 | 
						|
 | 
						|
		
 | 
						|
	int i;
 | 
						|
	for (i=0;i<3;i++)
 | 
						|
	{
 | 
						|
		dof->m_angularLowerLimit.m_floats[i] =  m_angularLimits[i].m_loLimit;
 | 
						|
		dof->m_angularUpperLimit.m_floats[i] =  m_angularLimits[i].m_hiLimit;
 | 
						|
		dof->m_linearLowerLimit.m_floats[i] = m_linearLimits.m_lowerLimit[i];
 | 
						|
		dof->m_linearUpperLimit.m_floats[i] = m_linearLimits.m_upperLimit[i];
 | 
						|
	}
 | 
						|
	
 | 
						|
	dof->m_useLinearReferenceFrameA = m_useLinearReferenceFrameA? 1 : 0;
 | 
						|
	dof->m_useOffsetForConstraintFrame = m_useOffsetForConstraintFrame ? 1 : 0;
 | 
						|
 | 
						|
	return btGeneric6DofConstraintDataName;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
#endif //BT_GENERIC_6DOF_CONSTRAINT_H
 |